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Abstract—Since ad hoc and sensor networks can be composed of
a very large number of devices, the scalability of network protocols
is a major design concern. Furthermore, network protocols must
be designed to prolong the battery lifetime of the devices. However,
most existing routing techniques for ad hoc networks are known
not to scale well. On the other hand, the so-called geographical
routing algorithms are known to be scalable but their energy
efficiency has never been extensively and comparatively studied.
In a geographical routing algorithm, data packets are forwarded
by a node to its neighbor based on their respective positions. The
neighborhood of each node is constituted by the nodes that lie
within a certain radio range. Thus, from the perspective of a node
forwarding a packet, the next hop depends on the width of the
neighborhood it perceives. The analytical framework proposed in
this paper allows to analyze the relationship between the energy
efficiency of the routing tasks and the extension of the range of
the topology knowledge for each node. A wider topology knowl-
edge may improve the energy efficiency of the routing tasks but
increases the cost of topology information due to signaling packets
needed to acquire this information. The problem of determining
the optimal topology knowledge range for each node to make energy
efficient geographical routing decisions is tackled by integer linear
programming. It is shown that the problem is intrinsically local-
ized, i.e., a limited topology knowledge is sufficient to make energy
efficient forwarding decisions. The leading forwarding rules for
geographical routing are compared in this framework, and the
energy efficiency of each of them is studied. Moreover, a new for-
warding scheme, partial topology knowledge forwarding (PTKF),
is introduced, and shown to outperform other existing schemes in
typical application scenarios. A probe-based distributed protocol for
knowledge range adjustment (PRADA) is finally introduced that
allows each node to efficiently select online its topology knowledge
range. PRADA is shown to rapidly converge to a near-optimal
solution.

Index Terms—Geographical routing, mathematical program-
ming/optimization, topology control, wireless ad hoc and sensor
networks.

I. INTRODUCTION

RECENT ADVANCES in wireless communications and
electronics are paving the way for the deployment of

low-cost, low-power, large scale ad hoc networks such as
untethered and unattended networks of sensors and actuators.
Sensor networks [1] differ from “traditional” ad hoc networks
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in many aspects. The number of nodes in a sensor network can
be several orders of magnitude higher than in ad hoc networks,
and the deployment of nodes is usually denser. Moreover,
sensor nodes are limited in power, computational capacities
and memory, and they may not have global identification (ID)
because of the very large number of nodes and the related
overhead.

Due to the above constraints, sensor network protocols and
algorithms must be endowed with self-organizing capabilities,
i.e., sensors must be able to cooperate in order to efficiently per-
form networking tasks. The primary design constraints of these
algorithms are energy efficiency, scalability and localization.

It has been recently pointed out [2] that energy efficiency
in mobile systems can be improved by designing protocols
and algorithms with a cross-layer approach, i.e., by taking
into account interactions among different layers of the com-
munication process so that the overall energy consumption can
be minimized. Hence, in this paper, we consider interdepen-
dencies between physical and network layer functionalities to
improve the energy efficiency of the routing tasks.

A primary requirement of configuration algorithms for large
scale ad hoc networks, such as routing algorithms, is scalability,
i.e., these algorithms should perform well for wireless networks
with an arbitrary number of nodes. The notion of scalability is
tightly related to that of localization: in a scalable algorithm
each node exchanges information only with its neighbors (lo-
calized information exchange) [3]. In a localized routing algo-
rithm, each node selects the next hop based only on the position
of itself, of its neighbors, and of the destination node. As a re-
sult, the local routing decision of each node strives to achieve a
global network objective such as minimum latency or minimum
energy consumption. Conversely, in a nonlocalized routing al-
gorithm a node maintains an accurate description of the overall
network topology to select the next hop. This way, the routing
problem is equal to the shortest path problem if the hop count is
used as the global performance metric, or the shortest weighted
path if power [4] or cost [5], [6] link metrics are used.

It has been shown [7], [8] that routing protocols that do not
use geographical location information are not scalable, e.g., ad
hoc on-demand distance vector (AODV), destination sequenced
distance vector (DSDV), or dynamic source routing (DSR).
On the other hand, the recent availability of small, inexpensive
and low-power Global Positioning System (GPS) receivers,
together with techniques to deduce relative sensor coordinates
from signal strengths [9] encourage researchers to develop
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geographical routing [10] (also, position-based routing) algo-
rithms, which are deemed to be the most promising solutions
for critically power-constrained ad hoc networks.

