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Abstract—In this paper, the effect of a general spatial and tem-
poral fading correlation structure on the performance of coded
multiple-input multiple-output (MIMO)-orthogonal frequency-di-
vision multiplexing (OFDM) systems is studied. The analysis
handles an arbitrary joint transmit–receive spatial correlation
model, including the non-Kronecker model. An upper bound on
the maximum achievable diversity order for frequency-selective
MIMO-OFDM systems with general temporal and spatial correla-
tion is derived. Furthermore, a space–time–frequency code design
that can achieve the upper bound for any arbitrarily correlated
channel scenario is provided. The general framework of the
analysis includes space–frequency (SF)-coded systems as a special
case. For the SF-coded MIMO-OFDM system, it is shown that
any SF code designed to achieve full diversity in the independent
fading channel can achieve full diversity in an arbitrary spatially
correlated channel. The derived analytical results are consistent
with those in the existing literature for special correlation struc-
tures. Extensive simulation results are provided to confirm the
theoretical analysis.

Index Terms—Broadband wireless communications, maximum
achievable diversity, multiple antennas, multiple-input mul-
tiple-output (MIMO)-orthogonal frequency-division multiplexing
(OFDM) systems, non-Kronecker model, space–frequency (SF)
coding, space–time–frequency (STF) coding.

I. INTRODUCTION

ONE OF THE major challenges that designers of wireless
communication systems face is reliably conveying in-

formation to the receiver in the presence of signal fading. To
achieve this goal, various diversity schemes can be used. The
diversity order of a system can be defined as the number of
independent channels over which information is being sent; it
also denotes the degrees of freedom (DOFs) associated with
the system. There are three physical domains in which we can
generate independent channels: time, frequency, and space.
The use of spatial diversity, especially transmit diversity, has
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gained a lot of interest in the recent years, as it does not incur
any loss in spectral efficiency in the system. Previous work
on transmit diversity assumed independence of the spatial
fading across different transmit and receive antenna elements.
However, in practical scenarios, this assumption is not always
valid, because of insufficient antenna spacing and/or lack of
scatterers. Most of the work that studied the effect of correlation
on the performance of multiple-input multiple-output (MIMO)
systems considered a narrowband flat-fading channel [1]–[4],
where space–time (ST) coding is usually used.

For the more interesting case of frequency-selective fading
channels, which generally arises in broadband wireless sys-
tems, little work has studied the effect of spatial correlation
on the performance of the system. In addition to the spatial
diversity inherent in the MIMO broadband system, fre-
quency diversity is also offered by the multipath nature of the
channel. Due to the frequency-selective nature of the broad-
band channel, orthogonal frequency-division multiplexing
(OFDM) is an attractive approach to reduce the complexity
of equalization and decoding [5], [6]. To exploit both the
spatial and frequency diversities, space–frequency (SF) coding
is used over each OFDM block. The authors in [7] and [8]
have proposed systematic SF code-design methodologies that
guarantee achieving full spatial and frequency diversities.
However, these code designs assumed full independence
among the spatial fading of different antenna element pairs.
In [9], a space–time–frequency (STF) code was presented
to achieve the spatial and frequency diversity without any
temporal diversity gain, as the channel was assumed to be
constant across multiple OFDM blocks. The effect of spatial
correlation on the performance of SF codes was studied in
[10]. The derivations in [10] were based on the assumption
of a Kronecker model, in which the spatial correlations at the
transmitter and the receiver are independent from each other.
However, recent measurement campaigns have presented im-
portant implications and deficiencies of the Kronecker channel
model [11], as it was shown that the Kronecker structure
does not describe the multipath propagation channel correctly.
Up to this point, we have not discussed the third dimension:
time. If the channel varies randomly from one OFDM block
to another, one can further exploit the diversity in the time
domain by using STF coding, jointly encoding across more
than one OFDM block. In [12] and [13], the performance
criteria for STF-coded MIMO-OFDM systems with indepen-
dent spatial fading was derived. The authors determined the
maximum achievable diversity for this case, and they provided
two STF code-design methods that are guaranteed to achieve
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full diversity order of the system. However, the spatial-fading
correlation effect between different antenna elements was not
taken into consideration.

