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We investigate the high-field transport in monoclinic b-Ga2O3 using a combination of ab initio
calculations and full band Monte Carlo (FBMC) simulation. Scattering rate calculation and the final

state selection in the FBMC simulation use complete wave-vector (both electron and phonon) and

crystal direction dependent electron phonon interaction (EPI) elements. We propose and implement

a semi-coarse version of the Wannier-Fourier interpolation method [Giustino et al., Phys. Rev. B

76, 165108 (2007)] for short-range non-polar optical phonon (EPI) elements in order to ease the

computational requirement in FBMC simulation. During the interpolation of the EPI, the inverse

Fourier sum over the real-space electronic grids is done on a coarse mesh while the unitary rota-

tions are done on a fine mesh. This paper reports the high field transport in monoclinic b-Ga2O3

with deep insight into the contribution of electron-phonon interactions and velocity-field character-

istics for electric fields ranging up to 450 kV/cm in different crystal directions. A peak velocity of

2� 107 cm/s is estimated at an electric field of 200 kV/cm. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4986174]

I. INTRODUCTION

b-Ga2O3 is an emerging wide-bandgap semiconductor

with excellent potential for power electronics applications.

Experimentally demonstrated high breakdown voltage devi-

ces1–5 make it an attractive material for next generation

power electronics in addition to deep UV optoelectronic

applications.6,7 However, the low symmetry monoclinic

structure and the large primitive cell present immense chal-

lenges to accurate prediction of thermal, optical, and electri-

cal transport properties. There have been a number of reports

on thermal, dielectric, and optical properties of this mate-

rial.8–15 Recently, we reported low field electron mobility

calculation in this material from first principles16 that fairly

agreed with experimental report.17 However, there is no

report on the high field transport properties in this material.

High-field electron transport is important not just for elec-

tronics but also for several branches of photonics. Electron

phonon interactions (EPIs) play an important role in high-

field transport. It is important to have a clear quantitative

understanding of how EPIs affect high-field electron trans-

port. Traditionally, they are modelled using phenomenologi-

cal deformation potentials (DPs) that could explain the

experimental results. However, such an approach ignores

complex issues such as anisotropy and also requires experi-

mental data to set the phenomenological constants.

Revealing the right physics of EPI is crucial to engineer the

electron and phonon dynamics. In recent years, there have

been several studies on calculating phonon scattering rates in

GaAs and Si18–22 and low field mobilites19,22 using EPI from

ab-initio methods. However, including a full-band ab-initio
based EPI in a Monte Carlo (MC) algorithm for high trans-

port studies poses several computational challenges

especially for materials with many phonon modes. Here, we

systematically study the physics of EPI in b-Ga2O3 to reveal

how they affect the high-field electron transport calculated

using a full band Monte Carlo (FBMC) simulation and also

address the computational challenges. Monoclinic b-Ga2O3

has a large primitive cell with low crystal symmetry which

makes it an ideal benchmark system to study electron trans-

port from first principles. The computational strategy is

discussed first followed by the results obtained for b-Ga2O3.

II. THEORY AND METHODS

The computation begins with the density functional the-

ory (DFT) calculation on an equilibrium lattice structure

followed by the extraction of Kohn-Sham (KS) eigen values.

Next, lattice response calculations are done based on the

density functional perturbation theory (DFPT).23 This pro-

vides the dynamical phonon matrix and also the perturbation

in the self-consistent potential for each perturbation.

Diagonalizing the dynamical phonon matrix gives the pho-

non eigen values. The EPI elements are computed from

the perturbation in the self-consistent potential.23 The EPI

elements and the phonon dynamical matrices are interpolated

using a Wannier-Fourier interpolation scheme24 to obtain

fine sampling of the Brillouin zone. However, the long-range

polar optical phonon (POP) EPI needs a separate treatment

due to its aperiodic nature. Recent formulation25 on a long-

range EPI interpolation scheme is used here.

