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Thermoelectric transport coefficients in mono-layer MoS2 and WSe2:
Role of substrate, interface phonons, plasmon, and dynamic screening
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The thermoelectric transport coefficients of electrons in two recently emerged transition metal di-

chalcogenides (TMD), MoS2 and WSe2, are calculated by solving Boltzmann transport equation

using Rode’s iterative technique in the diffusive transport regime and the coupled current (electri-

cal and heat) equations. Scattering from remote phonons along with the hybridization of TMD plas-

mon with remote phonon modes and dynamic screening under linear polarization response are

investigated in TMDs sitting on a dielectric environment. The transport coefficients are obtained

for a varying range of temperature and doping density for three different types of substrates—SiO2,

Al2O3, and HfO2. The Seebeck co-efficient for MoS2 and WSe2 is found to be higher than 3D semi-

conductors even with diffusive transport. The electronic thermal conductivity is found to be low,

however, the thermoelectric figure of merit is limited by the high phonon thermal conductivity. It is

found that judicious selection of a dielectric environment based on temperature of operation and

carrier density is crucial to optimize the thermoelectric performance of TMD materials. VC 2015
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4932140]

I. INTRODUCTION

Transition metal di-chalcogenides (TMD) have recently

attracted unprecedented attention1–10 in the electron device

community especially as a replacement of silicon for transis-

tor channels. Unlike graphene, these materials have an intrin-

sic band-gap which makes them suitable for transistor

channels reminiscent of an ideal switch for digital logic

applications. Among the TMDs, MoS2 has been investigated

extensively, in particular, due to its abundance in nature.1–6

WSe2 has got attention7–10 due to its intrinsic doping prop-

erty which allows the scope for observance of ambipolar

characteristic.9 However, in addition to be studied as poten-

tial transistor channel semiconductors, these materials have

interesting mechanical, optical, and thermoelectric properties

that could be used for various emerging applications.6

Thermoelectric properties of these materials, in particular,

could have significant technological importance due to their

capability of converting thermal energy to electrical energy

efficiently and vice-versa.11–15 Important thermoelectric

properties of interest include Seebeck coefficient (a), Peltier

coefficient (p), and thermal conductivity (je). Low dimen-

sional systems have been proposed for thermoelectric appli-

cations due to their intrinsic advantages.16–18 Among 2D

materials, nanostructured graphene,19 graphene/BN superlat-

tices20 have been investigated recently for thermoelectric

applications, and other 2D materials have been proposed as

potential candidates for thermoelectric applications.21

Though extensive research has been carried out on the elec-

tronic properties of TMDs, their thermoelectric properties

have not been studied much. Recent ab initio calcula-

tions22–25 have shown the thermoelectric properties of the

TMDs. These reports have considered either ballistic trans-

port or a constant energy independent mean free path and

scattering time. However, these assumptions are not consist-

ent with the measured transport properties of the TMDs.

Indeed, a strong evidence of diffusive transport is reflected

in the low carrier mobility of these materials. Moreover,

Rode26 has shown that the Seebeck coefficient does not

depend on the absolute value of the scattering rates, rather it

depends on how the scattering rate depends on electron

energy. Detailed quantitative calculations and careful analy-

sis in this work have shown that it is important to consider

the effect of scattering as they do impact the thermoelectric

properties significantly. A paramount role is played by the

substrate on which the TMD is grown or transferred. Like

graphene,27 TMDs also suffer from scattering mediated by

remote optical phonon modes of the substrate. On one side,

high-k substrates suppress the Coulomb scattering,28,29 while

on the contrary, their strong optical modes cause additional

scattering.29 Similar to mobility calculations, this trade-off

becomes important for calculation of thermoelectric trans-

port coefficients too.

In this paper, we solve the Boltzmann transport equation

(BTE) and the coupled electrical and thermal current equa-

tions for MoS2 and WSe2 to extract thermoelectric transport

coefficients. Scatterings from donor impurities, longitudinal

optical (LO) polar modes, acoustic deformation potential,

and substrate induced remote phonon modes are taken into

account. We use Rode’s iterative method in order to take

into account the inelastic and anisotropic nature of the

electron-LO mode scattering and also electron-remote pho-

non mode scattering.30,31 A dynamic screening model is

used assuming random phase approximation. The organiza-

tion of the paper is as follows. In Section II, we start with the

procedure used to solve the BTE and the coupled current

equations. In Section III, we briefly discuss the models for
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elastic scattering mechanisms and the Fr€olich electron-LO

mode interaction. In Section IV, we discuss the formation of

interface plasmon-phonon (IPP) modes due to coupling of

plasmon with the remote phonon modes. Here, we also talk

about calculation of corresponding scattering field strength

and matrix elements. Section V covers the details of screen-

ing calculation, including discussion on Landau damping. In

Section VI, we give insight on our results and findings of

this study followed by conclusion in Section VII.