For these reasons, this paper deals with the interdependencies
between topology control [11] and energy efficient geographical
routing. The question we try to answer is “How extensive should
be the local knowledge of the global topology in each node,
so that energy efficient geographical routing decisions can be
taken?” The answer to the question is clearly related to the “de-
gree” of localization of the routing scheme. If each node could
hold a complete vision (knowledge) of the network topology,
it could then compute the “globally” optimal next hop, i.e., the
neighboring node on the minimum energy path. However, ac-
quiring increasingly accurate topology information has an in-
creasing cost, i.e., the energy required to exchange the signaling
traffic that conveys this information.

Hence, we develop an analytical framework to capture the
tradeoff between what we refer to as the topology information
cost, which increases with increasing range of knowledge of
each node, and the communication cost, which may decrease
when the knowledge becomes more complete. We apply this
analytical framework to different position-based forwarding
schemes [12]–[16] and show by Monte Carlo simulations that a
limited knowledge is sufficient to make energy efficient routing
decisions. With respect to the existing literature on geograph-
ical routing, we try to better define the terms “localized” and
“neighbor.” A “neighbor” for a certain node is another node
which falls into its topology knowledge range, denoted as KR
in the following.

The main contributions of this paper are the following.

• We introduce an analytical framework to evaluate the en-
ergy consumption of geographical routing algorithms for
power-constrained large scale ad hoc networks.

• We provide an integer linear programming (ILP) for-
mulation of the topology knowledge range optimization
problem.

• We conduct a detailed comparison of the leading existing
forwarding schemes and introduce a new scheme called
partial topology knowledge forwarding (PTKF).

• We introduce a probe-based distributed protocol for
knowledge range adjustment (PRADA), that allows each
node to efficiently select online its topology knowledge
range, and show that PRADA leads to near-optimal
energy consumption.

The remainder of this paper is organized as follows. In
Section II, we review existing forwarding schemes for geo-
graphical routing and other related work. In Section III, we state
the problem and in Section IV, we formulate it as an optimiza-
tion problem. In Section V, we introduce PRADA, a distributed
protocol for online knowledge range adjustment. In Section VI,
we show numerical performance results, while in Section VII,
we conclude the paper and draw the main conclusions.

II. RELATED WORK

In this section, we describe the existing position-based for-
warding rules that will be compared in the following of the

Fig. 1. Different forwarding schemes.

paper, and review other existing work on the topic which con-
stitutes the background of our work.

A. Forwarding Rules

In a localized geographical routing scheme, node (Fig. 1)
which currently holds the message, only knows the position of
its neighbors, i.e., the nodes within its knowledge range, and of
the destination node . For the convenience of the reader, let us
introduce the following definitions.

Definition 1: Given a sender node and a destination node
, the progress of a generic node is the orthogonal projec-

tion of the line connecting and onto the line connecting
and .
Definition 2: Given a sender node and a destination node
, the advance of a generic node is the distance between

and minus the distance between and .
Takagi and Kleinrock proposed the first geographical routing

scheme, based on the notion of progress. In their most forward
within radius (MFR) scheme [12], the message is forwarded to
the maximum progress neighbor, e.g., node in Fig. 1, whose
progress is . Note that although node is closer to the desti-
nation, its progress is smaller than . Hou and Li [13] dis-
cuss the nearest forward progress (NFP) method which selects
the minimum progress neighbor within the topology knowledge
range of , e.g., node in Fig. 1, whose progress is . Finn
[14] proposes the greedy routing scheme (GRS), which is based
on geographical distance: node selects among its neighbors
the closest to the destination, i.e., the node with maximum ad-
vance, e.g., in Fig. 1. In the so-called compass routing method
[15], the message is forwarded to a neighbor, e.g., in Fig. 1,
such that the angle is minimum, i.e., the direction SC is
the closest to the direction SD. The random progress forwarding
(RPF) method [16] selects a random next hop among the nodes
within the knowledge range.

