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Abstract

The problem of optimal data gathering in wireless sensor networks (WSNs) is addressed by means of optimization tech-
niques. The goal of this work is to lay the foundations to develop algorithms and techniques that minimize the data gath-
ering latency and at the same time balance the energy consumption among the nodes, so as to maximize the network
lifetime. Following an incremental-complexity approach, several mathematical programming problems are proposed with
focus on different network performance metrics. First, the static routing problem is formulated for large and dense WSNs.
Optimal data-gathering trees are analyzed and the effects of several sensor capabilities and constraints are discussed, e.g.,
radio power constraints, energy consumption model, and data aggregation functionalities. Then, dynamic re-routing and
scheduling are considered. An accurate network model is proposed that captures the tradeoff between the data gathering
latency and the energy consumption, by modeling the interactions among the routing, medium access control and physical
layers.

For each problem, extensive simulation results are provided. The proposed models provide a deeper insight into the
problem of timely and energy efficient data gathering. Useful guidelines for the design of efficient WSNs are derived
and discussed.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Wireless sensor networks; Energy-latency trade-offs; Mathematical programming/optimization
1. Introduction

Wireless sensor networks (WSN) [1] are composed
of small miniaturized devices with limited sensing,
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processing and computational capabilities. Wireless
sensors can be densely deployed across the moni-
tored area, and enable a broad range of applications
such as environmental monitoring, monitoring of
fire and earthquake emergencies, vehicle tracking,
traffic control and surveillance of city districts.

In typical applications, sensors monitor their
neighboring area, extract information, and send
.
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the sensed data to remote sinks that reconstruct
the characteristics of the phenomenon being moni-
tored [1]. Since wireless sensors are typically low-
cost, low-power and short-range devices, multi-hop
routes are used to relay data from the monitored
area to the sink. These paths are typically built
on-demand (reactive routing) or dynamically pre-
computed (proactive routing) [2]. In the former case,
path computation is triggered by the occurrence of
specific events or upon request from the application;
in the latter, the routes are determined before they
are actually used. The aggregate of multi-hop paths
used to relay data from the sensors to the sink can be
seen as a data-gathering tree.

In this context, data aggregation has been pro-
posed as an essential paradigm for routing in WSNs
[3]. Data aggregation mechanisms are aimed at
reducing the energy consumption of the network
nodes by exploiting data correlation. This relies on
the assumption, true in many practical cases, that
data sensed by different sensors are to some extent
spatially correlated [4], hence data can be aggre-
gated as they are forwarded by the sensor network.
This in-network processing avoids the sending of
individual data items and decreases the sensor
network energy consumption. The amount of
energy saved by the in-network aggregation depends
both on the considered aggregation model, i.e.,
the correlation level among sensed data, and
on the topological characteristics of the sensor net-
work (cluster-based, tree-based, etc.). The achiev-
able improvement in energy efficiency in adopting
a correlation aware aggregation tree as opposed to
a correlation unaware tree is discussed in detail in
[5]. This paradigm shifts the focus from the tradi-
tional address-centric approaches (finding short
routes between pairs of addressable end-nodes) to
the so-called data-centric approach (finding routes
from multiple sources to a single destination and
allowing in-network consolidation of redundant
data). For this reason, data-gathering trees are also
referred to as data-aggregation trees (DA-trees in
the following).

Intuitively, due to the dense sensor deployment,
many different DA-trees can be constructed to relay
data from the event area to the sink. The choice of a
particular DA-tree greatly affects several key perfor-
mance metrics of the WSN such as network lifetime,
energy consumption, network availability, and end-
to-end delay. In fact, the characteristics of different
DA-trees may differ in many domains, primarily
with respect to energy consumption (i.e., the energy
needed to gather sensed data to the sink), and with
respect to the introduced latency (i.e., the time
needed to deliver data to the sink). According to
the requirements of the sensor network appli-
cation, energy-oriented or latency-oriented design
approaches should be preferred by the network
designer.

The objective of this paper is to provide a wide-
ranging analysis of the impact of different network
design strategies for data gathering. To this aim,
we define several optimization problems in the
energy-latency domain and tackle them with a
multi-target approach. To design the optimization
framework we considered quasi-ideal network con-
dition by implementing a time scheduling that
avoids collisions at the MAC layer and by assuming
negligible transmission errors as well as ideal data
correlation. The mathematical framework proposed
here allows the WSN designer to foresee the impact
of different design choices on optimal DA-trees as a
function of different performance targets. The pre-
sented results will help researchers gain a deeper
understanding of the fundamental characteristics
of WSNs in the energy-latency domains.

To better discern the effects of the assumptions
about the scenario and to gain a deeper insight
into optimal data gathering in WSNs, we follow
an incremental-complexity approach. First, we con-
sider a simple reference model where data flow
routes do not change over time and multi-path

routing is allowed. We refer to this model as static

routing. We consider different Linear Programming
(LP) problems, with different energy-oriented objec-
tives. Moreover, we account radio transmission
range constraints and assess the effects of the sensor
energy consumption model in the selection of the
optimal data gathering trees. We show that in the
hypothesis of splittable traffic the energy consump-
tion at all nodes can be perfectly equalized so as
to maximize the network lifetime, with optimal
routing patterns that involve two next-hops for each
node – one close to the transmitter, the other closer
to the sink.

According to the incremental-complexity
approach, we further address the problem of finding
the optimal data-aggregation trees in WSNs. We
solve instances of the optimization problem when
only a subset of all the sensors are data sources.
In particular, we assess the energy consumption sav-
ings caused by data aggregation events and analyze
the main characteristics of the DA-trees. Finally, we
further extend the model and consider dynamic
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re-routing, i.e., new data paths are calculated for
each subsequent monitored event, and the schedul-
ing of data packets and the interference between
neighboring nodes at the MAC layer. The objective
is to devise optimal strategies to balance the node
energy consumption in time and maximize the
network lifetime while maintaining a low data
gathering latency. We define two different optimiza-
tion strategies, one primarily latency-oriented, and
another primarily energy-oriented. We observe that
the latency-oriented strategy minimizes the time
needed to gather the event features for each event.
Moreover, it achieves a comparable behavior in
terms of energy consumption and network lifetime
with respect to the energy-oriented strategy.

The following of the paper is organized as fol-
lows. In Section 2 we review the related literature
on the topic. Section 3 introduces the general net-
work model. Section 4 presents different formula-
tions of the optimal data gathering with static
routing problem, while the model defined to investi-
gate the problem of dynamic re-routing is presented
in Section 5. In Section 6 we provide numerical
results, while in Section 7, we draw the main conclu-
sions and outline future work.

2. Related work

Considerable previous work has considered the
problem of minimizing the energy consumption of
a WSN, from several different perspectives. For
example, energy-efficient broadcasting and multi-
casting in wireless networks was discussed in [6],
where heuristic solutions were presented. The prob-
lem was subsequently proven to be NP-Complete
[7].