II. THE BTE AND THE COUPLED CURRENT
EQUATIONS

The electrical current density due to flow of electrons is

given by the contribution from the non-symmetric part of the

electronic distribution function

Jx ¼ �
e

X

X
k

vx kð ÞfA kð Þ: (1)

Here, vx is the group velocity of electrons in the trans-

port direction, fAðkÞ is the non-symmetric part of the elec-

tronic distribution which is discussed later, k is the electron

wave-vector, and X is a normalization area. On the other

hand, the heat current density due to electron flow is given

by the kinetic energy flow contribution from the non-

symmetric part of the electronic distribution function

JQx ¼
1

X

X
k

E kð Þ � EF½ �vx kð ÞfA kð Þ: (2)

Here, E is the electron energy and EF is the chemical poten-

tial. We calculate the non-symmetric part of the electronic

distribution function using Rode’s iterative calculation.26

Under low electric fields, the entire distribution function can

be written as

f ðkÞ ¼ f0ðkÞ þ gðkÞ cos h: (3)

Here, f0 is the equilibrium Fermi-Dirac distribution and h is

the angle between the applied electric field direction and k:
The point to be noted here is that g only depends on the mag-

nitude of the electron wave-vectors. Rode’s iteration solves

for g using the following conformal mapping:

giþ1 ¼
Sin g0i
� �
� eF

�h

@f0 kð Þ
@k
� v

@f0

@x
Sout kð Þ þ 1=sm kð Þ

: (4)

Here, Sout and Sin are the net out-scattering rate and in-

scattering rate, respectively. sm is the momentum relaxation

time for the elastic scattering processes discussed in Section

III. F is the applied parallel electric field, which should be

low enough for Eq. (3) to be good. @f0
@x can be expressed in

terms of @T
@x (which is done in Ref. 26 for a bulk system and

in Eq. (C8) of this work for a 2D system). For calculating

Sout and Sin from the scattering matrix elements, we follow

the procedure described in our previous work for a 2DEG

system.31 The iteration (Eq. (4)) begins with a g0 given by

the relaxation time approximation (RTA). Once the

distribution converges, Jx and JQx can readily be calculated

from Eqs. (1) and (2), respectively.

Fig. 1 shows the outline of the entire calculation. First,

we consider the device under isothermal condition. We cal-

culate the drift mobility from scattering matrix elements and

store it for later use. Next, we apply a small temperature gra-

dient ( @T
@x ¼ 103 K/m) with the device ends being electrically

shorted and compute the corresponding spatial gradient of

the Fermi-Dirac distribution function. Using this and the pre-

viously calculated scattering matrix elements, we run Rode’s

iteration again. Please note here, since the two ends are

shorted, the second term on the numerator of Eq. (4) van-

ishes (F ¼ 0Þ. Once the Rode’s iteration converges, the elec-

tric current density (Jx) and the heat current density (JQx) can

be calculated from which the transport coefficients can be

extracted from their definition32

Jx ¼ rx
@EF

@x
� Bx

T2

@T

@x
; (5a)

JQx ¼ px
@EF

@x
� Kx

T2

@T

@x
: (5b)

Here, rx;Bx; px; and Kx are the transport coefficients. An im-

portant point to be noted here is that we assume an isotropic

crystal in two dimensions so that the transport coefficient

tensors are diagonal. The isothermal calculations previously

stored the values of rx and px.The remaining two coefficients

can be extracted from the Jx and JQx calculated with the tem-

perature gradient.

The thermoelectric properties of interest that can be

computed from here are the Seebeck coefficient, Peltier coef-

ficient, and thermal conductivity (electronic contribution).

They are related to the transport coefficients by the following

relations:32

FIG. 1. Outline of the procedure to calculate the mobility and thermoelectric

coefficients by solving solve coupled BTE using Rode’s method.
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a ¼ Bx

rxT2
; p ¼ px

rx
; je ¼

Kx �
pxBx

rx

T2
;

a, p; and je are the Seebeck coefficient, Peltier coefficient,

and thermal conductivity, respectively.

III. INTRINSIC SCATTERING MECHANISMS

Several intrinsic scattering mechanisms as discussed in

the introduction make the transport diffusive in TMDs. We

consider impurity and acoustic deformation potential scatter-

ing matrix elements as were considered in references 29 and

hence we do not describe them here. For the impurity scatter-

ing, we consider ionized donor scattering (ND ¼ nS; where nS

is the electron concentration and ND is the ionized donor im-

purity concentration) without any additional impurities. The

momentum relaxation times from each of these two types of

scattering mechanism are calculated and are plugged in the

Rode’s iteration loop (Eq. (4)) as the elastic scattering param-

eter. Another very important scattering mechanism originates

from the electron–LO phonon interaction. However, the con-

ventional macroscopic models do not hold good for atomisti-

cally thin semiconductors as pointed out by Kaasbjerg et al.33

We first follow their analytic approach (Eq. (9) of Ref. 33) to

find the polar LO phonon scattering rate. Next, we employ

dynamic screening on the electron-LO phonon coupling ma-

trix to improve the accuracy of the calculation; the dynamic

screening behavior is discussed in Section V.

IV. SCATTERING BY REMOTE INTERFACE PHONONS

The presence of remote phonon modes at the interface of

a dielectric and a semiconductor has been studied extensively

for 3D and 2D semiconductors.34–38 But, according to the best

of our knowledge, coupling of such remote phonon modes

with the plasmon was not discussed for TMDs, though it is

discussed in details for graphene and 2DEGs.27,39 We con-

sider a simple geometry, relevant for thermoelectric applica-

tions, shown in the inset of Fig. 2(a) where a TMD material is

sitting on a substrate and the other side of the interface is air.