In this paper, with a general spatial and temporal fading cor-
relation structure, the performance of the STF-coded MIMO-
OFDM system is analyzed. Our analysis handles an arbitrary
joint transmit–receive spatial correlation model which covers
both the non-Kronecker (nonseparable) and Kronecker (sepa-
rable) structures. We determine an upper bound on the diversity
gain of STF-coded MIMO-OFDM systems with a general tem-
poral and spatial correlation structure. Furthermore, we show
that the STF code via mapping, designed to achieve full di-
versity in independent spatial fading scenarios, can be used to
achieve full diversity for arbitrary correlation fading channels.
Hence, the upper bound on the diversity gain is achieved. The
general framework of our analysis includes SF-coded MIMO-
OFDM systems as a special case, hence, an upper bound on
the maximum achievable diversity gain is determined for this
system. For this scenario, we show that any SF code designed
to achieve full diversity gain in the independent spatial fading
case can achieve full diversity gain in an arbitrary spatial corre-
lation scenario [14].

The rest of the paper is organized as follows. In Section II, the
system model used in the paper is described. In Section III, we
drive the performance criteria of the system in order to illustrate
the parameters that determine the diversity gain of the system. In
Section IV, we derive an upper bound for the maximum achiev-
able diversity for a channel with a general temporal and spatial
correlation model, and we present an STF code design that can
achieve this upper bound. Furthermore, we present some special
channel-correlation scenarios to give more insights on the the-
oretical results. Simulation results are shown in Section V, and
finally, Section VI concludes the paper.

The following notations are used in the paper: denotes
the identity matrix; indicates an all-ones

matrix; is an all-ones square matrix; the superscripts
, , and represent the transpose, conjugate transpose, and

element-wise conjugation, respectively; and represents the
Kronecker product. Finally, transforms a matrix

into a column vector , where
is the th column.

II. SYSTEM MODEL

In this paper, we consider a MIMO-OFDM system with
transmit antennas, receive antennas, and subcarriers.
Each pair of transmit and receive antennas has independent
delay paths with the same delay profile. The channel is as-
sumed to be static within each OFDM block period, but it may
vary from one OFDM block to another. The channel impulse
response between transmit antenna and receive antenna at
the th OFDM block can be modeled as

(1)

where and are the delay and complex amplitude of
the th path between transmit antenna and receive antenna ,
respectively. The ’s are modeled as zero-mean, complex

Gaussian random variables with variances ,
where stands for the expectation. The powers of the paths
are normalized such that . From (1), the frequency
response of the channel is given by

(2)

where .
The spatial and temporal fading correlations of the channel

are modeled as follows. The MIMO channel is assumed to have
arbitrary spatial correlation at both the transmitter and receiver
sides, which will be reflected in their spatial correlation matrix
later. The channel gains are assumed to be jointly Gaussian. It
is also assumed that path gains for different delays are indepen-
dent, i.e., different clusters of scatterers are assumed to be in-
dependent. With the assumption that the second-order statistics
of the time correlation is the same for all transmit and receive
antenna pairs and all paths (i.e., the correlation values do not
depend on , , and ), we can define the time correlation at lag

as

(3)

We assume that the spatial and time fading are independent from
each other, i.e.,

(4)

(Note that this assumption is valid for a widely used model
for temporal correlation in radio communication channels [16],
[17], as shown in Appendix A.)

At the transmitter, we consider STF coding across
transmit antennas, OFDM subcarriers, and consecutive
OFDM blocks. Each STF codeword can be expressed as an

matrix

(5)

where the channel symbol at the th OFDM block is given
by an matrix

(6)

in which is an
column vector, representing the channel symbol vector trans-
mitted on the th subcarrier during the th OFDM block period,
and is the channel symbol transmitted over the th subcar-
rier by transmit antenna in the th OFDM block. The STF code
is assumed to satisfy the energy constraint ,
where is the Frobenius norm of . During the th OFDM
block period, the transmitter applies an -point inverse fast
Fourier transform (IFFT) to each row of the matrix , appends
a cyclic prefix (CP), and transmits the OFDM symbol corre-
sponding to the th row of by transmit
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antenna . The CP is taken to be longer than the channel delay
spread in order to guarantee transforming the channel to be
flat-fading over each subcarrier.