Chang and Tassiulas [8,9] formulated the
maximum lifetime routing problem for a WSN as a
multi-commodity flow integer linear program, and
propose heuristic algorithms to determine approxi-
mate solutions. In [10], a distributed algorithm is
presented to determine the maximum lifetime, based
on the Garg–Koenemann [11] algorithm for multi-
commodity flows. In [12], a heuristic near-optimal
solution is proposed for the problem of maximum
lifetime routing that can be computed in polynomial
time. In [13], Bhardwaj and Chandrakasan explore
the fundamental bounds of WSN lifetime and exam-
ine feasible role assignments (FRA) of nodes as a
means of maximizing the lifetime of aggregating as
well as non-aggregating sensor networks. In [14],
the authors formulate the maximum lifetime routing
problem as a maximum concurrent flows problem,
and propose a distributed routing algorithm that
finds the optimal solution within an asymptotically
small relative error, hence providing lower bounds
on its performance. In [15], the maximum lifetime
routing problem is formulated as a linear program
and sub-gradient algorithms are used to solve it in
a distributed manner. The resulting algorithms have
low computational complexity and are guaranteed
to converge to an optimal routing scheme that
maximizes the network lifetime. In [16], Sadagopan
and Krishnamachari formulate the problem of
maximizing the data extraction of a sensor network.
Although maximum data extraction is related to
maximizing lifetime of the network, in maximum
data extraction the network operates until the energy
in all nodes is depleted, not until the first node
exhausts its energy. While the authors in [16] pro-
pose a heuristic based on the Garg–Koenemann
algorithm, in [17] a similar problem is solved with
a distributed sub-gradient algorithm. In [18], Hou
et al. study the network capacity problem by trying
to maximize the amount of bit volume that can
be generated by the entire network under a network
lifetime requirement. In [19], the authors formulate
the problem of determining the extension of the
local topology knowledge ranges that minimize
the energy consumption of a sensor network operat-
ing with geographical routing as an integer linear
program.

In general, in the above papers, the routing issue
is dealt with exclusively from an energy consumption
standpoint. Conversely, in this paper we extend the
analysis to the latency domain. This allows us to
investigate energy-latency trade offs for optimal data
gathering in WSNs. This problem has been previ-
ously investigated in [20]. There, the focus was on
minimizing the energy consumption given a time
constraint, by leveraging physical layer modulation
scaling techniques. However, the problem of finding
the minimum latency data-gathering tree was not
investigated.

Tightly related with energy minimization in sen-
sor networks is the problem of data aggregation.
In-network aggregation has been considered in sev-
eral previous works (see [5] and references therein).
The gain of data aggregation on energy savings, and
hence on network lifetime, firstly depends on the
assumed data correlation model, i.e., the level of
spatial correlation among sensed data and the kind
of aggregation that can be performed on it. In [21],
non-ideal data aggregation (e.g., partially correlated
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data) and distortion constraints are considered. The
authors propose an analytical framework to assess
the effects of the data correlation on the perfor-
mance of clustering algorithms and show that there
is a trade-off between total energy consumption and
network lifetime. In particular, the increase in net-
work lifetime mentioned by the authors of [21]
derives from the clustering algorithm and it is due
to the general energy saving provided by data aggre-
gation. An ideal aggregation model is considered in
[22], where a distributed timing method is proposed
to achieve efficient data aggregation. According to
the proposed mechanism, each sensor determines
the time it has to wait for receiving data from its
neighbors, before forwarding aggregated data
towards the sink. The proposed solution is indepen-
dent from the routing protocol and can be applied
over a general data-gathering tree. Conversely, in
this paper we propose a framework to analyze
optimal data gathering in WSNs. In particular, we
jointly consider routing and data aggregation.
Moreover, we explicitly account for energy balanc-
ing as an effective means aimed at maximizing the
network lifetime. Hence, the results presented in this
work can be assumed as reference performance
bounds for distributed implementation schemes
such as the solution proposed in [22], which are
within the scope of the assumptions that we con-
sider. As a final remark, in this work we assume
an ideal data correlation model. However, the pro-
posed framework can be used as the foundation
for further studies aimed at accounting more com-
plex in-network processing functions and partially
correlated data scenarios.

3. Network model

We consider a multi-hop WSN with one sink and
N sensors uniformly distributed in a square sensor
field. The network of sensors is modeled as an undi-
rected graph GðN;EÞ, where N represents the set of
vertexes (sensor nodes) v1,v2, . . . ,vN, with N ¼ jNj,
and E represents the set of links among nodes. We
denote by dij the Euclidean distance between sensors
vi and vj (also simply referred to as i and j for simplic-
ity), while di denotes the distance between sensor vi

and the sink. Each sensor is characterized by a max-
imum transmission range RT that accordingly
defines the set Ci of neighbors for the sensor i. We
adopt the unit disk graph communication model,
where a link �ij 2 E if and only if vi and vj are within
distance RT, which is assumed to be equal for all
nodes. A subset of the sensors SjN, with
S ¼ jSj (referred to as sources) generates informa-
tion that has to be relayed to the sink, referred to
as O. We assume that transmitting one unit of infor-
mation from sensor i to sensor j requires a power
which is a function of da

ij with 2 6 a 6 5. We will fur-
ther specify the energy model in the following sec-
tions. Unless otherwise specified, we assume free
space attenuation a = 2. More details regarding the
considered network scenarios, and specifically of
the advanced features, e.g., data aggregation, will
be given in Section 4 as they are introduced.

4. Optimal data gathering with static routing

In this section, we provide different problem for-
mulations for finding optimal data-gathering trees
with static routing, i.e., data paths do not change
with time. Since the problem of optimal data gath-
ering in WSNs can be formulated as a classical net-
work flow transportation problem [23], we rely on a
set of simplifying assumptions that keep the com-
plexity of the problem low, thus preventing it from
becoming NP-Complete [24].

The presented formulations for optimal data
gathering are aimed at analyzing the energy con-
sumption in different practical application scenar-
ios, e.g., field monitoring, and target tracking [25].
In particular, in Section 4.1 we consider the field
monitoring scenario where all sensors generate
and relay uncorrelated data to the sink to produce
a complete view of the monitored field. This prob-
lem does not consider data aggregation. Then, in
Section 4.2, we assume that only a subset of the
nodes senses an event. In this case, we extend the
problem formulation to include data aggregation
mechanisms.

4.1. Problem formulation without data aggregation

We consider the problem of finding static data-
gathering trees in WSNs with the following
assumptions:

• Sensors can arbitrarily split the traffic that they
generate/relay and accordingly transmit it to sev-
eral different neighbors (multi-path routing). This
results in the linear relaxation of the routing vari-
ables, also referred to as ‘‘splittable traffic’’ [26].