A sufficient condition for a geographical routing scheme to be
loop free is that only next-hop nodes with positive advance can
be selected. According to Definition 2, a generic node has a pos-
itive advance with respect to a sender node if it is closer than the
sender to the destination. When a routing scheme is constrained
to select a node as next hop only if it has positive advance, then
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Fig. 2. Counterexample on the notion of progress.

the overall path is guaranteed to be loop free. Conversely, a pos-
itive progress for each next hop is not a sufficient condition for
a routing scheme to be loop free, as can be inferred from the
counterexample in Fig. 2, where three nodes, , and a desti-
nation node are shown. is a possible next hop for and vice
versa, since both nodes and have positive progress with re-
spect to each other . However, this does not
avoid loops as both nodes could choose the other as next hop,
although as shown in [17] the two nodes can recognize the loop
and stop it. Referring again to the example in Fig. 2, when a
positive advance is a necessary condition for a node to be next
hop, is a feasible next hop for , but not vice versa, since
is closer than to the destination . Since positive
advance is a stronger condition, and guarantees loop free paths,
we take positive advance as a necessary condition for a node to
be the next hop. In other words, a node must choose the next hop
among the nodes within its knowledge range and with positive
advance with respect to the destination node, for all the consid-
ered forwarding schemes.

B. Other Related Work

An excellent survey on position-based routing techniques for
ad hoc networks is given in [10] and [18]. Location update tech-
niques, i.e., methods to determine absolute and relative coordi-
nates for network nodes, are reviewed in [19].

Most of the prior research assumes that nodes can either work
in a greedy mode or in a recovery mode. When in greedy mode,
the node that currently holds the message tries to forward it to-
ward the destination. The recovery mode is entered when a node
fails to forward a message in the greedy mode, since none of its
neighbors is a feasible next hop. Usually, this occurs because
the node observes a void region between itself and the destina-
tion. Such a node is referred to as concave node. For example,
the GFG algorithm [20] makes greedy forwarding decisions (as
GRS in Section II-A). When a packet reaches a concave node,
GFG tries to recover by routing around the perimeter of the void
region. Recovery mechanisms, which allow a packet to be for-
warded to the destination when a concave node is reached, are
out of the scope of this paper. Here, we assume that the packet
is directly forwarded to the destination whenever such a node is
reached.

The trajectory-based forwarding (TBF) algorithm is proposed
in [21], where the packet is forwarded along a predefined para-
metric curve encoded in the packet at the source. Several local-

Fig. 3. Neighborhood discovery protocol.

ized algorithms for power, cost and power-cost efficient routing
are proposed, and their efficiency is analyzed in [22]. Scalability
properties of different ad hoc routing techniques such as flat,
hierarchical, and geographical routing are discussed in [23]. The
GAF topology control algorithm [24] identifies nodes that are
equivalent from a routing perspective based on position infor-
mation, and adaptively turns unnecessary nodes off in order to
maintain a constant level of performance.

A taxonomy of location systems is given in [9] for ubiquitous
computing applications, including location sensing techniques
and properties, as well as a survey of commercially available lo-
cation systems. In [25], it is shown how to derive position infor-
mation for all nodes using angle-of-arrival (AOA) capabilities,
when only a fraction of the nodes have positioning capabilities.
Finally, a distributed location service (GLS) is described in [7],
where a node sends its position updates to its location servers
without knowing their actual identities. This information is then
used by the other nodes in the network to perform geographical
routing operations.

III. PROBLEM SETUP

In this section, we introduce the topology knowledge range
problem, which is then formulated as an ILP in Section IV. First,
we describe a neighborhood discovery protocol which allows
each node to gather information about its neighborhood. Then,
we introduce the network and energy models and define some
useful notions. Finally, we present a new localized forwarding
scheme called PTKF.

Let us consider the following neighborhood discovery pro-
tocol. With reference to Fig. 3, node periodically sends a
neighborhood discovery packet (ND-packet) to gather localiza-
tion information about its neighbor nodes, at a power level that
allows the packet to be received by all nodes within its chosen
knowledge range (KR in Fig. 3).

As a result, nodes , and receive the ND-packet,
while farther nodes do not. All nodes that receive the ND-packet
reply with a location update packet (LU-packet), that contains
the geographical position of the node. It is intuitive that
increasing the KR may result in more efficient routing deci-
sions. However, this comes at the expense of a higher energy
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consumption needed to exchange signaling traffic. Hence,
we are trying to determine the KR for each node so that the
energy required by the network to perform the routing tasks is
minimized.