A. Semi-coarse Electron-Phonon Interaction (EPI)
interpolation

The fine resolution needed on both electron (k) and

phonon (q) wavevector meshes requires large memory in

computation which is exacerbated for materials with multi-

ple phonon modes such as b-Ga2O3. Unlike scattering rate

calculations, an “on the fly” method18,26 could not be used in

the FBMC calculation since we need to store the EPI matrix
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elements for final state selection. An “on the fly” calculation

inside the final state selection program is inefficient since the

summation over the real-space grid has to be performed for

each electron, for each time interval, and for each scattering

process making it extremely slow. Hence, it is necessary to

store the fine grid matrix elements increasing the memory

requirement. Here, we propose a semi-coarse Wannier-

Fourier interpolation scheme to ease the computational

requirement of storing the fine-grid matrix elements. In this

method, the unitary rotations are on a fine mesh, but the

inverse Fourier transform sum is on a coarse mesh. Storing

the fine-grid electron-phonon interaction (EPI) elements

requires huge run-time memory. Using the definitions of

electronic Wannier functions (WF),24 we write the short

range non-polar EPI matrix elements on fine k and q meshes

as

g�short k;qð Þ ¼ 1

N2
e

Ukþq

X
Re;R

0
e

eik: Re�R0eð Þg�short Re �R0e;q
� �" #

U†
k :

(1)

Here, the unitary rotation matrices U have a dimension of

Nw�Nw, where Nw is the size of the Wannier subspace.

g�short k; qð Þ is the short-range EPI on both fine meshes. Re is

the center of an unit cell in the supercell and Ne is the total

number of unit cells in the supercell. Eq. (1) shows the

inverse Fourier transform of the real-space (on electronic

mesh) g�short Re � R0e; q
� �

to an arbitrary k-point while the

q-mesh interpolated information is already present on the

right-hand side of the equation. The total memory require-

ment to store the short range EPI on both fine meshes would

be governed by Nk x Nt x Nq x (Nw)2, which becomes large

for the required Nk and Nq where Nk, Nq, and Nt are the size

of the fine k-mesh, q-mesh, and the number of phonon

modes, respectively. For this work, the corresponding mem-

ory requirement becomes more than 500 terabytes. Hence,

we propose a way to circumvent the problem. The primary

contribution to g�short Re � R0e; q
� �

comes when the two

involved electronic WFs are on the same unit cell since the

overlap of remote WFs is low (although not negligible and

we discuss that later) in the case of maximally localized

Wannier functions (MLWFs). Under such a condition, we

can rewrite (after simple algebraic manipulation) Eq. (1) as

g�; 0short k; qð Þ ¼ 1

Ne
Ukþq g�short 0e; qð ÞU†

k

¼ UkþqU†
kcþq g�;0short k ¼ kc; qð ÞUkc

U†
k: (2)

Hence, the same unit cell contribution g�; 0short k; qð Þ can

be accessed just by storing g�;0short k ¼ kc; qð Þ on a coarse k-

mesh (kc) and the rotation matrices. This reduces the

memory requirement by several orders. Next, we discuss

the contribution from remote WFs. Now, we consider Eq.

(1) with Re 6¼ R0e. Under such conditions, a reduction simi-

lar to Eq. (2) would have been perfectly possible if the

phase factor eik:ðRe�R0eÞ was absent. If the unit cells are far

enough from each other (e.g., Re � R0e >53 lattice spac-

ing), g�short Re � R0e; q
� �

becomes negligible. However, if

the unit cells are close to each other, because of the

k-space smoothness of the matrix elements in Wannier

gauge, the contribution from the remote unit cells is

smaller compared to that from the same unit cell. Under

such a gauge-choice, treating the remote WF contribution

similar to Eq. (2) introduces small inaccuracy in calcula-

tion but eases the computational requirement to a great

extent. So, the overall g�short k; qð Þ can be obtained from

g�short k ¼ kc; qð Þ and the rotation matrices on the fine mesh.

The essential idea is to rotate the coarse-mesh elements to

an optimal Bloch-space that produces the maximally local-

ized WF (MLWFs) and perform Fourier transform to real

space followed by inverse Fourier transform on another

coarse k-mesh. The fine k-mesh elements could be

obtained “on the fly” just by un-rotating the elements back

to the normal Bloch-space using the fine k-mesh rotation

matrices. This reduces the “on the fly” time consumed in

converting the elements back and forth between reciprocal

and real spaces while at the same time mitigating the huge

memory requirement for storing the elements on both fine

k and q meshes. It is important to mention here that this

sacrifice of accuracy does not lead to any sacrifice of the

crystal symmetry mediated selection rules of non-polar

scattering since that is taken care of inside short range EPI

matrix g�short Re � R0e; q
� �

:

B. Full Band Monte Carlo (FBMC) simulation

High-field transport requires Monte Carlo (MC) simula-

tions. The method is widely used for velocity field curves,

and we briefly describe the method27,28,30,31 here. We solve

the Boltzmann transport equation (BTE) using the FBMC

technique starting from ab initio KS eigen values on a fine

reciprocal k-mesh, phonon eigen values, both long-range

(POP) and short range (non-polar) EPIs, and the scattering

rates on the fine k-mesh with contributions from each pho-

non mode treated separately. For the phonon eigen calcula-

tions, we used two different types of q-meshes: one for

short-range elements that span the entire Brillouin zone

(BZ), while the other for the long range elements which exist

only in the vicinity of the zone center (ZC). Our MC scheme

is spatially homogenous, and hence, the spatial gradient term

in the BTE disappears. The ensemble of electrons is first ini-

tialized in a Maxwellian thermal distribution before the elec-

tric field is turned on. Electrons are allowed to drift under the

influence of the electric field and to get scattered randomly.

The free drifting of the electron changes the crystal momen-

tum according to (in atomic units) _k ¼ F, where F is the

applied electric field. The free drifting time (t0) is esti-

mated28 based on a random number r such that t0 ¼ � 1
K lnr;

where K is the maximum possible scattering rate from a

given band at any k point. The final state selection after a

scattering mechanism is described next.

The first step of the final state selection process is to iden-

tify the mechanism that caused the scattering. A “mechanism”

includes the details of phonon mode index, final electronic

band index, and the nature (polar/non polar, absorption/emis-

sion) of the scattering. So, for 30 phonon modes and 2 elec-

tronic bands, the allowed number of mechanisms would be
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180. It is noted that polar mechanisms do not contribute to

interband scatterings. Finding the scattering mechanism fol-

lows from a normalized scattering rate (NSR) table that is

formed at each k point and each band from the previously

computed ab initio scattering rates. The formation of the NSR

table is discussed here briefly. If St
m(k) denotes the scattering

rate of an electron at a wave-vector k and an initial band m
mediated by a mechanism �, the elements of the NSR table at

band m and wave-vector k have a form

NSR �ð Þ ¼

P�
i¼1

Si
m kð Þ

maxk

PNm

i¼1

Si
m kð Þ

: (3)

So, the NSR elements always lie in (0, 1) and NSR is non

decreasing with increasing �. The NSR elements are stored

in a look-up table whose memory requirement scales as Nk

�Nb�Nm, where Nb is the number of bands taken in the

transport calculation and Nm is the total number of scattering

mechanisms. The large memory requirement of the NSR in a

parallel computing environment is met by storing it on

shared memory windows29 available to all processes running

under the same computing node. While selecting the mecha-

nism, a random number r0 [in (0, 1)] is generated and the

mechanism � is selected if the relation NSR �ð Þ > r >
NSR � � 1ð Þ holds true. If NSR Nmð Þ < r, the electron is

“self-scattered,”27,28,30,31 which means that the state of the

electron remains unchanged.

Given an “actual” scattering event occurs, once the pho-

non mode, final electronic band, and the nature of the scatter-

ing are extracted from the NSR table, the next task is to find

the final electronic wave-vector. We use a method tactically

similar to the one reported for covalent semiconductors29

and we treat the polar phonon mode scatterings separately.

Here, a brief detail of the algorithm is given. Let us consider

that the initial electron band index is m and wave-vector is

ki. First, all the k-points kj in the final band n that satisfy the

energy conservation are shortlisted. Next, a further shortlist-

ing is done based on the strict energy and momentum

conservation with implementation of phonon dispersion. So

this gives a list of final kj points that satisfy both the conser-

vations. Now, we exploit the full-band EPI elements and this

is where both k and q dependences of the EPI elements are

required. Another normalized table (similar to Eq. (3)) is

formed based on the product of the local density of states

(LDOS) at the potential kjs and EPI strength at the corre-

sponding momentum conserving phonon wave-vector, qj.

This is where the polar scattering needs to be taken care of

separately. The small-angle preference of the polar mecha-

nisms needs to be properly captured in order to reflect the

lower momentum relaxation time compared to corresponding

energy relaxation time. This is done with the aid of a sepa-

rate fine q-mesh that exists only near the zone center. Using

a random number, the normalized table is scanned through

like it was done for NSR and a final kj is selected. However,

this only gives the grid point in the reciprocal space. The

final electron wave-vector could belong to anywhere within

the small cube that is represented by this grid point. The

scheme to select the final wave-vector within the small cube

is exactly the same as the one described in steps (e)–(g) of

Fig. 7 in Ref. 29. Next, we discuss the calculation and results

for b-Ga2O3.