A. Coupled plasmon-remote phonon modes

In such a system, the potential due to the remote phonon

modes can be written as

u�
q ðzÞ ¼ Aq;x�

q
exp ð�qzÞ; z > 0

¼ Bq;x�
q

exp ðqzÞ; z < 0;
(6)

q;x�
q represent the wave-vector and energy of the phonon

field with � being the mode index. Implementing Dirichlet

and Neumann boundaries, we obtain the secular equation

eTMDðq;x�
qÞ þ esubðq;x�

qÞ ¼ 0: (7)

Here, eTMDðq;x�
qÞ and esubðq;x�

qÞ are the two out-of plane

dynamic dielectric constants of the TMD and the substrate,

respectively. In long-wavelength limit, they have the follow-

ing form:

eTMD q;x�
q

� � ¼ e1TMD 1� x2
P

x2

� �
; (8a)

esub q;x�
q

� � ¼ e1sub þ
e0

sub � eint
sub

x2
TO;1 � x�

q

� �2
x2

TO;1

þ eint
sub � e1sub

x2
TO;2 � x�

q

� �2
x2

TO;2; (8b)

e1i and e0
i are the high frequency and static dielectric con-

stants of the corresponding materials. eint
sub is an intermediate

dielectric constant defined to distinguish the contributions of

the two TO phonon modes to the net dielectric constant of

FIG. 2. (a) Dispersion of the coupled

IPP modes for MoS2 on HfO2 dielectric

(inset) device geometry and axes. (b)

Phonon content in each IPP mode. The

solid lines show content of first TO

mode, while the dashed ones show con-

tent of second TO mode. (c) Normalized

scattering strength of the IPP modes due

to the phonon content. The solid lines

show scattering strength contribution of

first TO mode, while the dashed ones

show the same for second TO mode. (d)

The out-scattering rates (Sout) for

electron-IPP interaction for two different

electron densities for MoS2 on HfO2 are

shown in solid lines. The corresponding

impurity scattering rates are also shown

for comparison (dashed lines).
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the substrate. xP is the plasmon energy of the TMD for

which we take the form of 2D plasmon dispersion discussed

in Ref. 40. e1TMD is the high frequency dielectric constant of

the TMD. Detailed discussion on the TMD dielectric con-

stant and plasmon vibration is done later in Section V. xTO;1

and xTO;2 are the TO mode energies in the substrates. The

list of substrate parameters is given in Table I, while Table II

lists the materials parameters used for MoS2 and WSe2.

Solving the secular equation (Eq. (7)), we obtain the disper-

sion relation for the IPP modes for MoS2 on HfO2 as shown

in the main panel of Fig. 2(a). It can be seen that there is sig-

nificant coupling between the surface modes and the plas-

mon mode for the bottom two modes which will impact the

electron scattering rate.

B. Phonon content and scattering strength

Since only the phonon part of the IPP coupled modes

effectively causes exchange of energy between surface

modes and electrons,41 we need to separate out the phonon

contributions from these coupled modes. The phonon content

is extracted following the method described in Refs. 27, 31,

39, and 41. The phonon content of the three modes in Fig.

2(a) is plotted in Fig. 2(b) (U�;TOi, TOi is the i th TO mode

of the substrate).

Having obtained the dispersion relation and the phonon

content of the coupled IPP modes, we calculate37 the coeffi-

cient Aq;x�
q

in Eq. (6) (¼ Bq;x�
q
, from Dirichlet boundary con-

dition at z ¼ 0) by equating the electrostatic energy of the

scattering field with the ground state quantum mechanical

energy of the modesð
u�

q zð Þq�q zð Þdz ¼ 1

2
�hx�

q: (9)

Here, q�q is the polarization charge induced by the scat-

tering field associated with the phonon at (q;x�
q). The polar-

ization charge can be obtained by solving the Poisson’s

equation with a tailored dielectric function.37 By tailored

dielectric function, we mean that we want to separate out the

contribution of each phonon mode in inducing that polariza-

tion charge. This can be done by separating out each phonon

contribution in the dielectric function of the substrate. The

details of this calculation are given in Appendix A. Here, we

give the final form of the phonon contributed screened scat-

tering field strength for each mode

K�;TOi qð Þ ¼


�hx�

q

e0q

1

e�;�TOi
sub q;x�

q

� �þ 1þ
e2P q;xð Þ

2q
/1

� 1

e�;þTOi
sub q;x�

q

� �þ 1þ
e2P q;xð Þ

2q
/1

0B@
1CAU�;TOi

vuuuut ; (10)

which looks analogous to what was derived for top gated

graphene device in Ref. 39. Here, e�;�TOi
sub and e�;þTOi

sub are the

mentioned tailored dielectric functions discussed in

Appendix A. The term
e2P q;xð Þ

2q /1 comes from electronic

polarization inside the TMD which is discussed in Section

V. The scattering strengths calculated this way are plotted

(normalized by

ffiffiffiffiffiffi
�hx�

q

e0q

q
) in Fig. 2(c).