A. Network Model

The network is represented as , where
is a finite set of nodes in a finite-dimen-

sion terrain, with , and where is the matrix whose
element contains the value of the distance between
nodes and . We associate to each node its knowledge
range, , based on the neighborhood discovery protocol as
explained above. Thus, the array de-
scribes the KRs of all nodes in the network. Let be the set
of traffic sources and the set of destination nodes. We define

as the set of source-destination
connections. The information rate of each connection is de-
scribed by the traffic matrix , where represents the
average information rate (bit/s) between a source node
and a destination node .

Let us introduce the following definitions.
Definition 3: Given a node , its KR , and a destination

node , a loop-free forwarding rule associates the node
with another node in , in such a way that the path

obtained by applying the rule from source to
destination is composed of distinct nodes.

We indicate with that is the next hop of
node toward with KR , according to . Note that for the
sake of simplicity, we will also refer to a generic node as ,
and omit the index . Thus, is referred to as .

Given the array of the KRs of all nodes, the rule in-
duces paths among any possible source-destination pair in the
network. Thus

(1)

where iff the link between node and node is part
of the path between node and node with the given choice
of ranges, when we apply the forwarding rule .

B. Energy Model

An accurate model for the energy consumption per bit at the
physical layer is

(2)

where is the distance-independent amount of energy
consumed by the transmitter electronics (PLLs, VCOs, bias
currents) and digital processing, is the energy utilized by
receiver electronics, while accounts for the radiated power
necessary to transmit over a distance between source and
destination.

As in [26], we assume that

(3)

Hence, the overall expression for in (2), which we refer to as
link metric hereafter, simplifies to

(4)

According to this link metric, the topology information cost for
node is expressed as

(5)

where
path loss ;
constant [Joule/(bit m )];
length of an ND-packet [bit];
length of an LU-packet [bit];
energy needed by the transceiver circuitry to transmit
or receive one bit [Joule/bit];
number of neighbors of node when its knowledge
range is ;
set containing the indexes of the nodes in range of
node ;
period between two consecutive neighborhood dis-
covery messages .

The expression represents the energy needed to transmit
one bit at distance ; thus, is the en-
ergy needed for node to transmit the ND-packet to all nodes
in its knowledge range, where as each of the nodes in
its KR “spends” to receive the ND-packet. By adding
these two components, we obtain the first line of (5). Then, each
of the nodes transmits an LU-packet. The energy ex-
penditure has again a constant factor, , plus a factor,

, which depends on the distance between the trans-
mitting node and node . Moreover, spends to
receive each of the LU-packets. By adding all these com-
ponents, and dividing by , which is the inverse of the loca-
tion update frequency, we obtain the final expression for .
In other words, is the average energy needed for node
to obtain topology information within range .

The communication cost for node can be expressed as

(6)

with

for at least one (7)

The set contains all source-destination pairs whose path
includes as a transit node, as well as those for which is the
source. Thus, in (6), we sum over all the connections, where
is a transmitting node. Note that each term has a distance-inde-
pendent component (the energy needed to transmit and
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(a) (b)

Fig. 4. Partial topology knowledge forwarding (PTKF)

receive 1 bit), and a distance dependent component ,
which represents the th power of the distance between nodes

and , this last being the next hop of toward when
its KR is . Every term is then multiplied by the average bit rate
of the communication . Thus, represents the av-
erage energy expenditure for all the communications node is
involved in. We can now state the total cost for node as

(8)

Note that while the information cost of each node only depends
on its own KR, the communication cost depends on the KRs of
all nodes involved in the communication process.

C. Partial Topology Knowledge Forwarding (PTKF)

We now introduce a novel forwarding scheme, called partial
topology knowledge forwarding (PTKF). PTKF can be classi-
fied as a localized shortest weighted path routing scheme with
a power link metric, where routes are calculated based only on
a limited local knowledge of the overall topology.

Let us refer to Fig. 4 and consider a node that is holding a mes-
sage and is in charge of forwarding it to a given destination
node . If had a complete topological view, it could cal-
culate the optimal path toward the destination, i.e., the shortest
weighted path that coincides with the minimum energy path
when we consider a link metric of , according
to (4). This is shown in Fig. 4(a), where the topological view of
node is constituted by all nodes of the network with positive
advance (see Definition 2) with respect to the destination (grey
nodes).