At the receiver, after matched filtering, removing the CP, and
applying FFT, the received signal at the th subcarrier at receive
antenna in the th OFDM block is given by

(7)

where

(8)

in which

(9)

is the channel frequency response at the th subcarrier between
transmit antenna and receive antenna , is the
subcarrier separation in the frequency domain, and is the
OFDM symbol period. In (7), denotes the additive white
complex Gaussian noise with zero mean and unit variance at the

th subcarrier at receive antenna in the th OFDM block. The
factor in (7) ensures that is the average signal-to-noise
ratio (SNR) at each receive antenna.

III. SYSTEM PERFORMANCE ANALYSIS

In this section, we analyze the performance of the STF-coded
MIMO-OFDM systems with arbitrary channel correlation con-
ditions. We derive the average pairwise error probability (PEP),
which will give insights on the factors that determine the diver-
sity order of the system performance.

The received signal during the th OFDM block in (7) can be
represented in vector form as

(10)

where

(11)

in which represents the channel frequency response to re-
ceive antenna at the th OFDM block period, and is formatted
as an block diagonal matrix as follows:

(12)

In (10), the vector can be written as

(13)

We further write the whole received signal in a compact matrix
form as

(14)

where

(15)

and the received signal vector is given by

(16)

The receiver is assumed to know the channel state infor-
mation exactly, and thus it can apply a maximum-likelihood
decoder

(17)

Accordingly, the PEP between two codewords and for a
given channel realization can be upper bounded by [18]

(18)

where is a vector given by

(19)

Since the channel coefficients are jointly Gaussian, the vector
, for a fixed code realization, has a Gaussian distribution with

zero mean and covariance matrix

(20)

of size . Since is usually greater than ,
the matrix can be shown to be rank-deficient. Averaging the
PEP (18) over all channel realizations, we get [19]

(21)
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where and are the rank and the th eigenvalue
of the covariance matrix , respectively.

IV. MAXIMUM ACHIEVABLE DIVERSITY

We analyze in this section the factors that affect the diversity
order of an STF-coded MIMO-OFDM system. First, we derive
an upper bound for the maximum achievable diversity for such
a system. Second, we show that this bound can be achieved by a
repetition STF code design. Finally, we investigate the general
analytical results that we derived for some special correlation
scenarios of practical interest.

A. An Upper Bound for the Maximum Achievable Diversity
Order

In this section, we determine an upper bound for the
maximum achievable diversity order of the STF-coded
MIMO-OFDM system with an arbitrary spatial and tem-
poral correlation structure, as specified in Section II. From the
PEP in (21), we can see that the diversity order is determined by
the rank of the covariance matrix in (20). Next, we further
determine the covariance matrix .

From (19), the covariance matrix can be written as

(22)

where . Using (5) and (15), we can write (22)
as

...

(23)
where , .

Define , then we can write
as

...

(24)

Denoting as , we can compute
the value of this matrix using (12) as follows:

...

(25)

where . Using (8) and (9), the vector
can be written as , in which

. With the assumption that dif-
ferent delay paths are independent, we have

(26)
From (25) and (26), we have as follows:

...

(27)

Using the fact that is the th column of the matrix
, we can further simplify (27) as follows:

(28)

where

(29)

Using (4), and combining (24) and (28), we get

(30)

where the matrix is the spatial covariance matrix of the
th path ( th cluster) of the channel impulse response, and is

specified as

(31)

in which the vector
has size . Define the

matrix as

(32)
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Hence, we can write (30) in a compact form as follows:

(33)

where the matrix is an block diagonal
matrix, and is given by

(34)

Using (33), we can write the whole matrix as follows:

...
. . .