• Sensors do not perform data aggregation.
• Sensors communicate through an ideal channel,

i.e., packet losses do not occur.
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• Sensors implement a contention-free MAC pro-
tocol, in other words in this section we focus on
finding optimal data gathering trees only from
a routing perspective by assuming that an opti-
mal scheduling is later achieved over the resulting
gathering trees (see Section 5 for a joint routing/
scheduling formulation of the optimal data gath-
ering problem).

Moreover, without loss of generality, we assume
a continuous-time transmission of information, so
that we can define the following quantities:

• gi is the information flow generated by sensor i

and destined to the sink;
• all sensors generate the same amount of informa-

tion towards the sink, i.e., S = N with gi = g,
8i 2N;

• lij is the information flow transmitted1 from sen-
sor i to sensor j.

The energy consumption per bit at the physical
layer is modeled as

Etrans ¼ Etrans
elec þ bda; Erec ¼ Erec

elec; ð1Þ
where Etrans and Erec are the energy consumption at
the transmitter and receiver devices of a sensor,
respectively. In particular, Etrans

elec and Erec
elec [J/bit]

are distance independent terms that take into ac-
count overheads of sensor electronics (PLLs, VCOs,
bias currents, etc.) and digital processing. The term
bda takes into account the radiated power; b is a
constant [J/(bit ma)]. As in [27], we assume that
Etrans

elec ¼ Erec
elec ¼ Eelec.

The overall expression for the total energy con-
sumption at sensor i becomes:

Ei ¼
X
j2Ci

ðbda
ij þ EelecÞ � lij þ Eelec � lji

h i
; ð2Þ

where bda
ij þ Eelec is the energy wasted to transmit

lij bits to sensor j and Eelec takes into account the
energy consumed for the reception of lji bits from
sensor j.

With such positions, the objective of minimizing
and/or balancing the network energy consumption
can be achieved by optimally controlling the frac-
tion of information (therefore, of energy) transmit-
ted by each sensor to each of its neighbors, which
defines the multi-path routing strategy for the whole
1 Note the different usage of terms transmitted and generated.
network. Hence, the optimization problem consists
of finding, for all sensor pairs (i, j), the set of vari-
ables lij that minimize the energy consumption.
Two objective functions can be considered leading
to different problems, namely:

• minimizing the maximum energy consumption of
the network Emax ¼ maxi2NfEig. We refer to this
strategy as ROME (Routing Optimization Maxi-

mum Energy);
• minimizing the total energy consumption of the

network Etot ¼
PN

i¼1Ei. We refer to this strategy
as ROTE (Routing Optimization Total Energy).
Since minimizing the total energy consumption
Etot is equivalent to minimizing the mean energy
consumption Emean ¼ 1

N Etot, in the rest of the
paper we will consider Emean.

These two objectives are conflicting and a trade-
off is in place between them. In the following we
provide a Linear Programming (LP) formulation
for the general case of mixed optimization, where
the objective function to be minimized is a linear
combination of Emax and Emean. By tuning the coef-
ficient c in (3) one can shift from a pure ROME

formulation (c = 1) to ROTE (c = 0).

Problem 1 (Static routing without data aggre-

gation)

Minimize:

cEmax þ ð1� cÞ � 1

N
Etot: ð3Þ

Subject to:

lij P 0; 8j 2 Ci; 8i 2N; ð4ÞX
j2Ci

ðlij� ljiÞ ¼ gi; 8i 2N; ð5Þ

Ei ¼
X
j2Ci

ðbda
ij þEelecÞ � lijþEelec � lji

h i
; 8i 2N. ð6Þ

Since we assume a single sink and we do not con-
sider data coding/aggregation, the information flow
is additive (constraint (5)). Hence, we do not need to
discriminate between information flows originated
by different sensors and Problem 1 reduces to a sin-
gle-commodity flow problem.
4.2. Problem formulation with data aggregation

In this section, we extend Problem 1 to account
for data aggregation mechanisms. We assume that
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all the sensed data generated by different sources in
S can be aggregated, e.g., by performing simple
data fusion operations such as min, max, mean, or
logical OR, AND, XOR over the relayed data.
Hence, a sensor receiving two packets of size g bits
generated by different sources can aggregate the
data in a single g-bit packet.

The problem of finding DA-trees is tackled by
introducing a new set of variables xij that represent
the aggregated flow transmitted from sensor i to sen-
sor j (e.g., the flow that derives from the data aggre-
gation process carried out by sensor i). Moreover, to
prevent different flows generated by the same sensor
from being aggregated, sources of the routed flows
need to be discriminated. For this purpose, the lij
variables in Problem 1 are replaced by the ls

ij

variables which represent the information flow trans-

mitted from sensor i to sensor j and generated by sen-
sor s (multi-commodity flow problem). Moreover,
because of the splittable traffic hypothesis packets
of different size can be received by a sensor along
the route to the sink. When this occurs, we assume
that data aggregation can be still performed and only
one packet, whose size is equal to the size of the larg-
est received packet, will be relayed. Using the same
notation introduced above, we can introduce the
new formulation of the problem, which we refer to
as static routing with data aggregation or Problem 2.

Problem 2 (Static routing with data aggregation)

Minimize:

cEmaxþð1� cÞ � 1

N
Etot: ð7Þ

Subject to:

Ei ¼
X
j2Ci

ðbda
ijþEelecÞ � xijþEelec � xji

h i
; 8i 2N; ð8Þ

X
j2Cs

ðls
sj� ls

jsÞ ¼ g; 8s2S; ð9Þ

X
i2CO

ðls
iO� ls

OiÞ ¼ g; 8s2S; ð10Þ

X
ði;jÞ
ðls

ij� ls
jiÞ ¼ 0;

8s2S; 8ði; jÞ : fi 2N; j2Cig; ð11Þ

06 ls
ij 6 xij; 8s2S; 8ði; jÞ : fi 2N; j2Cig. ð12Þ

Constraint (8) defines the energy consumption at
each node, according to the energy model in (1).
Eqs. (9)–(11) express conservation of flows [23],
while Eq. (12) allows aggregation of data generated
by different sources in S.
5. Optimal data gathering with dynamic re-routing

In this section, we further detail our network
model to include scheduling at the MAC layer
and to account for the latency associated to each
DA-tree. The new model captures the interdependen-
cies between the network and medium access control
layers, and thus allows studying the latency of
the data gathering process. We also analyze dynamic

scenarios, where optimal DA-trees are determined
sequentially for different events, thus taking into
account the evolution of the residual energy at each
sensor.

We consider a scenario with multiple events. For
each event, the sensors in S generate information
(e.g., one data packet) to be delivered to the sink.
For each event, we calculate a new DA-tree from
sources to sink. The goal of the DA-tree selection
is twofold: on one side the DA-tree should balance
the residual energy of the network nodes; on the
other side the scheduling on this DA-tree should
minimize the latency. Since the calculated DA-trees
are different for each event, depending on the resid-
ual energy at the nodes, we refer to this procedure
as re-routing. We model a collision-free scheduling
of data transmissions on the DA-trees at the
MAC layer. To do so, we require that transmis-
sions from sensors within reciprocal radio range
be scheduled in different MAC periods (referred to
as time slots in the following). Multiple time slots
are thus required to gather the information gener-
ated by the sensors in S at the sink. We further
assume that each sensor is characterized by a sens-

ing range RS. Let us introduce the following
definitions.