C. Electron-IPP coupling matrix and scattering rate

Once the scattering field strength is obtained, calculation

of the coupling matrix elements with the electrons is straight-

forward. The interaction Hamiltonian can be written as

H�
q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i¼1;2

ðK�;TOiðqÞÞ2
s

ðeiq:ra�þq þ e�iq:ra�qÞ: (11)

Here, a�þq and a�q are the IPP creation and annihilation opera-

tors. To calculate the electron-IPP coupling matrix, for sim-

plicity, we take the out-of-plane electronic wave function to

be sinusoidal and compute the matrix elements as

M�
q ¼

2

t

ðt
0

H�
q exp �qzð Þ sin2 pz

t

� �
dz; (12)

t is the thickness of the TMD, taken to be 5 Å in this

work. The retardation effects34 at very small wave-vectors

TABLE I. TO-phonon and dielectric constants of different substrates (from

Ref. 37).

Substrate

Properties SiO2 Al2O3 HfO2

xTO,1 (meV) 55.6 48.18 12.40

xTO,2 (meV) 138.1 71.41 48.35

e0
sub 3.9 12.53 22

eint
sub 2.8 6.58 7.27

e1sub 2.5 3.2 5.03

TABLE II. Properties of different TMDs.

TMD

Properties MoS2 WSe2

xLO (meV) 48a 32b

me 0.48a 0.33c

e1TMD
d 4 4

aReference 33.
bReference 47.
cReference 48.
dThe high frequency dielectric constants of TMDs are taken to be equal to

their static values due to negligible LO-TO splitting. Also, these values for

the two TMDs are taken to be equal. They are indeed very close to each

other.49
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(q � xTO

c ; c is the speed of light in that medium) are safely

ignored. After the matrix elements are calculated, they can

be plugged into the Fermi Golden rule to get the scattering

probabilities (Pðk; k0Þ) from an electronic state k to k0.
These scattering probabilities are used in the out-scattering

equation of our previous work (Eq. (19b) of Ref. 31). The

calculated out-scattering rate SIPP is plotted in Fig. 2(d) for

two different electron densities (ns) and also for comparison,

the calculated impurity mediated momentum relaxation rate

(SIMPÞ is plotted. The sharp kinks in SIPP arise due to onset

of phonon emission, while the tiny jitters come due to nu-

merical gridding of the q space. The essential point to note

here, which will be crucial while analyzing thermoelectric

properties, is that at low energy ranges, the impurity scatter-

ing rate swiftly drops well below the phonon scattering rate.

Also, as we increase the electron densities, the impurity scat-

tering rate increases due to more number of donor impurities

(Note: ND¼ ns here). The dependence of phonon scattering

rate on ns is an interplay between enhanced screening, which

tries to cut down the rate and an expanding Fermi radius,

which tries to increase the rate. For this particular case of

HfO2, shown in Fig. 2(d), enhancement of screening with

carrier density is not pronounced due to a large dielectric

mismatch between the substrate and the TMD. Hence, the

scattering rate increases slightly with ns.

V. DYNAMIC SCREENING

We include dynamic scattering with finite temperature

polarizability in the scattering rate calculations following the

random phase approximation.40,42 The dynamic dielectric

function can be obtained from polarization as

eTMD q;xð Þ ¼ e1TMD 1þ
e2P q;xð Þ

2e1TMDq
/1 þ /2ð Þ

 !
; (13)

where (Pðq;xÞ) is the dynamic polarizability. /1 and /2 are

form factor and dielectric mismatch factor, respectively,

defined in Ref. 43. The dielectric function calculated in this

way is shown in the contour plot shown in the inset in Fig.

3(a). The main panel of Fig. 3(a) shows the comparison

between a Thomas-Fermi like static screening and a dynamic

screening which clearly shows the necessity of taking

dynamic screening at long wave-length limit which is

explained further in the next paragraph. In the long-

wavelength limit, the TMD dielectric function given in Eq.

(13) can be expressed as the one given in Eq. (8a).

Plasmons can absorb (emit) energy from (to) an external

electro-magnetic field which leads to damped oscillation,

known as Landau damping. Fig. 3(b) shows the region of

plasmon damping due to the interaction of it with an external

field (known as single particle excitation (SPE)). The emis-

sion and absorption boundaries of SPE regions are calculated

from momentum and energy conservation in a 2D system. If

we observe the plot in Fig. 3(a), we see that the plasmon has

a significant role in the dynamic screening process. In the

long-wavelength limit, when the plasmon energy lies below

the phonon energy (shown as x ¼ 0:015 eV in Fig. 3(a)),

with increasing wave-vector effective dielectric constant

drops due to anti-screening effect by the plasmon, however

as the plasmon energy approaches the phonon energy, the

anti-screening effect decreases and screening tends to begin.

Finally, the onset of SPE cuts down the effect of the plasmon

and at large wave-vectors, the normalized dielectric constant

approaches unity. On the other hand, the static screening

limit assumes a fully responsive plasmon outside SPE region

and thus the anti-screening effect is not captured.

VI. RESULTS AND DISCUSSIONS

Having set-up the theoretical details of our calculation,

the transport coefficients and the corresponding thermoelec-

tric figure-of-merits are calculated for a temperature range of

50 K–500 K, keeping the density of electrons within the

TMD fixed at 1011/cm2 and similarly, the same are calcu-

lated for an electron density range of 1011–1013/cm2 with the

temperature fixed at 300 K. All these calculations are done

for two different TMDs: MoS2 and WSe2, each with three

different substrates (SiO2, Al2O3, and HfO2). While mobility

is extracted from isothermal device, transport coefficients

are calculated for a temperature gradient of 103 K/m. The

transport coefficients do not depend on the temperature gra-

dient, however the results are good only in the limit of a

small temperature gradient since a large value of it will

make the scattering rates vary across the length of the device.