...

(35)

The matrix is of size , thus we can
write (35) as

...
. . .

...

...
. . .

...
(36)

where denotes the Hadamard product.1 From the above anal-
ysis, the covariance matrix can be further decomposed in
the following theorem.

Theorem 1: The covariance matrix in (20) can be decom-
posed as

(37)

where the matrix is the temporal correlation matrix of size
, whose entry in the th row and the th column is given

by for , .
Theorem 1 determines the factors that affect the diversity

order of an STF-coded MIMO-OFDM system with an arbitrary
temporal and spatial correlation structure. The theorem identi-
fies the relation between the matrix , whose rank determines
the diversity order of the system, and the temporal correlation
matrix , the spatial correlation matrix , and the STF code
used ( , ).

Next, we derive an upper bound on the maximum achievable
diversity order of the STF-coded MIMO-OFDM system with

1Suppose thatA = [a ] andB = [b ] are two matrices of sizem�n. The
Hadamard product of A and B is defined as the element-wise matrix product
A � B = [a b ].

the arbitrary spatial and temporal correlation structure. The ma-
trix in (37) comes from the Hadamard product of two ma-
trices, and thus has rank

(38)

If the STF code is designed to achieve full diversity in
the independent spatial fading channel case, then the

matrix ,
in the right-hand side of (38), can be shown to be of rank

[12], [13]. Denote by , which
can be rewritten after row and column reordering in the form

(39)

where is of size , and is full rank.
The matrix takes the rest of the matrix. Since the ordered sin-
gular values of a matrix are not smaller than the corresponding
singular values of any square submatrix obtained by deleting
equal number of rows and columns of the original matrix [20],
we get

(40)

where denotes the th eigenvalue, and they are ordered
in decreasing order. The eigenvalues of are
given by

(41)

where is a nonnegative real number, such that
, which follows by Ostrowski’s the-

orem [21]. Thus, the rank of the matrix is given by

(42)

Substituting (42) in (38), we get

(43)

We summarize this result in the following theorem.
Theorem 2: The maximum achievable diversity order of the

STF-coded MIMO-OFDM system with arbitrary spatial and
temporal correlation channels, as described in (3), (4), and (34),
is upper bounded by

(44)
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B. STF Code Design to Achieve the Diversity Upper Bound

In Theorem 2, we have proved an upper bound for the diver-
sity order of an STF-coded MIMO-OFDM system, but we did
not discuss whether this bound is achieved or not. In this sec-
tion, we show that the repetition STF code design, proposed in
[12] and [13], can indeed achieve full diversity order in arbitrary
correlated channel scenarios, and this proves that the inequality
in Theorem 2 is actually with equality.

In [12] and [13], a systematic approach to the design of full-
diversity STF codes was proposed. An STF code is constructed
by repeating a full-diversity SF code times over OFDM
blocks, as follows:

(45)

where is a full-diversity SF code. In this case, the covari-
ance matrix (37) is given by

...
. . .

...

(46)
where

. Equation (46) can be written as

(47)

The rank of the matrix in this case is given by

(48)

where the equality here is due to the Kronecker product. Fol-
lowing similar arguments as in (39)–(42), we can show that

. Hence, the diversity gain of the STF-
MIMO-OFDM system is given by

(49)

We conclude from this that the upper bound of the diversity
order in Theorem 2 can indeed be achieved. The repetition-
coded STF code design guarantees full diversity in arbitrary spa-
tial and temporal correlation at the price of symbol-rate reduc-
tion by a factor of , compared with the symbol rate of the
underlying SF code used.

