



# CMOS compatible integrated ferroelectric tunnel junctions (FTJ)

Mohammad Abuwasib<sup>1</sup><sup>\*</sup>, Hyungwoo Lee<sup>2</sup>, Chang-Beom Eom<sup>2</sup>, Alexei Gruverman<sup>3</sup>, Jonathan Bird<sup>1</sup> and Uttam Singisetti<sup>1</sup> <sup>1</sup>Electrical Engineering, University at Buffalo (SUNY), Buffalo <sup>2</sup>Materials Science and Engineering, University of Wisconsin, Madison <sup>3</sup>Physics and Astronomy, University of Nebraska, Lincoln \*mabuwasi@buffalo.edu





- Introduction and motivation
- Background and previous work
- Integrated FTJ device process
- Device results and discussion
- Conclusion





### **Functional scaling of CMOS**

- More Than Moore elements
- Beyond CMOS devices
- Non-charge based devices for beyond CMOS







#### **Beyond CMOS devices**

- Exploit novel materials properties: spin, magnetic, ferroelectric
- Devices based on ferroelectrics : FE memory, FE FET, FE FTJ
- FE based devices for memory, logic, logic in memory

# Ferroelectric tunnel junctions (FTJs)

#### Tsymbal et al, Science 313(5784): 181-183.





### Ferroelectric tunnel junction (FTJ) devices

- Tunnel current modulated by the polarization of FE material
- Large ON/OFF ratio
- Non-volatile state  $\rightarrow$  novel FTJ based circuits







#### FTJ advantages:

- Non-destructive readout: based on measuring the tunneling conductance
- Good scalability: tunnel current can be measured for deep sub-µm junction
- Low read power: read voltage below V<sub>c</sub>







#### Non-integrated device using AFM tip as an electrode

- Quick and fast technique to test device structures
- Hard to test scalability and CMOS compatibility
- Hard to do high speed switching tests

### FTJ Integration required?

# **GFD** FTJ structure for integrated device





Energy band diagram of LSMO(30nm)-BTO(1.6nm)-Co(5nm) FTJ.  $P = \pm 40\mu C/cm^2$ 

*n*-LSMO(30nm)-BTO(1.6nm)-Co(5nm) FTJ simulation:

- FE barrier height ( $\phi_b$ ) changes from P $\uparrow$  to P $\downarrow$
- Effective tunnel barrier width  $(t_b)$  changes from P $\uparrow$  to P $\downarrow$
- Transmission probability modulated







7) Lift-off anode contact pad on insulating NGO









A fabricated FTJ

- FTJs fabricated with 4 unit cells of BTO
- Minimum device area 3  $\mu$ m X 3  $\mu$ m
- Process yield is good
- Devices show switching behavior







- Switching observed in 3  $\mu$ m X 3  $\mu$ m to 7  $\mu$ m X 7  $\mu$ m diodes
- Read voltage ±0.2V, write voltage ±0.6V~Low power operation







- Peak  $I_{on}/I_{off} = 60$  observed in a 5  $\mu$ m X 5  $\mu$ m device
- Resistance loop is the fingerprint of FE polarization reversal
- Device switching yield is very poor ( < 10 %)</li>







- Devices that show switching were misaligned
- Devices with good alignment show insulating behavior







- Good lithography alignment
- Minimum access length >5µm along X & Y-direction
- Iarge parasitic resistance (>TΩ) on LSMO along X & Ydirection
- Applied voltage dropped across insulating LSMO







- High resistance observed on LSMO layer
- Bad contact with Ti/ LSMO
- Damage due to RIE







- High resistance observed on LSMO layer
- Misaligned device → reduced resistance → FTJ switching
- Devices with good alignment  $\rightarrow$  high resistance







- Pt/Au, Ag, and Ti/Au TLM structure on bare LSMO
- All the metal layers show good ohmic behavior
- LSMO layer exposed to RIE process
- Ti contacts after RIE/O<sub>2</sub> plasma show high resistance SRO electrode instead of LSMO







Sum-micron FTJ without contact PAD



- Sub-micron anodes fabricated by electron beam lithography
- FTJ characteristics measured by AFM
- Devices show polarization loop





- Integrated FTJ process demonstrated
- > FTJ switching in integrated process
- Sub-micron dimension FTJ processed
- Contact degradation of etched LSMO layer
- > Need FTJ electrode  $\rightarrow$  SRO

### > Integrate FTJ with SRO electrode future





## <u>Acknowledgement:</u> Semiconductor Research Corporation (SRC)