Conversely, in PTKF we assume that, given a limited KR,
only knows the position of all nodes inside this range and the
position of the destination node. The topological view of is
constituted by node and by all the nodes in the KR with pos-
itive advance with respect to [see Fig. 4(b)]. In this case, the
minimum energy path toward the destination is calculated only
based on this limited topological view, i.e., the shortest weighted
path only takes into account nodes in the KR and the destina-
tion, as the other nodes are unknown to . It is assumed that
nodes on the border of the KR can reach the destination node
directly in one hop, e.g., node in Fig. 4(b) can directly reach

. Hence, we consider a fine grained topology close to the node
holding the message (within the KR), and an extremely coarser
grained topology outside (only the position of the destination
node is considered). Thus, will forward the message to the
first node on the minimum energy path calculated in this

way. In its turn, calculates the path toward the destination
, but this time according to its own KR. This can actually re-

sult in a different path being chosen by as compared with
the path originally calculated by .

Note that, unlike the forwarding schemes described in
Section II-A, PTKF is not a greedy scheme. This scheme be-
comes more localized when the KR of each node gets smaller.
We will show in the following that “small” KRs are chosen
when energy efficiency is the major concern.

IV. INTEGER LINEAR PROGRAMMING (ILP) FORMULATION

As stated above, our objective is selecting the vector of
KRs which minimizes the energy expenditure of the overall net-
work, given the set of connections and a forwarding rule

(9)

We refer to this problem as optimal topology knowledge range
problem and formulate it as an ILP.

We consider discrete values of the KRs. The granularity of
this quantization can be whatever, but obviously finer-grained
transmission ranges increase the size of the space of possible
solutions, thus making it harder to find the optimal values. Each
variable assumes one out of discrete,
equidistant values in the set , with

, with and
. We refer to the set of indices as

.
We introduce the following notations and variables:

th KR;
th power of the th KR;

number of neighbors for node when it selects the
th KR;

iff, according to , node is the next hop for node
, when is the destination, and the th range is

chosen;
iff node is in the th KR of node ;

th power of the distance between nodes and .
We introduce the following routing variables:

iff link is part of the path between and .
The assignment variables are the following:

iff node uses th KR. We refer to the variables
as knowledge range indices.

We can now express the problem as the following.
Optimal topology knowledge range problem
Minimize

(10)

Subject to

(11)

(12)

(13)
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(14)

(15)

(16)

(17)

(18)

Constraint (11) imposes the existence of a single KR index dif-
ferent from zero for each node. Constraints (12)–(14) express
conservation of flows [27], while constraints (15) and (16) im-
pose that paths are built according to the forwarding rule de-
fined by the input parameters . Finally, constraints (17) and
(18) express the information and communication cost with the
KR index notation, respectively. Note that given a forwarding
rule , expressed by the parameters, the assignment of the
routing variables is completely dependent on the choice
of KRs ( variables). Once the values of the variables have
been selected, the set defines the path from source
to destination for any connection in .

V. PRADA: A DISTRIBUTED PROTOCOL FOR TOPOLOGY

KNOWLEDGE RANGE ADJUSTMENT

The solution of the ILP problem is not feasible in a prac-
tical setting due to its complexity and centralized nature. Hence,
we introduce PRADA, which determines the KRs online in a
distributed way. The objective of PRADA is to allow network
nodes to select stable and efficient topology KRs. This global
target is achieved through distributed decisions and by means of
probe packets exchanged among the nodes. The main idea be-
hind PRADA is to allow each node to adjust its KR according to
the feedback information it receives from neighboring nodes in-
volved in the same multihop connections. In Section VI, we will
show that PRADA quickly converges to a near-optimal solution.

To tradeoff between the topology information cost and the
communication cost, each node that is part of the path of a par-
ticular connection (as a source or a transit node), periodically
probes its possible KRs. Thus, the node is able to associate an
increase/decrease in the overall energy expenditure to each KR.
To clearly understand the rationale behind PRADA, we point

out that while the information cost of each node only depends
on its KR, the communication cost depends on the KRs of all
nodes involved in the communication process. Thus, the com-
munication cost must be monitored with probe packets.