Definition 1. In the multiple-event case, the lifetime

of the WSN is the maximum number of events that
can be observed at the sink before at least one
sensor in S loses its connectivity to the sink.

Definition 2. The network latency TSch for an event
is the total number of time-slots required to gather
the information generated by the sensors in S for
that event, where T ¼ f1; . . . ; T Schg is the set of
time slots required to deliver the data measured by
the sensors in S to the sink.
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Definition 3. The sensing coverage of the network is
the portion of the area that is monitored by the sen-
sors, i.e., that is within the sensing range of at least
one sensor that has not depleted its battery.

We propose two different strategies for the data
gathering problem, namely:

• latency-oriented: The primary objective is to min-
imize the latency, while the secondary objective is
to balance the energy consumption among
nodes (R2OBL – Re-Routing Optimal Balancing,
Latency-oriented);

• energy-oriented: The primary objective is to
balance the energy consumption among nodes,
while the secondary objective is to minimize the
latency (R2OBE – Re-Routing Optimal Balancing,
Energy-oriented).

Algorithms 1 and 2 describe the procedure to
solve R2OBL and R2OBE, respectively. Both strate-
gies solve the ILP introduced in the following,
referred to as TSch DA-tree problem, for each event.

Given a topology, a set of sources, and a number
of time slots TSch, the solution of the TSch DA-tree
problem, if it exists, consists of an optimal DA-tree,
according to the objective function, and a feasible
scheduling of data transmissions from sources to
sink in TSch time slots.

Suppose that the residual energy of sensor i is
Ei

resðnÞ at the nth event. We calculate the mean
EðnÞ of the residual energies at event n:

EðnÞ ¼ 1

N

XN

i¼1

Ei
resðnÞ. ð13Þ

Then, for each link (i, j) we compute eij, which is
equal to the minimum between the residual energy
at sensors i and j after the (n + 1)th event, if link
(i, j) is used to relay data for the (n + 1)th event.
Hence,

eijðnþ 1Þ ¼ min Ei
resðnÞ � Etrans

ij ;Ej
resðnÞ � Erec

ij

� �
:

ð14Þ

Finally, we define the cost matrix for re-routing
strategies, where the generic element cij has the form

cij ¼ eijðnþ 1Þ � EðnÞ
�� �� ð15Þ

that represents the distance of the residual energy
after the (n + 1)th event, eij(n + 1), from the current
mean residual energy of the network EðnÞ.
We represent the scheduling of transmissions
with a set of matrices Ft, one for each time slot
(1 6 t 6 TSch). The element f t

ij in Ft equals 1 if and
only if a transmission occurs on link (i, j) during
time slot t. With the definitions above, along with
those in Section 3, we can formulate the ILP as
follows.

Problem 3 (TSch DA-tree)

Minimize:

ctot ¼
X
t2T

X
i2N

X
j2Ci

f t
ij � cij: ð16Þ

Subject to:X
t2T

X
j2Ci

f t
ij ¼ 1; 8i 2 S; ð17Þ

1 6
X
t2T

X
i:O2Ci

f t
iO 6 jSj; ð18Þ

X
t2T

X
i:O2Ci

f t
iO ¼ 0; ð19Þ

X
j2Ci

f t
ij 6

Xt�1

s¼1

X
k:i2Ck

f s
ki;

8t 2T : t > 1; 8i 2N n fS [ Og; ð20Þ

X
j:i2Cj

f t
ji 6

XT Sch

s¼tþ1

X
k2Ci

f s
ik;

8t 2T : t < T Sch; 8i 2N n O; ð21ÞX
j2Ci

f 1
ij ¼ 0; 8i 2N nS; ð22Þ

X
i:j2Ci

f T Sch
ij ¼ 0; 8j 2N n O; ð23Þ

X
j2Ci

ðf t
ij þ f t

jiÞ 6 1; 8t 2T; 8i 2N; ð24Þ

N �
X
j2Ci

f t
ij þ

X
k2Ci

X
m:k2Cm

f t
mk 6 N ;

8i 2N; 8t 2T; m 6¼ i. ð25Þ

Eq. (16) is the objective function of the problem,
and represents the total cost of the network for the
event. This is obtained by weighing all transmis-
sions, represented by the elements in Ft, for each
t 6 TSch, with the cost associated with a transmis-
sion on that link. Remember that the cost matrix
measures the gap between the forecasted residual
energy at the sensors and the current mean residual



Algorithm 1. R2OBL

1: event 0;
2: while all sources are connected do
3: event event + 1;
4: Calculate TStart;
5: TSch TStart;
6: found false;
7: repeat
8: Solve an instance of TSch DA-tree

for the event (see Problem 3);
9: if solution does not exist in TSch

time slots then
10: TSch TSch + 1;
11: else
12: found true;
13: end if
14: until (not found);
15: Update residual energy at each sensor;
16: end while
17: network_lifetime event;
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energy of the network, so as to balance the energy
consumption.

Note that the DA-tree can be seen as a union of
flows, each departing from a source sensor and con-
verging to the sink. A flow is the set of transmissions
from a source to the sink. Constraints (17)–(21)
express conservation of flows. In particular, con-
straint (17) requires that each source transmit only
once. Constraint (18) imposes that the sink receive
at least one and no more than jSj flows, while con-
straint (19) requires that the sink does not generate
a flow. Constraints (20) and (21) are related to relay
sensors. If a relay sensor transmits a packet in a
time slot t* P 1, it must have previously received
the packet from another sensor in a time slot
t 6 t*. Constraint (22) allows only source sensors
to transmit during the first time slot, and constraint
(23) imposes that the sink receives the information
during the last time slot. The MAC constraints are
defined by (24) and (25). According to (24), each
sensor can transmit to or receive from only one sen-
sor in each time-slot. Constraint (25) is introduced
to account for a collision-free MAC protocol, i.e.,
MAC collisions never occur in the resulting DA-
trees. To this aim, we impose that when a sensor i

is transmitting to a sensor j, no other sensors in
the range of j can transmit, as it would interfere with
the reception at j.
Algorithm 2. R2OBE

1: event 0;
2: while all sources are connected do
3: event event + 1;
4: Calculate the DA-Steiner-tree with

costs cij defined in Eq. (15) for the event;
5: Calculate TStart;
6: TSch TStart;
7: found false;
8: repeat
9: Solve an instance of TSch DA-tree

only for "(i, j)/�ij 2 DA-Steiner-tree;
10: if solution does not exist in TSch

time slots then
11: TSch TSch + 1;
12: else
13: found true;
14: end if
15: until (not found);
16: Update residual energy at each sensor;
17: end while
18: network_lifetime event;
5.1. Latency-oriented optimization (R2OBL)