The computational details and convergence rate of the

FIG. 3. (a) Comparison of dynamic dielectric constant (normalized with respect to e1TMD, geTMD ðq;xÞ ¼ eTMDðq;xÞ=e1TMD Þ with the static Thomas-Fermi limit

(inset) shows the contour plot of geTMD ðq;xÞ in the ðq;xÞ plane. (b) The single particle-excitation (SPE) boundaries—the red ones show boundaries for SP

emission, while the green one shows that for absorption. In the SPE region, plasmon contribution to screening is reduced due to Landau damping. The

undamped plasmon response is shown in black dashed line.
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calculation are given in Appendix B. We discuss the results

below.

A. Mobility

The calculated mobility values are plotted in Figs.

4(a)–4(d). Figs. 4(a) and 4(c) show the effect of temperature

for MoS2 and WSe2, respectively, while Figs. 4(b) and 4(d)

show the corresponding effects of electron density at 300 K.

It can be seen from Figs. 4(a) and 4(c) that as the tempera-

ture is increased, the mobility on SiO2 supported TMD

increases initially which is a signature of the donor impurity

scattering limited mobility. Then the mobility starts dropping

from around 200 K which signifies two important things.

First is the onset of the remote phonon scattering mediated

by the TO mode of SiO2 that occurs around 55 meV and the

second crucial point is the degradation of the polarizability

of the TMD electrons due to thermal randomization. Now if

we take a look at the mobility values for TMD supported by

Al2O3, we find that the mobility at low temperature is more

than an order higher than that supported by SiO2 which is a

characteristic of better dielectric environment screening the

impurity scattering. The mobility starts dropping around

150 K due to the onset of remote phonon scattering by the

lower TO mode of Al2O3 (48 meV). At higher temperature,

we see that mobility drops more rapidly compared to that in

case of SiO2 which is because of the nearby second TO

mode of Al2O3 at 71 meV, while SiO2 has the second TO

mode at a very high energy at 138 meV. The degradation of

polarizability with temperature affects the overall screening

less in case of Al2O3 than that in SiO2 because of a higher

dielectric mismatch (difference between dielectric constant

of substrate and TMD) in case of Al2O3. Finally, we focus

on HfO2 supported TMD. Here, we do not see any sign of

donor impurity scattering for strong dielectric environment

screening and also for the very early onset of remote phonon

scattering by the lower TO mode of HfO2 at 12 meV.

Next, we discuss the electron density dependence. From

Figs. 4(b) and 4(d), we see that with increasing ns, SiO2 sup-

ported TMD shows decline in mobility due to enhanced im-

purity scattering (note ND ¼ ns), while HfO2 shows slight

improvement in mobility due to enhanced screening by elec-

trons. Al2O3 shows non-monotonic trend due to a strong

interplay between remote-phonon scattering and impurity

scattering.

B. Thermoelectric coefficients

The calculated Seebeck coefficients for MoS2 and WSe2

under different temperature and different electron density are

plotted in Figs. 5(a)–5(d). The Seebeck coefficient in a non-

degenerate 2D material can be expressed under RTA (see

Appendix C) as � kB

e 2� r � EF

kBT

� �
; where r is the energy

exponent in the scattering rate. At low temperatures, the

Seebeck coefficients obtained from the analytical expression

(Eq. (C12), assuming RTA) agree well with the detailed cal-

culation using Rode’s method (see Fig. 10) due to the

reduced phonon scatterings (both LO and IPP) at low tem-

peratures. It deviates at higher temperatures when the pho-

non scattering rate increases. However, an important

message, similar to that discussed before for bulk materi-

als,26 to note from the given expression is that the Seebeck

coefficient is given by the scattering rate dependence on

energy (r in Eq. (C12)) and not on the absolute values of the

scattering rates. As can be seen from Fig. 2(d), impurity scat-

tering at lower energies drops swiftly with energy. A simple

fitting gives a E�1:1 roll off, while at a similar energy range,

IPP (and also LO) phonon scattering rate depends weakly on

energy. The comparison between the analytical calculation

and the computed data for SiO2 is shown in Fig. 10. At

higher temperature, r deviates from �1.1 because of the

onset of phonon emission process and temperature dependent

polarizability and more importantly, RTA becomes invalid.

To discuss the effect of substrates at low temperature, we

FIG. 4. (a) and (b) Dependence of mo-

bility for MoS2 on temperature and

electron density for different dielectric

substrates; (c) and (d) similar plots for

WSe2. The plots with respect to ns ((b)

and (d)) begin from ns¼ 2� 1011/cm2.
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note that most of the electrons stay near the edge of the con-

duction band where the dominant scattering mechanism is

the one mediated by impurities. Hence, as can be seen from

Figs. 5(a) and 5(c), at low temperature, SiO2 can produce a

better Seebeck coefficient, while HfO2 being a source of

dominant IPP scattering (even at low temperature from the

lower TO mode of HfO2) produces low Seebeck coefficient.