PRADA is executed at each node that has an active role in
the network as a source or a transit node. We indicate as the
set of connections where has an active role. Periodically, each
active node selects a certain KR to be probed, different from the
current one, in the discrete set of possible KRs. We refer to the
selected KR as and to the current KR as . For each
connection selects the next hop , where

is the destination node of the connection , according to
the forwarding rule and to its current KR. The node calculates

(19)

where is the cost of the transmissions along the path
from to the destination of the connection , with KR .
This accounts for the cost of transmitting data from the node
itself to all the destinations, plus the cost of information associ-
ated to the new KR .

If , the value of the KR is
updated .

A probe packet has five data fields. The first two fields contain
the geographical coordinates of the source and the destination.
The third contains a parameter called cumulative communica-
tion cost and the fourth contains the value of KR. The
last field is a 1-bit flag, which is equal to 1 if the packet is on
the forward path toward the destination, or equal to 0 if it is on
the reverse path. The cumulative communication cost field, ini-
tialized to 0 when the packet is created, is updated hop-by-hop
by adding the incremental communication cost, i.e., the com-
munication cost necessary to reach the next hop, to the commu-
nication cost stored in the packet. This way, partial cumulative
communication costs are computed hop-by-hop along the path
from the sender to the destination.

Algorithm 1 PRADA
begin
randomly select
for each do

: probe packet
end for
wait for return packets

if then

end if
end

After choosing a KR , for each connection in the
node sends a probe packet to the relevant next hop and waits for
its return. When a node receives a probe packet on the forward
path, it looks into a cost record table to check if it already knows
the incremental communication cost needed to reach this desti-
nation. If it does, there is no need to forward the probe packet
to the destination. The probe packet is sent back with the up-
dated information and the path bit is set to reverse. If it does
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TABLE I
PARAMETERS OF THE MODEL USED FOR SIMULATIONS

Fig. 5. Scenario 1—Optimal cost for the implemented forwarding schemes,
E = 50 � 10 J/bit.

Fig. 6. Scenario 1—Cost with PRADA for the implemented forwarding
schemes, E = 50 � 10 J/bit.

not, the packet is forwarded to the next hop toward the destina-
tion in order to evaluate the communication cost. The packet is
forwarded until a node with information for that destination or
the destination itself is reached. When a node has gathered all
the cost information associated to a certain , it calculates

Fig. 7. Scenario 1—Comparison of optimal cost for PTKF with different
approaches, E = 50 � 10 J/bit.

Fig. 8. Scenario 1—Distribution of values of knowledge range, E = 50 �

10 J/bit.

the cost associated to as in (19). Algorithm 1 describes
the operations performed by a node which executes PRADA.

In order to reach stability, the KR is updated only if the
moving average of the communication cost for the last
values gathered is lower than the cost of the current range. In
the experiments, we assume that all the KRs are probed with
the same probability. More sophisticated strategies can also
be implemented in order to selectively scan the KRs, aimed at
saving transmission power, e.g., by avoiding values of KR that
are not likely to bring any benefit.

VI. PERFORMANCE EVALUATION

We implemented the forwarding schemes described in
Section II-A, PTKF given in Section III-C and PRADA, given
in Section V in a simulator. We further implemented the ILP
problem in AMPL [28] and solved it with CPLEX [29].
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Fig. 9. Scenario 1—Optimal cost for the implemented forwarding schemes,
E = 50 � 10 J/bit.

Fig. 10. Scenario 1—Optimal cost for the implemented forwarding schemes,
E = 50 � 10 J/bit.

We are particularly interested in scenarios where the density
of nodes is high, such as those encountered in sensor network
applications. However, due to the computational complexity
of the problem, and to the large amount of the input data,
a state-of-the-art workstation can find the optimal solution
with CPLEX for networks with at most 100 nodes. Thus, we
consider small geographical areas in order to take into account
the effects of high node densities on the problem. The model
depends on several input parameters, and on the appropriate
choice of these parameters, which are highly dependent on
the technology and on the target applications. Our choice for
these parameters was motivated by the model presented in [26].
However, we also vary these parameters in order to study their
relevant effects on the network performance.