On the basis of this ILP formulation the latency-
oriented algorithm (see Algorithm 1) solves
instances of TSch DA-tree with increasing TSch

(e.g., TSch = 3,4,5, . . . time slots). The first instance
of TSch DA-tree that admits solution defines the
minimum latency TSch, the relevant DA-tree and
the minimum-latency scheduling for the considered
scenario. The value TSch is initialized to the mini-
mum possible latency for the considered topology,
which is equal to

T Start ¼ maxðh; T Þ; ð26Þ
where h is the hop distance of the farthest source
from the sink, and T is such that

jSj 6
XT�1

i¼0

2i. ð27Þ

The second member in Eq. (27) represents the max-
imum number of sources that can send their data to-
wards the sink in T time slots.
5.2. Energy-oriented optimization (R2OBE)

The R2OBE finds the optimal DA-tree for each
event giving priority to the energy aspects. To this
aim, it performs two steps. First, it selects the DA-
Steiner-tree [28] with the link costs defined by (15).
Then, it computes the TSch DA-tree in the minimum
TSch on the DA-Steiner-tree calculated in the previ-
ous step. In this way, during the first step the algo-
rithm finds the tree that best balances the energy
consumption, while at the second step it solves



3572 U. Monaco et al. / Computer Networks 50 (2006) 3564–3584
Problem 3 with the additional constraint f t
ij ¼ 0,

8t 2T, "(i, j) s.t. �ij 62 DA-Steiner-tree.

6. Analysis of the results

We analyze the results relative to the optimiza-
tion problems presented in the previous sections.
In particular, in Sections 6.1 and 6.2 we present
results related to the optimization problems pre-
sented in Section 4, while in Section 6.3 we discuss
results related to the models and algorithms pre-
sented in Section 5. For ease of understanding in
Table 1 we report a summary of the notation intro-
duced in the previous sections. The objective is to
investigate the basic interactions between routing
and the resulting latency and energy consumption.
In the following we assume a 30 m · 30 m square
terrain with the sink located in the upper-right cor-
ner of the region. As in [27] we set Eelec = 570 nJ,
a = 2, while b is dependent on the maximum trans-
mission range (RT) of the radio device (b = 740/
36 nJ/m2). Without loss of generality, we consider
g = 1 bit.

6.1. Static routing – Problem 1

We implemented the optimization problem
described in Section 4.1, with the objective function
Table 1
Summary of the notation

Symbol Description

N Set of sensor nodes
S Set of data sources
g Generated information flow [bit]
lij Transmitted information flow from i to j [bit]
ls

ij Transmitted info flow from i to j, generated by s [bit]
xij Aggregated information flow from i to j [bit]
Eelec Distance independent energy consumption [nJ]
Ei Total energy consumption at i [nJ]
Etot Network total energy consumption [nJ]
Emax Network maximum energy consumption [nJ]
Ci Set of neighbors of i

RT Radio transmission range [m]
a Free space attenuation factor
b Per-bit energy transmission factor
c Objective function weight coefficient
dij Distance from i to j [m]
TSch Event latency [s]
T Set of time slots
Ei

resðnÞ Residual energy of i, at nth event [nJ]
eij (n) Minimum residual energy between i and j

after nth event [nJ]
cij Link (i, j) cost
f t

ij Scheduling variable for link (i, j) at time slot t
given in (3), in AMPL [29], and used the CPLEX
solver [30], which implements the simplex algorithm
to solve linear problems. We considered several
scenarios, with different topologies and sensor den-
sities. To better understand the dependencies of
the optimal DA-trees from the energy model, we
first analyze Problem 1 by assuming that the term
Eelec ffi 0 in Eq. (2) then we include also values of
Eelec > 0.

6.1.1. Case of Eelec = 0

Here, we report the main characteristics of the
data-gathering trees with reference to a sensor net-
work with N = 200 sensors. We initially set the
radio transmission range RT ¼ dmax ¼ 30

ffiffiffi
2
p

m.
Fig. 1 reports the per-sensor energy consumption
Ei for all sensors as a function of the distance from
the sink di, for different objective functions (i.e., dif-
ferent values of c in Eq. (3)).

In the ROTE case, (c = 0, Fig. 1(d)) it is known
that an extremal solution of the problem in (3) exists
[23], with either lij = 0 or lij = g for each (i, j) pair.
This solution represents single-path data routing
(non-splittable traffic) from each source towards
the sink, i.e., each sensor selects only one next hop
and transmits all the traffic that it relays/generates
to that next hop. Since the energy consumption of
a sensor is proportional to da

ij (Eelec = 0), ROTE
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minimizes the distance between each pair of sensors
along the data-gathering paths, i.e., each next hop is
the closest node to the corresponding transmitting
sensor towards the sink. Therefore, ‘‘exterior’’ sen-
sors (i.e., sensors far from the sink) only consume
energy to transmit the data they generate, while
‘‘interior’’ sensors (i.e., sensors close to the sink)
also relay data for other sensors. Hence, the ROTE

strategy entails a higher energy consumption Ei for
interior sensors.

When c > 0, a mixed Emax � Etot optimization is
performed, and the optimal data-gathering trees are
computed to reduce the maximum energy consump-
tion Emax, at the price of a higher Etot. For c ffi 1
(ROME, Fig. 1(a)), Problem 1 results in the min–
max formulation. The objective of minimizing the
maximum energy consumption implies that all sen-
sors consume almost the same amount of energy
(Ei = Emax ’ Emean). In the considered WSN,
ROME reduces the maximum energy consumption
Emax by a factor 8 with respect to ROTE, at the cost
of Etot being more than three times higher. Fig. 2(a)
and (b) shows the optimal data-gathering trees in
the ROTE and ROME case, respectively. The color2

of each link indicates the normalized energy con-
sumption Eij/Emax (white corresponds to Eij = 0
and black Eij = Emax), while the sink is placed in
the upper-right corner of the field. It can be noted
that in the ROTE case each sensor selects one near
next hop, while in the ROME case, energy balancing
produces also far transmissions to occur alongside
2 For color version of figures, reader is referred to the web
version of this article.
near transmissions. Note that far transmissions
absorb the highest fraction of the total energy.

To better understand how data flows are routed,
we report for each transmission of lij bits from sen-
sor i to sensor j the distance of the receiver from the
sink dj as a function of the distance of the transmit-
ter from the sink di, for ROTE and ROME (Fig. 3(a)
and (b), respectively). All points close to the bisector
correspond to short steps towards the sink (di ffi dj),
on the other hand points distant from the bisector
correspond to long steps in the direction of the sink
(a step is as long as di overcomes dj). Since almost all
the transmissions take place towards the sink,
points close to the bisector represent near transmis-
sions, while the others are far transmissions. The
color of each point indicates the normalized energy
consumption Eij/Emax.