The cross-over near room temperature clearly reflects the

temperature dependent influence of the two opposite sub-

strates (in terms of their dielectric constant) in bringing out

an optimum thermoelectric power from a TMD.

Figs. 5(b) and 5(d) show the dependence of Seebeck

coefficient on density. Increasing density reduces the

Seebeck coefficient (since a higher Fermi Level reduces the

effect of temperature gradient on the spatial variation of

Fermi Level) which is well known.26 Our goal in this paper

is to study the effect of the substrates. To get an intuitive

insight, we can crudely rewrite the analytical expression for

Seebeck coefficient as � kB

e 2� r � ln p�h2nS

2m�kBT

� �� �
. At low

value of nS, the logarithmic term dominates (with a negative

value) and all substrates produce similar Seebeck coefficient.

However as we increase nS and approach 1013, the logarith-

mic term tends to vanish and the Seebeck coefficient is deter-

mined by r which depends on the substrate we choose.

Hence, SiO2 shows a higher Seebeck coefficient due to im-

purity dominated scattering. The corresponding Peltier coef-

ficient for each case is plotted in Figs. 6(a)–6(d). The effect

FIG. 5. (a) and (b) Dependence of

Seebeck coefficient for MoS2 on tem-

perature and electron density; (c) and

(d) similar plots for WSe2. The plots

with respect to ns ((b) and (d)) begin

from ns¼ 2� 1011/cm2.

FIG. 6. (a) and (b) Dependence of

Peltier coefficient for MoS2 on temper-

ature and electron density; (c) and (d)

similar plots for WSe2. The plots with

respect to ns ((b) and (d)) begin from

ns¼ 2� 1011/cm2.
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of substrate on Peltier coefficient is less compared to that on

Seebeck coefficient since by definition, Peltier coefficient is

a ratio of px and rx, both of which have similar effect from

the substrates.

C. Thermal conductivity

Here, we calculate the electronic contribution to the ther-

mal conductivity. As can be seen from the definition of ther-

mal conductivity in terms of the transport coefficients in

Section II, a high value of rx and Kx and a low value of px

and Bx will produce a high electronic thermal conductivity

(je). px and Bx can both be shown to be the first order moment

of the non-equilibrium part of the distribution function32 (in

our case, that is, g, the output from Rode’s iteration) about the

chemical potential. rx and Kx are the corresponding zero order

and second order moments, respectively. So the magnitude of

thermal conductivity strongly depends on the energy depend-

ence of g which in turn is governed by the substrate. A

strongly peaked g near the bottom of the conduction band

(more scattering) reduces all the four coefficients, while a rel-

atively flatter g (low scattering) increases all the coefficients

and hence reduces je. This is why je will have a maxima for

moderate inelastic scattering rates. This phenomenon can be

clearly seen in Figs. 7(a) and 7(c) where Al2O3 produces the

highest je because of an intermediate inelastic scattering rate

between SiO2 and HfO2. The cross-over of the curves for

SiO2 and HfO2 reflects that the corresponding electronic dis-

tribution function follows an opposing trend (from a sharply

peaked one to a flatter on for SiO2 and the opposite way for

HfO2) as we increase the temperature.

Next, we take a look at the density dependence of je

shown in Figs. 7(b) and 7(d). The trend of je with carrier

density is a result of an interplay between mobility and car-

rier density. For SiO2, it shows a decline in mobility with

increasing ns (Figs. 4(c) and 4(d)) but the increasing ns tries

to increase the conductivity. Similarly, HfO2 shows a mobil-

ity that is relatively independent of ns and hence with

increase in ns, HfO2 shows improving thermal conductivity.

Al2O3 once again shows a clear non-monotonic behavior due

to shifting of scattering mechanism from phonons to impur-

ities. An important point to mention here is that the absolute

values of je reported in this work are for a TMD of thickness

5 Å and unlike, mobility and Seebeck coefficients, je depend

on thickness. However, the trends with temperature, density,

and substrate are expected to be unaffected.

D. Thermo-electric figure-of-merit

The thermoelectric figure-of-merit22 defined as ZT ¼
a2rT

jeþjph
is plotted in Figs. 8(a) and 8(b) at room temperature

under varying electron density for different substrates. Here,

r is the electrical conductivity and jph is the lattice contribu-

tion to thermal conductivity which we took to be recently

reported value24,44 of 19.5 W/K m. Comparing the magni-

tude of our calculated ZT with previously reported22 values

from ballistic transport calculation, we find that our ZT val-

ues are significantly low. The reason for this is the low r
obtained in our calculations due to the consideration of a

highly diffusive transport. This argument can be verified if

we take a look at the trend of ZT with electron density shown

in Figs. 8(a) and 8(b). HfO2 shows a significant improvement

in ZT with increasing ns which is a result of screening of

phonon modes and absence of adequate impurity scattering

due to strong dielectric environment screening. While SiO2

and Al2O3 do not show such improvement since increasing

ns screens the phonon modes well but at the same time,

enhanced impurity scattering (note ND¼ ns) does not let r
increase. To further verify that it is the diffusive transport

that lowers ZT, we carry out the calculation with a very low

FIG. 7. (a) and (b) Dependence of ther-

mal conductivity (electronic) for MoS2

on temperature and electron density

for different dielectric substrates; (c)

and (d) similar plots for WSe2. The

plots with respect to ns ((b) and (d))

begin from ns¼ 2� 1011/cm2.
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impurity concentration but high electron density