Discussion: Since the spatial covariance matrix in (34)
is a diagonal matrix, we can further determine the maximum
achievable diversity of the STF-coded MIMO-OFDM system
as follows:

(50)

The physical interpretation behind (50) is that the maximum
number of independent replicas of the signal that can be
achieved at the receiver, i.e., the diversity gain, depends on

the temporal, spatial, and multipath-delay diversity inherent
in the system. Since we have assumed in (4) that the spatial
and temporal fading are independent, then the total number
of independent channels will be a product of the number of
independent channels we can achieve from each of them. The
DOFs for the time domain are given by the rank of the temporal
covariance matrix . For the multipath-delay environment,
we have independent clusters, thus, the independent replicas
at the receiver will be equal to the sum of independent replicas
emanating from each cluster. The number of independent
replicas from the th cluster is just the rank of , the spatial
covariance matrix for that cluster, and this interprets the result
in (50).

C. Maximum Achievable Diversity for Some Special
Correlation Scenarios

We determined above the maximum achievable diversity for
the general correlated fading scenario. In the rest of this sec-
tion, we interpret the system analytical results for some special
correlation scenarios of practical interest. As we will see, the
obtained results are consistent with the existing results in the
literature.

Case 1: Space–Frequency Scenario: SF coding, where
coding is done across multiple antennas and all subcarriers
within each OFDM block, can be considered as a special case
of STF coding, because only one OFDM block period
is considered. The temporal covariance matrix degrades
in this case, and the maximum achievable diversity for the
SF-coded MIMO-OFDM system is thus given by

(51)

In this case, any SF code that can achieve full diversity in an in-
dependent fading environment will result in the matrix being
full column rank. Hence, the maximum achievable diversity of
the SF-coded MIMO-OFDM system is given by

(52)

which agrees with [14]. This means that the diversity order
of the system is equal to the number of DOFs offered by the
independent scatterers. We proved in [14] that any SF code
designed to achieve full diversity in the independent spatial
fading channel can achieve full diversity for an arbitrary joint
transmit–receive correlation channel model. The proof in [14]
has some reminiscence to the analysis we did for the STF-coded
case, hence, we do not repeat it here for lack of space.

Case 2: Temporal Correlation Only: If the antenna elements
at both the transmitter and the receiver are well separated, one
can consider no spatial correlation between fades of different
transmit and receive antenna pairs (i.e., independent spatial
fading). The rank of each for this case is . Hence,
the maximum achievable diversity is given by

(53)

which agrees with the results obtained in [12] and [13].
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Case 3: Constant Channel: If the channel does not change
with time, the temporal covariance matrix is an all-one ma-
trix having rank 1, and the maximum achievable diversity will
be the same as for the case of the SF-coded system (52). This
scenario generally arises when the channel can be considered
quasi-static over multiple OFDM block periods. As a result,
there is no additional diversity gain achieved in applying STF
over SF-coded systems.

Case 4: Independent Fading Channel: If there is no correla-
tion among channel fades in both the temporal and spatial do-
mains, the temporal correlation matrix has rank , and the
spatial correlation matrix has rank . It is obvious, in this
case, that we are able to achieve the total number of independent
DOFs inherent in the physical structure of the system, which is
given by

(54)

V. SIMULATION RESULTS

In this section, we provide some simulation results to demon-
strate our theoretical analysis. We first study the effect of spatial
correlation on the performance of a system using SF codes. Then
we show the effect of both spatial and temporal correlation on
the performance of an STF-coded system. We present average
bit-error rate (BER) curves as functions of the average SNR per
bit in decibels.

A. Effect of Spatial Correlation on SF Codes

In this subsection, we show the effect of spatial correlation on
the system performance. Two scenarios of an SF-coded MIMO-
OFDM system are considered: 1) two transmit and one receive
antennas; 2) two transmit and two receive antennas. In both
cases, we consider a two-ray, equal-power delay profile, with a
delay of 20 s between the two rays. The MIMO-OFDM system
has subcarriers, and the total bandwidth is 1 MHz. We
choose the full-diversity SF code from [8] to conduct our sim-
ulations. The 2 2 Alamouti structure [15] is transmitted twice
(repetition two) (45) to guarantee full diversity in the case of
a spatially independent fading channel. Quaternary phase-shift
keying (QPSK) modulation is used to achieve a spectral effi-
ciency of 1 b/s/Hz, ignoring the CP.