As previously discussed, in the ROTE case each
sensor selects only one close next hop along the path
towards the sink (di ffi dj). In particular, we found
that 70% of the times the next hop j of sensor i is
the closest with dj < di at distance di

near ¼
minj2CiðdjÞ, and 95% of the times it is distant up
to 2 � di

near. As a consequence, sensors closer to the
sink need to relay a higher amount of data, thus
consuming more energy (see dark points in
Fig. 3(a) and links in the upper-right corner of
Fig. 2(a)).

Conversely, when the ROME strategy is adopted,
far transmissions also occur (points with dj ’ 0 m in
Fig. 3(b)). These transmissions are directed to the
sink or to sensors closer to it (which we refer to as
far next hops), and are responsible for most of
the energy consumption. Load balancing among
nodes is also achieved by means of these far trans-
missions, i.e., each sensor tries to ‘‘spend’’ Emax
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units of energy by routing data over multiple near
and far next hops. An interesting point regards the
distribution of the number of next hops selected
by each sensor. In fact, constraint (4) in Section 4
potentially allows its value to reach N, i.e., each sen-
sor can potentially send information to all its neigh-
bors. Instead, we found that the number of next
hops is always very limited: approximately 10% of
the sensors select only 1 next hop, 83% select 2 next
hops, and 7% transmit to 3 next hops. In particular,
when 2 next hops are selected, transmissions are
almost always directed to one near next hop, to
which most of the data is transmitted, with low
energy consumption; and to one far next hop, to
which a smaller amount of data is transmitted, but
with most of the energy consumption. The choice
of the optimization strategy also has an impact on
the network lifetime. If we consider a strict lifetime
definition, i.e., the network dies when the first sen-
sor depletes its energy, in the ROTE case the net-
work lifetime is highly influenced by the
unbalanced use of energy in the sensors. Conversely,
in the ROME case all sensors deplete their batteries
at the same time, which in most practical applica-
tions leads to the extended network lifetime.

We repeat the data-gathering tree analysis by
limiting the transmission range RT of the sensors,
i.e., RT < dmax. As expected, in the ROTE case, until
the network is connected, a reduction of the trans-
mission range does not produce significant changes
in the optimal data-gathering trees, with respect to
those obtained with RT = dmax, neither in terms of
number of the next hops (always one), nor in terms
of the mean distance between sensor nodes dij. On
the other hand, the RT constraint mainly affects
the far transmissions when the ROME strategy is
considered. Fig. 3(c) reports the distance of the
receiver from the sink dj as a function of the distance
of the transmitter from the sink di and the normal-
ized energy consumption for each transmission with
RT = 21 m in the ROME case. The key characteris-
tics that we underlined when RT = dmax continue to
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hold, but the constraint on the radio range causes
the overall energy consumption to increase. In fact,
a short transmission range causes ROME to find
data-gathering trees similar to the ROTE case, that
is, exterior sensors that cannot directly transmit to
the sink increase the load on interior ones, that
are thereby forced to consume more energy.

Fig. 4 reports the energy consumption (Emean and
Emax) as a function of the transmission range RT for
the ROME case. Until RT is big enough to equalize
the energy consumption, every sensor consumes the
same amount of energy Emax = Emean (with Emax

increasing as RT decreases), while if RT decreases
below a ‘‘critical‘‘ range (around 20 m in Fig. 4),
the energy consumption cannot be balanced (in this
case Emax > Emean). For small values of the radio
range, ROME data-gathering trees are similar to
ROTE trees, since every sensor can only transmit
data to a near next hops. This explains why Emax

increases, while Emean and Etot diverge.
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Fig. 5. Optimal data-gathering trees for different optimizati
6.1.2. Case of Eelec > 0

In the following analysis we assess the impact of
the distance independent term (Eelec) in the energy
model of Eq. (2). As expected, the Eelec term leads
to higher Emean and Emax. In particular, we found
that with respect to the results shown in Fig. 1, in
the ROME case Emax increases by a factor 3, and
in the ROTE case Emean increases by a factor 6.
However, the distance independent term does not
affect the main characteristics of the optimization
strategies discussed in the previous section. In fact,
a perfect equalization of the energy consumption
can still be achieved by minimizing the maximum
energy consumption (ROME), while the ROTE

strategy entails a higher energy consumption Ei

for sensors closer to the sink.
In Fig. 5(a) and (b), we report optimal data-gath-

ering trees relative to the case of Eelec > 0. In
Fig. 6(a) and (b), we collect for each transmission
of lij bits the distance of the receiver from the sink
dj as a function of the distance of the transmitter
from the sink di, for ROTE and ROME, respectively.
The color of each point indicates the normalized
energy consumption Eij/Emax. As in Figs. 2(a), (b)
and 3(a), (b), we observe that in the ROTE case only
near transmissions occur, and because of the exis-
tence of the extremal solution only one near next
hop is selected. On the other hand in the ROME

case mainly one near and one far next hops are cho-
sen in order to equalize the energy consumption.
The main difference of the data-gathering trees is
the distance of the near transmissions. As can be
noted in Fig. 6(a) all points close to the bisector
are placed around a given distance (about 5 m). This
behavior depends on the Eelec term and can be
explained as follows.
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on strategies, case of Eelec > 0. (a) ROTE; (b) ROME.
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Let us consider a simplified scenario in which
sensors are homogeneously deployed and aligned
along straight lines connecting the sources and the
sink, with the distance di integer multiple of a base
distance d, i.e., di = kd 8i 2N, and dij = d for each
couple of neighboring sensors (i, j) along the line.

In the ROTE case, the base distance is a function
of b, a and Eelec. It minimizes the energy consumed
along each data path. It can be considered as an
optimal transmission distance dopt. Due to the sin-
gle-path data routing behavior of the solution, the
minimum energy Emin

mean is

Emin
mean ¼

1

N
� Emin

tot

¼ 1

N
�min

d

XN

i¼1

di

d
ðbda þ 2 � EelecÞ � Eelec

( )
;

ð28Þ

where the last member is the sum of the overall en-
ergy consumption of the paths from each source i to
the sink. In particular di is the total length of the
path, di/d is the number of hops and bda + 2 Æ Eelec

is the energy consumed by each sensor along the
path. Since source sensors do not receive data, Eelec

needs also to be subtracted from each path. Expres-
sion (28) is minimized when

ða� 1Þ � dibðdoptÞa�2 � 2diEelec

ðdoptÞ2
¼ 0

) dopt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � Eelec

ða� 1Þb
a

s
: ð29Þ

with the considered parameters, dopt
u 5–6 m.
On the other hand, in the ROME case, because of
the min–max optimization criteria and the multi-
path data routing, a simple expression for dopt as
in Eq. (29) cannot be easily provided. However, as
shown in Fig. 6(b), in the ROME case dopt seems
to be independent of the distance between the trans-
mitter and the sink, and it is higher than the value
found in the ROTE case.