(ND ¼ 1010 =cm2; ns ¼ 1013=cm2 ) for both SiO2 and HfO2

at room temperature. While SiO2 shows a 50 times improve-

ment in ZT, HfO2 shows negligible effect due to IPP domi-

nated scattering. Higher electron density with low impurities

could be achieved either by modulation doing or electrical

doping by the application of a gate voltage. So the applica-

tion of a gate voltage on SiO2 to increase ns with low trap

density will improve ZT. In addition, high value of the con-

sidered phonon thermal conductivity (jph) is another limita-

tion on the calculated ZT values. Decreasing the phonon

thermal conductivity through thermal engineering can also

increase the ZT for MoS2 and WSe2.

VII. CONCLUSION

We have reported a theoretical calculation of thermo-

electric transport coefficients of two TMDs: MoS2 and

WSe2, taking into account a diffusive transport mechanism.

The importance of taking into account a diffusive transport

mechanism can be realized in the large influence of sub-

strates on the transport coefficients. Effect of substrates is an-

alyzed quantitatively, including plasmon-remote phonon

coupling and dynamic screening. Even in the absence of

additional impurities, the mobility of a TMD remains a bot-

tleneck due to substrate induced remote phonon scattering in

a high-dielectric environment.

An important issue to discuss is how the Seebeck coeffi-

cients (a) of the TMDs compare with conventional materials

like GaAs. Reference 45 shows measured a for GaAs for an

n-type doping of 7.7� 1018/cm3 is around 100 lV/K at room

temperature. The trade-off of a with temperature and doping

density is similar to that observed in this work. A bulk SiGe

alloy17 also shows a around 100 lV/K at room temperature, a

corresponding nano composite material Si0.80Ge0.20B0.016

shows �160 lV/K, while In0.09Ga0.91 N shows �300 lV/K

for a doping density of 2� 1018 /cm3.12 On the other hand, in

this work, MoS2 at room temperature showed a Seebeck coef-

ficient of 500–550 lV/K depending on the substrate chosen

for a doping density of 1011/cm2 (a bulk analogue of this is

roughly 2� 1018/cm3 for a sample thickness of 5 Å). This

increase in a is primarily due to an increased density of states

at lower electron energies (near the Fermi Level) as pointed

out for a quantum well structure.16 Graphene19 has been

explored as a thermoelectric material but it suffers from a

drawback of zero band gap since a minimum bandgap of

6 kBT is required46 for optimum thermoelectric performance.

TMDs are suitable from this perspective. The low thermal

conductivity (electronic) values are also promising for ther-

moelectric applications. In this work, the calculated ZT values

are low because we include the mobility degradation in 2D

materials due to remote interface phonons but we have not

explored the effect of boundary scattering16 of the phonon

modes which causes jph to degrade resulting in an improved

ZT. Nevertheless, a possible improvement of ZT in a low-

dielectric environment (e.g., SiO2) can be made by either

modulation doping or the application of a gate voltage to

obtain high 2DEG density with low impurity concentration.

Hence, to conclude, the TMDs produce a better Seebeck coef-

ficient compared to other conventional materials, however

selection of a proper substrate is crucial based on the tempera-

ture and carrier density to optimize performance.

APPENDIX A: SCATTERING STRENGTH OF THE IPP
MODES

The decaying surface modes are given by Eq. (6).

Applying Poisson’s equation, we find out the corresponding

polarization charge as

q�q ðzÞ ¼ esubðq;x�
qÞAq;x�

q
q2eqz þ eTMDðq;x�

qÞAq;x�
q
q2e�qz:

(A1)

Plugging this and Eq. (6) in Eq. (9), we get the mode

amplitude

Aq;x�
q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hx�

q

q esub q;x�
q

� �þ eTMD q;x�
q

� �� �s
: (A2)

But the dispersion relation in Eq. (7) gives eTMDðq;x�
qÞ þ

esubðq;x�
qÞ ¼ 0 which leads the mode amplitude to infinity.

This problem arises since we have not separated out the con-

tribution of the phonon modes in the dielectric constant of

the substrate. There comes the necessity of defining the so-

called “tailored” dielectric functions. The function

e�;�TOi
sub ðq;x�

qÞ in Eq. (10) is the dielectric function of the sub-

strate with the substrate phonon mode TOi being frozen and

is defined as37 e�;�TOi
sub q;x�

q

� � ¼ e1sub

x2
LO;j
�ðx�

qÞ
2

x2
TO;j
�ðx�

qÞ
2 i 6¼ jð Þ and the

function e�;þTOi
sub ðq;x�

qÞ gives the dielectric function of

the substrate with the substrate phonon mode TOi being in

“full” response and is defined as e�;þTOi
sub q;x�

q

� �
¼ e1sub

x2
LO;j
�ðx�

qÞ
2

x2
TO;j
�ðx�

qÞ
2

x2
LO;i

x2
TO;i

� �
. Hence, the contribution of the pho-

non mode TOi to the net mode amplitude is given as the dif-

ference between these two cases,37

FIG. 8. (a) Dependence of ZT for

MoS2 on electron density; (b) similar

plots for WSe2. The plots with respect

to ns ((b) and (d)) begin from

ns¼ 2� 1011/cm2.
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Aq;x�
q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hx�

q

e0q

1

e�;�TOi
sub q;x�

q

� �þ eTMD q;x�
q

� �� 1

e�;þTOi
sub q;x�

q

� �þ eTMD q;x�
q

� � !vuut : (A3)

Multiplying the square of the mode amplitude with phonon

content of each mode gives the square of the scattering

strength which is Eq. (10) in the main text.