To generate the spatial correlated channel coefficients, we use
the following model:

(55)

where , is an vector with
independent, identically distributed (i.i.d.) entries chosen from a
complex Gaussian distribution with zero mean and variance,
and the matrix contains the correlation coefficients. It is clear
that the rank of is equal to that of . For brevity, we will
give two examples for the matrix used in the simulations.

Fig. 1. BER performance of an SF-coded system withM = 2 transmit and
M = 1 receive antennas under different spatial correlation conditions.

We simulated first an SF-coded MIMO-OFDM system with
transmit and receive antennas. We compare

three different correlation scenarios: 1) the independent fading
case, in which , thus the maximum achievable diversity
is four; 2) the spatial correlation case, with being full rank,
thus the maximum achievable diversity is also four; and 3) the
spatial correlation case, with , has rank , thus the max-
imum achievable diversity is two. An example for this case is

(56)
Fig. 1 depicts the performance of the SF code for these three
cases. This figure shows that the performance curves for both the
independent fading and spatial correlation with full rank cases
have the same slope, hence, they achieve equal diversity gain.
Also, both of these curves have a steeper slope than that of the
rank-deficient case.

We also simulated an SF-coded system with transmit
and receive antennas. In this setup, we compare four
different correlation scenarios: 1) the independent fading case,
in which , thus the maximum achievable diversity is
eight; 2) the spatial correlation case, with being full rank,
thus the maximum achievable diversity is eight; 3) the spatial
correlation case, with , has rank , thus the maximum
achievable diversity is four; and 4) the spatial correlation case,
with , has rank , thus the maximum achievable diver-
sity is two. An example of for this case is shown in (57) at
the bottom of the page. Fig. 2 depicts the performance of the SF
code for these four cases. The figure shows that the performance
curves for both the independent fading and spatial correlation

(57)
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Fig. 2. BER performance of an SF-coded system withM = 2 transmit and
M = 2 receive antennas under different spatial correlation conditions.

with full rank cases have the same slope, thus, they achieve
equal diversity gain. Also, the slope of the performance curve
decreases for the rank-deficient cases.

From the simulated results in Figs. 1 and 2, we observe that
the SF code designed for the independent fading channel is able
to achieve the maximum diversity offered in the spatially cor-
related channels, irrespective of the channel spatial correlation
matrix being full rank or rank-deficient.

B. Effect of Both Temporal and Spatial Correlation on STF
Codes

In these simulations, a typical urban (TU) channel model [22]
is considered. The effect of a fading channel with a different
spatial and temporal correlation structure on the diversity gain
is studied. We assume the fading channel is constant within each
OFDM block period, but varies from one OFDM block period to
another, according to a first-order Markovian model [16], [17]

(58)

where the constant determines the amount of
the temporal correlation, and is a zero-mean, complex
Gaussian random variable with variance . If ,
there is no temporal correlation (independent fading), while if

, the channel stays constant over multiple OFDM blocks.
We consider three temporal correlation scenarios, ,

, and . The full-diversity STF block codes are ob-
tained by repeating a full-diversity SF block code via (45), de-
scribed in [8], across OFDM blocks, respectively.
The full-diversity SF block code used for transmit
antennas is constructed from the Alamouti scheme [15] with
QPSK modulation via mapping, described in [8]. The OFDM
modulation has subcarriers, and the total bandwidth
is 4 MHz.

First, we consider an STF-coded MIMO-OFDM system
without temporal and spatial correlation. The receiver is
equipped with antenna. Fig. 3 depicts the performance
results for this scenario. The results show that increasing the

Fig. 3. BER performance of an STF-coded system with M = 2 transmit
andM = 1 receive antennas under independent spatial and temporal fading
conditions.

Fig. 4. BER performance of an STF-coded system withM = 2 transmit and
M = 1 receive antennas with independent spatial correlation and different
values of ".

number of jointly encoded OFDM blocks increases the
diversity gain of the system.