Fig. 7 reports the energy consumption (Emean and
Emax) as a function of the transmission range RT for
the ROME case. From the comparison with Fig. 4
relative to the case of Eelec = 0, it can be noted that
for low RT values, since data are routed along many
hop paths, the distance independent term causes
Emean to significantly raise. A perfect energy equal-
ization can be achieved for higher value of the trans-
mission range (here the ‘‘critical range’’ is around
24 m). In fact the Eelec term mainly burdens sensors
that relay most of the data, i.e., closer to the sink.
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Hence, exterior sensors have to transmit at higher
distances to unload nodes closer to the sink and to
achieve energy balancing.

In Sections 6.1.1 and 6.1.2 we pointed out that in
the ROTE case sensors closer to the sink deplete
their battery faster than the exterior sensors poten-
tially leading to the death of the entire network.
According to the specific application scenario and
network performance requirements, one of the pre-
sented energy-oriented strategies can be chosen to
efficiently drive routing mechanisms.

Unexpectedly, we also found that even in the
ROME case, when energy equalization is achieved,
invariant characteristics emerge, i.e., number and
position of the selected next hops.

6.2. Static routing – Problem 2

In this section, we present the results relative to
the optimization Problem 2 introduced in Section
4.2. Since data aggregation strategies are considered,
in the following data-gathering trees are referred to
as data-aggregation trees (DA-trees). In Section 4.2
we further assumed that only a subset S of sensors
generates data; in particular, due to the large size
of Problem 2 we resorted to reduce problem
instances when only a set of S = 5 sensors acts as
data sources. For the sake of comparison, we re-
run Problem 1 (case of Eelec > 0) assuming the same
reduced set of data sources (recall that in Section
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aggregation (a) and (b) and with data aggregation (c) and (d).
6.1.2 we assumed S = N). Hence, in this section we
also report optimal data-gathering trees, i.e., relative
to Problem 1 with Eelec > 0 and S = 5, as a term of
comparison for the analysis of DA-trees derived by
solving Problem 2. We remark that if all sensors
are data sources (i.e., S = N), the energy consump-
tion of the receiver circuitry is neglected, and all bat-
teries are equally charged, then the minimum
spanning tree rooted at the sink minimizes at the
same time the total network energy and the maxi-
mum energy consumption for a single node. In fact,
due to data aggregation, each sensor transmits the
same amount of information (e.g., one unit), regard-
less of the amount of received information. Hence,
the energy consumption at each node only depends
on the power used to transmit that packet. There-
fore, minimizing Etot coincides with minimizing
Emax, and the minimum spanning tree is the optimal
DA-tree for both ROTE and ROME. Moreover, in
such case a globally optimal distributed strategy is
for each node to transmit data to its closest neigh-
bor, and the node that depletes its battery first is
the node whose closest neighbor is the farthest.

Fig. 8(a) and (b) report the per-sensor energy
consumption Ei versus di, without data aggregation,
in the ROME and ROTE case, respectively (note the
different scale when data aggregation is in place). In
particular Emean is calculated as the mean value of
the energy consumption of the transmitting nodes.
From the comparison with Fig. 1(a), it can be noted
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Table 2
Problem 2 – Emax and Etot for different optimization strategies
with and without data aggregation

Emax [nJ]/Etot [nJ] ROME ROTE

Without data aggregation 724.2/55756.9 6370.2/45525.5
With data aggregation 724.2/42227.1 1792.5/14119.3
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that when S� N energy equalization is achieved
over a subset of all the sensors. Moreover, since
the data sources are located in the same quadrant,
in the ROTE case the sensors that consume more
energy are not necessarily located close to the sink
(see Fig. 8(b)). As expected, if data aggregation is
permitted (Fig. 8(c) and (d)) the total energy con-
sumption decreases, mainly in the ROTE case (see
Table 2).

In Table 2 we report Emax and Etot for all the con-
sidered cases. When data aggregation is permitted,
in the ROTE case, the maximum and total energy
consumption are reduce to around 72% and 69%,
respectively, of the value found without data aggre-
gation. In the ROME case, Etot is reduced to around
25% and Emax does not change. In fact, since the
maximum energy consumption is lower bounded
by Eelec (each data source needs to send at least
1 bit), data aggregation mechanisms do not produce
Emax gain, but potentially reduce the overall number
of transmitting nodes leading to a lower Etot.

Fig. 9(a) and (b) shows optimal data-gathering
trees without and with data aggregation, respec-
tively. In particular data sources are represented
by bigger markers. In Fig. 10(a) and (b), we report
the distance of the receiver from the sink dj as a
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Fig. 9. Optimal data-gathering and data-aggregation trees for different
ROME with data aggregation.
function of the distance of the transmitter from
the sink di, for the ROME case without and with
data aggregation, respectively. From the compari-
son of Fig. 10(b) (S = 5) with Fig. 6(b) (S = N) it
can be seen that the optimal tree characteristics have
changed. In fact, when S = 5, energy consumption
balancing is achieved by routing data over multiple
parallel paths (instead of two paths only), and the
paths include long detours. Hence each sensor
selects a greater number of next hops including
nodes that are not in the direction of the sink. Basi-
cally, when all sensors generate data, because of the
radial symmetry of the routing problem, energy bal-
ancing takes place along the direction towards the
sink by means of near and far transmissions. Indeed,
if S = 5 data are routed over many short hop
detours and more sensors relay data generated by
a single source. On the other hand, if data aggrega-
tion is permitted (Fig. 10(b)), because the overall
information routed in the network decreases, also
far transmissions occur.

In Fig. 11(a) and (b) we report Emax and Emean for
the transmitting sensors, as a function of the trans-
mission range RT for the ROME case without and
with data aggregation, respectively. In particular
when data aggregation is avoided the trends of max-
imum and mean energy are similar to the curves in
Fig. 7, but because of energy balancing does not
involve far transmissions, the ‘‘critical range’’ is
lower (around 10 m in Fig. 11(a)). Hence, it is possi-
ble to equalize the energy consumption of the trans-
mitting sensors even with a more strict constraint
on the transmission range RT. On the other hand,
when data aggregation is considered, the minimum
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Fig. 10. Distance of the receiver from the sink (dj) as a function of the distance of the transmitter from the sink (di) for all the
transmissions. The color of each point represent the normalized energy consumption Eij/Emax. (a) ROME without data aggregation; (b)
ROME with data aggregation.
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Emax is achieved even with RT = 6 m. In fact, the
lower the amount of data to be gathered at the sink,
and the lower is the overload on interior sensors
caused by the short hops routing behavior. Thus,
the overall energy saving produced by data aggrega-
tion also results in the improved balance of the
energy consumption.