We present simulation results for the scenarios illustrated
in Table I. In Scenario 1, nodes are randomly deployed in a
10 m 10 m terrain. All nodes are sources with 10 kbit/s flows

Fig. 11. Scenario 1—Optimal cost for the implemented forwarding schemes,
E = 50 � 10 J/bit.

Fig. 12. Scenario 1—Comparison of optimal cost for PTKF with different
approaches, E = 50 � 10 J/bit.

directed toward a single sink node. In Fig. 5, we show the op-
timal cost [the minimum of the objective function of the optimal
KR problem, stated in (10)], with increasing number of nodes
for all the implemented forwarding schemes (Sections II-A and
III-C). The value chosen for the parameter is 50 10 J/bit
[26]. Note that confidence intervals are not shown for the sake
of clarity. Since the area of the terrain is very small, multihop
paths are often not energy efficient, which leads source nodes
to directly transmit to the destination without relying on inter-
mediate forwarding nodes. For this reason, different forwarding
schemes show similar performance. In Fig. 6, we show the total
cost for all the implemented forwarding schemes in Scenario 1,
obtained by applying PRADA with .

In Fig. 7, we compare the optimal cost obtained for PTKF
with three different approaches for the solution of the opti-
mization problem, with 95% confidence intervals. The problem
is solved with CPLEX (optimal solution), with a greedy local
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Fig. 13. Scenario 1—Distribution of values of knowledge range,E = 50 �

10 J/bit.

Fig. 14. Scenario 1—Cost with PRADA for the implemented forwarding
schemes, E = 50 � 10 J/bit.

search heuristic, and by applying the PRADA distributed
protocol. CPLEX finds the optimal solution for mixed integer
problems by using a branch and bound algorithm. The greedy
local search heuristic scans the nodes one after another and
selects for each of them the KR which minimizes the cost;
the process is repeated periodically until stability is reached.
The PRADA curve is very close to the CPLEX and the greedy
local search heuristic curves. This behavior, as will be shown,
becomes more evident when the problem becomes more local-
ized, i.e., when multihop paths are more energy efficient.

In Fig. 8, we show the distribution of the values of the KRs in
Scenario 1, with , and nodes. In this scenario,
the average KR is below 1.5 m, and as can be seen most nodes
either have a KR equal to 0 (i.e., they “prefer” to know nothing
about their neighborhood and directly transmit to the destina-
tion) or they try to know “far” nodes (4, 6 m) to use them as
intermediate relays. As a result, it is either efficient to directly

Fig. 15. Scenario 2—Optimal cost for the implemented forwarding schemes,
T = 0:01 s.

Fig. 16. Scenario 2—Cost with PRADA for the implemented forwarding
schemes, T = 0:01 s.

transmit to destination or use at most one intermediate node as
relay.

By decreasing the parameter, we decrease the weight
of the component in energy expenditure [link metric in (4)]
which is independent of the distance. Hence, it becomes more
energy efficient to select multihop paths, since the overall dis-
tance independent part of the energy expenditure increases with
the number of hops. We would obtain the same effect by in-
creasing the area of the terrain, but we would have a less dense
deployment.

It can be inferred by comparing Figs. 5 and 9–11 that the
more multihop paths are energy efficient (low values for ),
the more PTKF (Section III-C) outperforms the other schemes.
When “long” paths are energy efficient, PTKF takes a better ad-
vantage of the local knowledge of the neighborhood. In Figs. 5
and 9–11, the values for are 50 10 50 10 50 10 ,
and 50 10 J/bit, respectively.
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Fig. 17. Scenario 2—Comparison of optimal cost for PTKF with different
approaches, T = 0:01 s.

Fig. 18. Scenario 2—Information cost and communication cost for PTKF,
T = 0:01 s.

For 50 10 J/bit, the cost obtained with PRADA
is optimal, as can be seen from Fig. 12. When the distance in-
dependent term in (4) becomes small as compared with
the area of the terrain, multihop paths become more energy ef-
ficient. When this occurs, by selecting KRs which are optimal
only locally, as PRADA does, we obtain globally optimal solu-
tions, because the problem becomes more localized when
decreases. In Fig. 13, we show that it is more energy efficient
to select close nodes as next hop (KRs are 2 m), as de-
creases. This is particularly true when the density increases. Fur-
thermore, as shown in Fig. 14, when the density increases, not
only PTKF outperforms the other schemes, but also the energy
consumption increases slowly with increasing number of nodes
(up to 300).

