CMOS compatible integrated ferroelectric tunnel junctions (FTJ)

Mohammad Abuwasib1*, Hyungwoo Lee2, Chang-Beom Eom2, Alexei Gruverman3, Jonathan Bird1 and Uttam Singisetti1

1Electrical Engineering, University at Buffalo (SUNY), Buffalo

2Materials Science and Engineering, University of Wisconsin, Madison

3Physics and Astronomy, University of Nebraska, Lincoln

*mabuwasi@buffalo.edu
Outline

• Introduction and motivation

• Background and previous work

• Integrated FTJ device process

• Device results and discussion

• Conclusion
Motivation

Evolution of Extended CMOS

Functional scaling of CMOS
- More Than Moore elements
- Beyond CMOS devices
- Non-charge based devices for beyond CMOS

ITRS Roadmap, Emerging Research Devices (ERD), (2011)
Beyond CMOS devices

- Exploit novel materials properties: spin, magnetic, ferroelectric
- Devices based on ferroelectrics: FE memory, FE FET, FE FTJ
- FE based devices for memory, logic, logic in memory
Ferroelectric tunnel junctions (FTJs)

Ferroelectric tunnel junction (FTJ) devices

- Tunnel current modulated by the polarization of FE material
- Large ON/OFF ratio
- Non-volatile state \rightarrow novel FTJ based circuits
FTJ vs FeRAM

FTJ advantages:

• Non-destructive readout: based on measuring the tunneling conductance
• Good scalability: tunnel current can be measured for deep sub-\(\mu m\) junction
• Low read power: read voltage below \(V_c\)
Non-integrated FTJs

Non-integrated device using AFM tip as an electrode

- Quick and fast technique to test device structures
- Hard to test scalability and CMOS compatibility
- Hard to do high speed switching tests

FTJ Integration required?
n-LSMO(30nm)-BTO(1.6nm)-Co(5nm) FTJ simulation:

- FE barrier height (ϕ_b) changes from $P\uparrow$ to $P\downarrow$.
- Effective tunnel barrier width (t_b) changes from $P\uparrow$ to $P\downarrow$.
- Transmission probability modulated.

Electronic parameters of LSMO, BTO and Co used are:
- $E_{g_{LSMO}}=1$ eV, $E_{g_{BTO}}=3.3$ eV, $\chi_{LSMO}=4.8$ eV, $\chi_{BTO}=2.5$ eV, $\phi_{CO} = 5$eV.
- $n^+=5\times10^{19}$/cm3.

Energy band diagram of LSMO(30nm)-BTO(1.6nm)-Co(5nm) FTJ. $P=\pm 40\mu C/cm^2$.
Scalable FTJ process flow

1) As grown sample with blanket Co/Au

2) Lift-off Ti/Au/Ni anode contact

3) Self aligned RIE etch of Co/Au/BTO with Ni etch mask

4) Cathode contact (Ti/ Au) lift-off

5) RIE etch n⁺ LSMO

6) Sidewall process using ALD HfO2

7) Lift-off anode contact pad on insulating NGO

Layout of 3×3μm² area FTJ diode with RF contact pad

Device Research Conference, June 21-24, 2015, Ohio State University
FTJ Fabrication

- FTJs fabricated with 4 unit cells of BTO
- Minimum device area 3 \(\mu \text{m} \times 3 \mu \text{m}
- Process yield is good
- Devices show switching behavior
• Switching observed in 3 µm X 3 µm to 7 µm X 7 µm diodes
• Read voltage ±0.2V, write voltage ±0.6V~Low power operation

FTJ Switching

Anode PAD

Etched LSMO

~200nm separation

Cathode PAD

FTJ anode

V_{write} = ±0.6V

Read Voltage (V)

Current (µA)

3 µm X 3 µm FTJ I-V

300

200

100

0

-100

-200

-300

-0.2

-0.1

0

0.1

0.2

Device Research Conference, June 21-24, 2015, Ohio State University
FTJ Switching

Peak $I_{on}/I_{off} = 60$ observed in a $5 \, \mu m \times 5 \, \mu m$ device

Resistance loop is the fingerprint of FE polarization reversal

Device switching yield is very poor (< 10 %)
FTJ device yield

- Devices that show switching were misaligned

- Devices with good alignment show insulating behavior
Non switching FTJs

- Good lithography alignment
- Minimum access length >5\(\mu\)m along X & Y-direction
- Large parasitic resistance (>T\(\Omega\)) on LSMO along X & Y-direction
- Applied voltage dropped across insulating LSMO
• High resistance observed on LSMO layer
• Bad contact with Ti/LSMO
• Damage due to RIE
FTJ device yield

- High resistance observed on LSMO layer
- Misaligned device \rightarrow reduced resistance \rightarrow FTJ switching
- Devices with good alignment \rightarrow high resistance
After RIE and O₂ plasma

- Pt/Au, Ag, and Ti/Au TLM structure on bare LSMO
- All the metal layers show good ohmic behavior
- LSMO layer exposed to RIE process
- Ti contacts after RIE/O₂ plasma show high resistance
- SRO electrode instead of LSMO

Bare LSMO

After RIE and O₂ plasma
Sub-micron FTJ

Sum-micron FTJ without contact PAD

- Sub-micron anodes fabricated by electron beam lithography
- FTJ characteristics measured by AFM
- Devices show polarization loop
Conclusion and future work

- Integrated FTJ process demonstrated
- FTJ switching in integrated process
- Sub-micron dimension FTJ processed
- Contact degradation of etched LSMO layer
- Need FTJ electrode \rightarrow SRO
- Integrate FTJ with SRO electrode future
Acknowledgement:
Semiconductor Research Corporation (SRC)