We have shown that even when data aggregation
is considered the following statements hold true:
ROTE overloads interior sensors, and ROME

achieves energy balancing among all transmitting
sensors. With respect to the scenario addressed in
the previous section, data are routed along multiple
parallel paths and include long detours. Then, we
have pointed out that data-aggregation also
improves the energy balancing capabilities with
strict transmission range constraints.
6.3. Dynamic re-routing – Problem 3

In this section we present results related to the
R2OBL and R2OBE optimization strategies, intro-
duced in Section 5. We set RT = 5 m and, as in Sec-
tion 6.2, we position the sink in the upper right
corner of the square, while S = 5 sources are placed
in the lower left region.

In Fig. 12(a), the lifetime of the network, as
defined in Definition 1 in Section 5, is depicted with
varying number of sensors, from 75 to 200.
Although it can be seen that R2OBE guarantees a
slightly longer lifetime, the two approaches yield
comparable results in terms of lifetime. Fig. 12(b)
compares the final sensing coverage of the network,
i.e., the sensing coverage after the event that deter-
mines the ‘‘death’’ of the network, according to
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the definition given in Section 5. We assume a sens-
ing range of each sensor equal to RS = 2 m. When a
sensor depletes its battery, it cannot monitor the
area around it. Hence, the sensing coverage poten-
tially decreases after each event. At the end of each
optimization run, we compute the final sensing cov-
erage with respect to the initial sensing coverage.
The value of the final sensing coverage is high for
both approaches, but as expected R2OBE performs
slightly better. Conversely, R2OBL achieves a lower
mean per-event latency (Fig. 12(c)) and a lower
mean energy consumption (Fig. 12(d)), as compared
to R2OBE.

Fig. 13(a) and (b) shows the variation of the
latency and of the energy consumption, respectively,
throughout the lifetime of the network, for R2OBL

and R2OBE. For both approaches, the mean energy
consumption varies considerably from event to
event, by alternatively increasing and decreasing.
This is caused by the objective function (16) in the
optimization problem in Section 4, which tends to
level the residual energy of the sensors by distribut-
ing the energy consumption over time and space.
For the first event, the DA-tree with minimum
energy cost is selected, since all sensors have the
same energy. This DA-tree stretches over the imag-
inary line connecting the region where the sources
are located and the sink. For the following events,
the trees become alternatively wider, i.e., they tend
to be built on nodes that are further away from this
line, and then they get closer to that line again. This
way, the energy consumption can be distributed
over the whole region. This can be also seen in
Fig. 14(a) and (b), which shows the relevant DA-
trees. Similarly, the latency of R2OBE shows an
‘‘accordion-like’’ behavior. Indeed, the latency
increases when the tree becomes wider and vice
versa. Conversely, the latency is monotonically
increasing in R2OBL.

This makes in general the R2OBL approach pref-
erable to R2OBE as far as concerns the metrics con-
sidered by now. In fact, while in terms of energy
consumption the two approaches lead to similar
results, R2OBL assures a more predictable behavior
and lower latency. But when the focus is on how the
energy consumption is distributed, R2OBE outper-
forms R2OBL. Fig. 13(c) reports the value of the
objective function in Problem 3. This figure is dual
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to Fig. 13(a). In fact, while in R2OBL the main goal
is to minimize the latency, R2OBE tries to distribute
the energy consumption among the nodes. In this
case, R2OBE presents a more predictable behavior.
The final distribution of the residual energy for
both approaches is depicted in Fig. 15(a), i.e., the
spatial distribution of the residual energy on the
monitored area when the network dies, according



Fig. 15. Spatial energy distribution after the last event for R2OBE (a) and R2OBL (b).
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to Definition 1 in Section 5. The color of each point
represents the sum of the residual energies of all sen-
sors covering that point. Darker colors represent
regions that reside within the sensing range of sen-
sors with higher energy, while a white region repre-
sents an uncovered portion of the terrain. To reduce
the impact of the network density, the results are
averaged on all the simulations. In fact, in particular
scenarios spatial energy distribution could be poorly
uniform because of the initial network topology.
Spatial energy distribution offers a way to evaluate
the network status at the end of its lifecycle. The
WSN can be better reused to monitor all the region
if the energy is better distributed. R2OBL presents a
hole in the center of the region and higher peaks at
the borders when compared to R2OBE, that shows a
more uniform energy distribution.

Fig. 16 depicts the cumulative distribution func-
tions of the spatial residual energies of the sensor
nodes for both strategies. The more the curve is sim-
ilar to a step, the better the energy is distributed. As
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Fig. 16. Cumulative distribution function of the spatial energy
distribution for R2OBX.
expected, R2OBE shows a sharper transition than
R2OBL, i.e., the residual energies of the nodes in
the R2OBE case are more evenly distributed. Note
that the spacial averaging operation smoothens the
slope of the two curves. Hence, the cumulative dis-
tribution functions of the sensor energy spacial dis-
tribution is even more divergent.

7. Conclusions and future work

In this paper, we dealt with the problem of opti-
mal data gathering in WSNs by combining data
aggregation, re-routing and scheduling.

We followed an incremental complexity approach.
First, we considered a simple reference model where
data routes do not change over time and multi-path
routing is allowed. We considered different problem
instances each referring to a different practical appli-
cation scenario. We presented different energy-
oriented optimization strategies and we compared
the relative performance in term of energy consump-
tion and data-gathering trees characteristics. In par-
ticular the effects of different assumptions that we
considered at each step, i.e., energy consumption
model, transmission range constraints and data
aggregation capabilities, are assessed in the selection
of optimal routing trees. We showed that when all
sensors generated data the energy consumption at
all nodes can be equalized so as to maximize the
network lifetime, with optimal routing patterns that
involve two next hops for each node – one close to
the transmitter, the other closer to the sink. Con-
versely if only a subset of all the sensors acts as data
sources energy balancing can be achieved by means
of routing sensed data over parallel longer paths.
In this case we exposed that data aggregation
mechanisms can significantly improve energy savings
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and equalize energy consumption even when sensors
have a limited transmission range.

Then, we further extended the model and consid-
ered dynamic re-routing and scheduling as means
to balance the energy consumption in time and max-
imize the network lifetime, while maintaining a low
data gathering latency. In fact, lifetime vs. latency
emerges as the relevant trade-off in the dynamic sce-
nario. We proposed and compared two different
algorithms for optimal re-routing. We found that
the R2OBL algorithm displays better latency over
R2OBE with comparable performances regarding
energy consumption. However, the R2OBE approach
is shown to be preferable in scenarios where the
application requires that the energy consumption
be evenly distributed among the network nodes.

The proposed algorithms rely on a centralized
view of the global network state. As a natural exten-
sion to this work, our future efforts will address dis-
tributed algorithms that can scale to large network
size and automatically adapt to changes in the set
of sources and to node mobility. While the objective
of guaranteeing even energy consumption seems to
be distributively achievable by accepting a certain
degree of suboptimality, we believe that further
study is needed to understand how to reproduce
the characteristics of minimum-latency trees with
local routing decisions at each individual node.
The proposed models, by jointly describing colli-
sion-free scheduling, routing and data aggregation,
can help researchers to get useful insights into this
problem.
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