APPENDIX B: CONVERGENCE OF RODE’S ITERATIVE
METHOD FOR 2D SCATTERING RATES

Equation (4) is the basic set up for Rode’s iteration. The

iteration continues until d falls below a predefined tolerance

where we define d ¼ maxðjgiþ1 � gijÞ. We set the tolerance

value as 0.1% of maxðg0Þ, g0 is defined from RTA. In Fig. 9,

we show different gis’ and the inset shows the rate of conver-

gence which is exponential in nature.

APPENDIX C: ANALYTICAL EXPRESSION FOR
SEEBECK COEFFICIENT OF NON-DEGENERATE 2D
MATERIALS

From Eq. (1), the current density Jx can be written as

Jx ¼ �
e

X

X
k

vg kð Þcos h: (C1)

This is because the symmetric part of the electronic distribu-

tion function does not contribute to any current. From Eq.

(4) in absence of the in-scattering term, gðkÞ reduces to

g kð Þ ¼
� eF

h

@f0 kð Þ
@k
� v

@f0

@x
Sout kð Þ þ 1=sm kð Þ

: (C2)

Short circuiting the ends of the devices gives F ¼ 0, and hence

g kð Þ ¼
�v

@f0
@x

C kð Þ
; (C3)

where C kð Þ ¼ Sout kð Þ þ 1
sm kð Þ is the total out-scattering rate.

Equation (C3) also follows from RTA. Plugging this expres-

sion of gðkÞ in Eq. (C1) and carrying out the 2D angular inte-

gration in k� space, we get

Jx ¼ �
4e�h

XEN
1�r

ð
E1�r @f0

@x
dE: (C4)

We took C / Er and EN is just a normalization energy

brought to preserve dimensions and does not affect the final

results. We took care of spin and valley degeneracies though

they are not important in current context. The job is to com-

pute @f0
@x . Using spatial charge homogeneity26 (@n

@x ¼ 0) and

some algebraic manipulation, we obtain for a non-

degenerate 2D material,

@EF

@x
¼ 1

T
EF �

Ð1
0

Ee�gdEÐ1
0

e�gdE

 !
@T

@x
; (C5)

where g ¼ E�EF

kBT , EF is the chemical potential, and @T
@x is the

applied temperature gradient. Equation (C5), with a few

more lines of algebra, reduces to @EF

@x ¼ �kB
@T
@x. Now for a

non-degenerate semiconductor,

@f0

@x
¼ e�g @g

@x
(C6)

and

@g
@x
¼ � g

T

@T

@x
� 1

kBT

� �
@EF

@x
: (C7)

Plugging @EF

@x from Eq. (C5) in Eq. (C7) and using that in Eq.

(C6), we get

@f0

@x
¼ e�g

T
1� gð Þ @T

@x
: (C8)

Hence, the current density becomes

Jx ¼ �
4e�h

XEN
1�r

@T

T@x

ð
E1�re�g 1� gð ÞdE: (C9)

Now, we look at Eq. (5a) and see that rx is the coefficient of
@EF

@x . Hence, combining this view with Eqs. (C4), (C6), and

(C7), we get

rx ¼ �
4e2�h

XEN
1�r

@T

kBT@x

ð
E1�re�gdE: (C10)

Using Eq. (5a) and the definition of Seebeck coefficient, a ¼
Bx

rxT2 ; where Bx is a transport coefficient in Eq. (5a), we can

rewrite a as26

a ¼ �

Jx

rx
�
@ EF

e

� �
@x

0@ 1A
@T

@x

: (C11)

We use the previously obtained relation @EF

@x ¼ �kB
@T
@x and

Eqs. (C9) and (C10) to calculate the right hand side of Eq.

(C11). Usage of Gamma function leads to
FIG. 9. Convergence of electronic distribution in Rode’s iteration; (inset) rate

of convergence with increasing iterations, only first few iterations are shown.

135711-10 K. Ghosh and U. Singisetti J. Appl. Phys. 118, 135711 (2015)

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

128.205.186.200 On: Wed, 07 Oct 2015 13:21:03



a ¼ � kB

e
2� r � EF

kBT

� �
: (C12)

Equation (C12) is the 2D analogue of the expression given in

Ref. 26 for bulk materials. An expression for a in a quantum

well structure was given in Ref. 18, but it does not explicitly

show the dependence of a on the scattering parameter r as it

most likely presumes r ¼ 0. However, such assumption is not

very accurate as our computation shows. A comparison of

analytically calculated Seebeck coefficient for MoS2 on SiO2

at ns¼ 1011/cm2 with that obtained with detailed numeric cal-

culation is shown in Fig. 10. The deviation in higher tempera-

ture is obvious due to the futility of RTA in presence of

inelastic scattering. However, the analytical expression is use-

ful in gaining intuition on a in a 2D material.
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