In Scenario 2, all nodes are sources with 100 kbit/s flows
directed toward a single sink node. In Fig. 15, we report optimal
costs with increasing number of nodes for all the implemented
forwarding schemes (Section II-A). Again, PTKF performs

Fig. 19. Scenario 2—Average KR with different forwarding schemes, T =

0:01 s.

Fig. 20. Scenario 2—Convergence of PRADA with PTKF, 70 nodes, and
T = 0:01 s.

better than the other forwarding schemes. More “greedy”
schemes such as NFP and MFR are shown to consume more
energy.

Fig. 16 shows the total cost in Scenario 2 for all the imple-
mented forwarding schemes, obtained by applying PRADA
with . Figs. 15 and 16 are almost identical, which
is explicitly shown by Fig. 17, where we compare the re-
sults obtained for PTKF with the three different optimization
approaches (CPLEX, greedy local search, and PRADA). In
Fig. 18, we depict the information cost (17) and the commu-
nication cost (18) for PTKF, again with the three different
approaches. The communication cost is shown to highly exceed
the information cost when relatively high data rate flows must
be supported. In Fig. 19, we show the average value of the KR
with increasing number of nodes for all the proposed schemes.
It is shown that a very limited knowledge of the topology is
needed in average, less than 2 m.
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Fig. 21. Scenario 2—Convergence of PRADA with GRS, 40 nodes, and
T = 0:01 s.

Fig. 22. Scenario 2—Optimal cost for the implemented forwarding schemes,
T = 1 s.

In Figs. 20 and 21, we show the average convergence dy-
namics of PRADA to the optimal solution with 70 and 40 nodes,
respectively. At each step, one node randomly selects and probes
one of its KRs. For 70 nodes, after 3000 steps, we obtain a
near-optimal solution. In Fig. 22, we assume a lower location
update frequency (higher ). Thus, we set . As can
be seen in Fig. 22, for lower location update frequencies PTKF
even more evidently outperforms the other schemes. A more ex-
tended local topology knowledge brings benefits in terms of en-
ergy to the scheme which best exploits this information. This is
confirmed by Fig. 23 that shows how the average KRs increase
in general, and particularly for PTKF which is able by its nature
to better take advantage of a more extended knowledge. Still,
the extension of local knowledge of the topology is very limited
compared with the dimensions of the terrain.

In Scenario 3, we consider traffic patterns that are more likely
encountered in an ad hoc network. In this case, 25% of the de-

Fig. 23. Scenario 2—Average KR with different forwarding schemes, T =

1 s.

Fig. 24. Scenario 3—Optimal cost for the implemented forwarding schemes,
� = 3.

ployed nodes generate a 100 kbit/s traffic flow, each directed
toward another randomly selected node. Figs. 24 and 25 report
optimal cost with increasing number of nodes for all the imple-
mented forwarding schemes, with and , respec-
tively. For high values of the optimal cost decreases as the
node density increases. Conversely, for low values of the in-
creased traffic overcomes the positive effect of a higher node
density. As the number of nodes becomes higher, the cost of in-
formation and the optimal KRs increase with the overall effect
of decreasing the optimal cost. Again, in all the experiments per-
formed in Scenario 3, PTKF is shown to perform better than any
other scheme, while more “greedy” schemes, such as NFP and
MFR, are shown to lead to higher energy consumptions.

VII. CONCLUSION

We discussed how to determine optimal local topology
knowledge for energy efficient geographical routing in ad hoc
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Fig. 25. Scenario 3—Optimal cost for the implemented forwarding schemes,
� = 4.

and sensor networks. We provided an ILP formulation of the
problem which constitutes a framework for the analysis of
the energy efficiency of different forwarding schemes. We
introduced a new localized forwarding scheme for geographical
routing, PTKF, and a distributed protocol for online knowledge
range adjustment PRADA. PTKF is shown to outperform
existing greedy forwarding schemes, and PRADA is shown
to lead to near-optimal energy consumption. Furthermore, we
demonstrated that only a limited local topology knowledge
is needed to take energy efficient routing decisions. Future
research will include the extension of the model, primarily to
include features such as battery and bandwidth constraints for
the nodes.
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