III. RESULTS AND DISCUSSION

We carry out DFT calculations on b-Ga2O3 as described

in our previous work16 with similar pseudo-potentials35 and

zone sampling36 using Quantum ESPRESSO.37 Figure 1(a)

shows the crystal structure of b-Ga2O3 along with the

Cartesian direction convention that is followed throughout

this work. In Fig. 1(b), we show the resulting KS eigen val-

ues along two reciprocal vectors. Four conduction bands are

shown out of which the first two are used in subsequent

transport calculations. Figure 1(c) shows the equi-energy

surfaces for two different energies. It can be seen that at a

lower energy the surface is spherically symmetric, while at

higher energies the surface becomes anisotropic with contri-

butions from higher energy bands. We interpolated the KS

Hamiltonian through MLWFs by using the wannier90

FIG. 1. (a) Crystal structure of b-

Ga2O3. a, b, and c represent the conven-

tional lattice directions for monoclinic

crystals. The Cartesian x, y, and z direc-

tions used for the calculations are also

shown. (b) The DFT calculated conduc-

tion band energies are shown for b-

Ga2O3. The first two bands (shown in

red and blue) are used in the transport

calculation. (c) The equi-energy surfa-

ces are shown for two different energies.

It is evident that at lower energy the sur-

face is spherically symmetric while

higher energy introduces band anisot-

ropy and also multiple bands. (a) is visu-

alized by Vesta32,33 and (c) is visualized

by XcrySDen.34
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code.38 Our optimal Wannier subspace (S) consists of two

low lying conduction bands within a frozen energy window.

The phonon calculation is done under DFPT using QE. The

phonon eigen values and the short-range (non-polar) EPI

matrix elements are interpolated on a fine q-mesh using a

modified version of the EPW code.26

A. EPI in b-Ga2O3

The short-range non-polar EPI elements are primarily

responsible for higher momentum and energy relaxation

rates at high-fields that lead to saturation in velocity. The

Wannier-Fourier interpolated short-range matrix elements

are shown in Fig. 2(a) with respect to q. We show the sum of

the squared magnitude of the coupling over all the vibra-

tional modes. The long-range POP coupling is also shown on

the same plot for comparison. The q dependence of EPI

matrix elements ð
P

t jgt
shortj

2Þ is to be noted along with its

crystal direction dependence (C-Z and C-N), and the strength

is minimized at the C point. The inset shows a contour plot

on the 2D plane formed by the same two directions. The

symmetry of the short-range element observed on the con-

tour plot is a signature of the inversion symmetry associated

with the C2m space group.39 The small discontinuity on the

short-range EPI marked by the arrow is a result of the gauge

ambiguity arising from degenerate final electronic states [see

Fig. 1(b)]. Such discontinuity does not affect the total scat-

tering rate since the latter is gauge-invariant. Figure 2(b)

shows the short-range EPI for each phonon mode for two dif-

ferent q vectors. The red bars show jgt
shortj

2
for initial elec-

tron wave-vector k at 0.25�CZ away from C while the

phonon wave-vector (q) is 0.5�CZ away from C. The corre-

sponding two points from the green bars are 0.125�CN (k)

away from C and 0.25�CN (q) away from C. The inset of

Fig. 2(b) shows the scattering schematic for high energy

electrons. The long arrows correspond to a direction reversal

of an electron which provides a high momentum relaxation.

For high-field transport, the available phase space allows

phonon wave-vectors from all directions. But the higher

momentum relaxing phonon wave-vectors need to be

inclined as much opposite as possible to the propagating

electron wave-vector. This explains the choice of electron

and phonon wave-vectors to show the individual mode con-

tributions in Fig. 2(b). It could be seen that for an electron

with initial wave-vector at the C point, the dominating non-

polar phonon modes are at 83 and 96 meV along C-Z, while

along C-N, they are 22 and 90 meV. Figure 2(c) shows the

short range EPI element (g�short kð Þ) along the C-Z-C direction

calculated using the coarse mesh, fine mesh, and semi-coarse

sampling proposed in this work. The q vector for these cal-

culations is kept fixed at halfway along the CZ. The DFPT

calculated coarse-mesh element is shown with red dots,

while a regular fine mesh interpolated result is shown with a

red solid curve. The kinks on the semi-coarse curves occur

when the representative coarse k-mesh point corresponding

to a fine-k mesh point changes. The small errors incurred

due to this strategy are acceptable given the resulting ease in

computational memory requirement. The key aspect is that

the coarse mesh used in the Fourier transform does not have

to be as coarse as the original DFT mesh. It should be made

as fine as possible within the available computational resour-

ces. The maximum observed deviation between the 8� 8� 4

semi-coarse mesh and the fine mesh elements is �12% along

the C-Z-C direction for this given q vector.