Second, we simulated an STF-coded system with temporal
correlation only. The receiver has antenna, and all
path gains are spatially independent. Two values, and

, are used to conduct this simulation for .
Fig. 4 demonstrates the effect of temporal correlation on the
performance curves. It can be seen from this figure that for

, the diversity gain achieved is small, compared with the
case with . Even when using with , the
diversity gain is less than when using with . Thus,
the diversity gain when jointly encoding more than one OFDM
block decreases with increasing the temporal correlation factor
. This is intuitive, because for , the channel almost

does not change from one OFDM block to another. Hence, there
is not much gain in using STF over SF codes in terms of the
system diversity order.
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Fig. 5. BER performance of an STF-coded system withM = 2 transmit and
M = 1 receive antennas with spatial correlation and " = 0:8.

Fig. 6. BER performance of an STF-coded system with M = 2 transmit and
M = 1 receive antennas with spatial correlation and " = 0:95.

Finally, we simulated a system with both temporal and spa-
tial correlation. Figs. 5 and 6 consider a receiver with ,
the matrix in (55), which determines the spatial correlation
is of rank 1, and was 0.8 in Fig. 5 and 0.95 in Fig. 6. It is
clear from both figures that the diversity order gained with in-
creasing is more significant in Fig. 5 with the lower temporal
correlation. Figs. 7 and 8 consider a receiver with . In
Fig. 7, was 0.8, and and the matrix is rank 2. It is clear
from the figure that increasing increases the diversity gain
achieved. In Fig. 8, was 0.95, and the matrix is rank 1. As
depicted in this figure, increasing does not have much effect
on the diversity gain. This is due to the high temporal correla-
tion , which reduces the diversity gain achieved from
the temporal domain.

All the simulation results confirm our intuitive understanding
of the factors that determine the diversity order of an STF-coded
MIMO-OFDM system. The diversity order or the number of
DOFs of a system is given by the multiplication of the DOFs that

Fig. 7. BER performance of an STF-coded system with M = 2 transmit and
M = 2 receive antennas with spatial correlation and " = 0:8.

Fig. 8. BER performance of an STF-coded system with M = 2 transmit and
M = 2 receive antennas with spatial correlation and " = 0:95.

we use from each of the three physical domains, time, frequency,
and space. This multiplication operation arises due to the in-
dependence assumed between the three physical domains. The
number of DOFs inside each domain is a function of how much
correlation exists between the channels that constitute this do-
main; for example, the spatial paths between different antenna
pairs, different OFDM blocks in the time domain, and different
frequency channels in the frequency domain that arise from mul-
tipath delays. This function is nothing but the rank of the covari-
ance matrix for the fading process in the associated domain.

VI. CONCLUSION

In this paper, we analyzed the performance limits of
STF-coded MIMO-OFDM systems with a general temporal
and spatial correlation. Our analysis handles an arbitrary joint
transmit–receive correlation model which covers both the
Kronecker and non-Kronecker models. We derived an upper
bound on the maximum achievable diversity order of such
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a system. We also showed that the STF code via mapping,
designed to achieve full diversity in spatially independent
MIMO-OFDM systems, can achieve the full diversity order for
channels with arbitrary temporal and spatial fading scenarios.
Our analysis framework includes the SF-coded MIMO OFDM
system as a special case. For such a system with arbitrary spatial
correlation structure, we showed that any SF code designed to
achieve full diversity in the independent fading channel can be
used to achieve full diversity in an arbitrary spatially correlated
channel. Our analytical results for special correlation scenarios
are consistent with those existing in the literature. Simulation
experiments confirm our theoretical results.

APPENDIX A

We want to prove that our modeling for the relation between
the temporal and spatial fading in (4) is valid for a widely used
temporal correlation model. For a first-order Markovian model
[16], [17], the fading varies from one OFDM to another, ac-
cording to

(59)

where the constant determines the amount of
the temporal correlation, and is a zero-mean complex
Gaussian random variable with variance .

Let , then for a specific antenna pair , we have

(60)

Substituting the above equation into , we get

(61)
Hence, we get

(62)
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