B. Scattering rates and high-field transport

Next, we discuss the Fermi-Golden rule computed non-

polar phonon scattering rates. The energy conserving delta

function is implemented using a Lorentzian smearing. We

carried out an analytical fitting of the computed scattering

rates using a deformation potential (DP) approximation31 to

guide future analytical transport calculations. However, it is

important to note that resulting fitting parameters do not

provide any actual physical picture of EPI or existence of

phonon modes. The density of states used in the scattering

rate fitting procedure is computed from the ab initio band-

structure. For non-polar optical phonon scattering [Fig. 3(a)],

we fitted the computed scattering rates with D0
2/x0¼ 7.2

� 1018 eV/cm2, where D0 is the optical deformation potential

and x0 is the optical phonon energy. For a suitable fitting,

these two parameters are inter-adjustable and hence are not

FIG. 2. (a) The dependence of the EPI elements with the phonon wave-vector (q). The inset shows a contour plot of the short-range EPI on the CZ-CN plane.

The initial electronic state is taken at the C, and hence, the inversion symmetry of the crystal is reflected in the contour plot. (b) The mode-wise splitting of the

short-range EPI for two q points along two different directions. The phonon energies (meV) for the dominating modes are shown with corresponding colors.

(Inset) At higher electron energies, a high momentum relaxation requires phonon wave-vectors that are inclined towards the opposite direction of the electronic

wave-vector. (c) The interpolated elements in k-space using the semi-coarse k-mesh strategy. The q point is kept fixed at a point halfway along CZ. A pure

fine-mesh interpolation is also shown for comparison. In (a)–(c), the initial and final electronic band indices are taken to be the first band.

035702-4 K. Ghosh and U. Singisetti J. Appl. Phys. 122, 035702 (2017)



unique. Figure 3(a) shows the fitted curves with dashed

curves. Figure 3(b) shows the calculated acoustic phonon

scattering rate with energy. For acoustic phonons, the fitting

procedure is two-fold as seen in Fig. 3(b). Scattering due to

the zone-center (ZC) phonons is fitted with DA
2/vs

2

¼ 5� 10�11 eV2 s2/cm2, where DA is the acoustic deforma-

tion potential and vs is the velocity of sound. On the other

hand, the zone-edge (ZE) acoustic phonons have a dispersion

similar to optical phonons; hence, we use an optical phonon

like fitting with DAZE¼ 5� 107 eV/cm and xAZE¼ 0.01 eV

[dashed green lines in Fig. 3(b)]. A single fitting of the

acoustic scattering rate is not possible because of the approx-

imations31 used to derive the analytical form of the scattering

rate, namely, the negligible phonon energy and the linear

dependence of the coupling with phonon wave-vector.

Now, we discuss the results of the Monte Carlo simula-

tion. Figure 4(a) shows the initialized Maxwell electron dis-

tribution in energy space at room temperature at the start of

the FMBC simulation, while Fig. 4(b) shows the initial elec-

tron distribution along kz in the direction (z-direction) of the

applied electric field. The respective bottom panels [Figs.

4(c) and 4(d)] show similar plots for an applied electric field

of 300 kV/cm along the z direction. It is noted that the non-

equilibrium distribution in energy space dies off well beyond

2 eV of energy. The first satellite valley occurs at �2.5 eV;

hence, very few electrons are transferred to satellite valleys

at the field strength. This is further supported by the electron

distribution as a function of kz seen in Fig. 4(d), which shows

very low population near the zone edge where the valley

occurs. Next, we discuss the transient response of the drift

velocity as shown in Fig. 5. At low electric fields, the trans-

port is dominated by POP scattering and the momentum

relaxation rate is not increasing with electron energy imply-

ing that the drift velocity monotonically arrives to a steady

state. However, beyond 150 kV/cm velocity, overshoot starts

to appear. This is attributed to the fact that with increasing

electron energy, the intra-band non-polar scattering becomes

significantly high allowing short-range transitions that boost

up momentum relaxation drastically while the energy relaxa-

tion is still limited by the energy of the phonon modes. The

imbalance of the two rates results31 in a slow rise of the elec-

tron energy than the same in the drift velocity. However, the

momentum relaxation rate is also dependent on the electron

energy and hence it gets adjusted in a larger time-scale than

that of the drift velocity and hence we see the overshoot.

Figure 6 shows the velocity-field curves in three differ-

ent Cartesian directions calculated from FBMC using the

FIG. 3. (a) Comparison of computed non-polar optical phonon (NOP) scat-

tering rate and fitted NOP scattering rate. (b) Comparison of computed

acoustic phonon scattering rate with the corresponding fittings. The fitting

splits the contribution from zone-center and zone edge acoustic modes. See

text for fitting parameters.

FIG. 4. Electron population in energy

space and kz space. (a) and (b) show

the histogram plots for initial condi-

tions used in the FBMC simulation and

(c) and (d) show the corresponding

plots for the steady state under an

external electric field of 300 kV/cm

applied along the z direction.
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scattering strengths discussed in Secs. II and III A. We see

that the velocity increases in all three directions up to

200 kV/cm followed by a negative differential conductivity

(NDC). The calculated NDC is less than that observed in

GaAs since the satellite valleys occur at a much higher

energy (the lowest one being at�2.4 eV) as compared to

GaAs (�0.3 eV). Unlike GaAs and GaN where the NDC

results from inter-valley scattering, the NDC and velocity

saturation in b-Ga2O3 result from intra-valley short-range

scattering. In b-Ga2O3, the non-parabolic nature of the C val-

ley at higher electronic energies reduces the average elec-

tronic group velocities resulting in the NDC and the short

range intra-valley EPI results in the saturation of velocity.

For the range of electric fields considered here, electrons

barely reach the satellite valleys [see Fig. 4(c)]. So, the fact

that the velocity starts rolling off from its peak value beyond

200 kV/cm is to be attributed to the non-parabolicity of the

conduction band rather than intervalley scatterings. The

average peak velocity at an electric field of 200 kV/cm

is�2� 107 cm/s which is slightly lower than that of wurtzite

GaN.40 Next, we discuss the observed anisotropy in the

velocity-field curves. Prior to the peak velocity point, around

100 kV/cm, the z direction velocity is lower than that in x
and y directions. This is attributed to the large polar optical

phonon scattering by the Bu
1 mode which is polarized in the

z direction as was observed in our previous work.16 More

details on this anisotropy could be found in a future work.41

However, beyond the peak velocity, the drift velocity is rela-

tively higher in the y direction. We attribute this to the fact

that the slope of the energy band drops at a higher k in the y
direction compared to that in the other two directions.

Hence, the ensemble average of the drift velocity is higher in

the y direction. The velocity-field curves were fitted using

the Barnes model42 that formulates NDC with, ln Fð Þ

¼ l0þ
vsat

F
F

Fcð Þ
c

1þ F
Fcð Þ

c , where l0 is the low-field mobility and vsat, Fc,

and c are the adjustable fitting parameters. This model is

used in commercial device simulators43 to simulate device

operation. The fitting parameters in three different directions

are given in Table I. It is noted that, these parameters are

good only up to an electric field of about 500 kV/cm.

Beyond that, other physical phenomena such as interband

transitions and impact ionization are likely to kick in which

will modify the velocity-field curves.

IV. SUMMARY

In summary, we have highlighted the role of full-band

EPI in controlling the electron transport in b-Ga2O3. A semi-

coarse k-mesh version of the Wannier-Fourier interpola-

tion24 strategy is proposed for the short-range EPI in order to

make it computationally tractable in a Monte Carlo algo-

rithm. The applicability of this strategy is valid within the

current scope of this work; however, for validating this

method for arbitrary material systems, further study is

required which itself could be a topic for future work. The

calculated EPIs are used in an FBMC algorithm to analyze

high-field transport. Scattering rate fitting parameters are cal-

culated to guide analytical calculations. Monoclinic b-Ga2O3

is studied under this theoretical manifold followed by the

prediction of the velocity-field characteristics. The velocity-

field curves are fitted in different directions using compact

NDC models to guide device design.
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