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and the flow rates through it determine the range of electrical
An improved program has been developed that inverts data ob- mobility of the particles that are transmitted through the DMA.
tained from an electrical differential mobility analyzer (DMA) to  The transmitted particles are then detected using a condensation
obtain the particle size distribution. The central problem for data particle counter (CPC) or an electrometer. Most commonly, the
inversionisto find a smooth particle size distribution function,N(x), . . !
from the instrument response, R(t). Linear data inversion tech- TlOW rgtes are h_eld Copstantwhllethevoltage %pp"ed tothe DMA
niques for this problem, as developed by Hagen and Alofs (1983) is varied. The inversion of the raw data (particle counts versus
work by using a small number of size channels carefully selected so DMA voltage or time) is not a straightforward problem due to
that data channels for multiply-charged particles overlap channels  the presence of multiply-charged particles and due to the finite
for smaller singly-charged particles. However, these techniques fail |4t of the DMA transfer function. Multiply-charged parti-
when alarge number of data channels are used. The program devel- ; s .
oped here typically uses 300 data channels, making it particularly cles.have the same electngal mobllltylas smalle_r smgly—charged
appropriate for inverting data obtained in scanning mode, where Particles, such that there is not a unique relationship between
the number of channels can be made arbitrarily large. It is based particle size and electrical mobility. This makes the inversion
on regu_larization procedures I_ike those described pyWoIfenbarger problem ill posed, and in general no unique solution exists for
and Seinfeld (1990) and Lesnic et al. (1996). To estimate the optimal 4}:c type of problem. The relationship between the inverted size

value of the regularization parameter, an automated L-curve based . 7" . L .
method has been selected, as described by Hansen and O’Lear istribution and the raw data is given by a Fredholm-type inte-

(1993). The large number of data channels used ensures that thedral equation. Linear data inversion techniques for this problem,
resolution of the measurements is limited by the capabilities of the like those described by Hagen and Alofs (1983), work by using
instrument and not by the selection of the size channels to be used.a small number of data channels so that the width of the DMA
Efficientimplementation of the inversion program is made possible yansfer function is much smaller than the width of a data chan-
by supplying analytical expressions for the gradient and hessian of L Th h that the ch Is f ltiplv-ch d
the objective function that is minimized to solve the regularized ne . ese areé chosen so that the ¢ anne S for muftiply-c _arge
problem. particles overlap channels for smaller singly-charged particles.
This makes the kernel that relates the instrument response to the
size distribution a nearly diagonal matrix with a well-defined in-
verse. However, this approach does not work for a large number

INTRODUCTION L . X )
| size distributi btained by i ) q of arbitrarily chosen size channels for which the matrix repre-
Aerosol size distributions are obtained by inverting raw da nting the kernel becomes nearly singular.

fg)l\r?Amsrt]rument% such as thehdlffderentlzl mOb'“tY Ianalyzer The main difficulty of the inversion problem lies in the inabil-
(DMA), that provide a response that depends on particle concgly, find 5 unique solution for the size distribution when the data
tration and size. A DMA acts as a narrow bandpass filter for pais ains 4 finite amount of noise. According to Wolfenbarger

ticles, only transm!tting particles.correspc.)r.]dingtoasmall raNAfd seinfeld (1990), unique solutions do not always exist for
of electrlc.al moblllty. .The electrical mobility of a.partlcle de—the Fredholm-type integral equations. This ill-posed problem
pends onits size and its charge. The voltage applied to the DMfdata inversion has been discussed by several groups, includ-
—_— ing Wolfenbarger and Seinfeld (1990) and Lesnic et al. (1996).

r work fi n size distribution ined from a DMA
Address correspondence to Mark T. Swihart, DepartmentofChercn)u ork focuses on size distributions obtained from a
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Hall, Box 604200, Buffalo, NY 14260-4200. E-mail: swihart@eng@h aerosol neutralizer, a DMA (TSI Instruments model 3081), a
buffalo.edu CPC (TSI Instruments model 3010), and associated flow control
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and measurement devices. This configuration can measurechannel)¢ is the charge distribution on the particles, as given
concentration and size distribution of particles from roughlyy Alofs and Balakumar (1982%; (x, v) is the DMA transfer
10 to 1000 nm in diameter. To measure a particle size distfinction for channel, which includes diffusional broadening
bution, we ramp the DMA voltage exponentially in time anénd losses (Flagan 1999; Stolzenburg 19883 the number of
monitor the number of particles detected by the CPC. A coralementary charges on the particle, ajtx) is the CPC count-
plete particle size distribution is typically acquired in 5 min inng efficiency. When the DMA voltage is being continuously
our laboratory, but can be acquired in as little as 30 s if deeanned, the average transfer function over counting interval
sired. Details of this method have been presented by Wang asds follows (Wang and Flagan 1990):

Flagan (1990). The data inversion program described here typi- e

cally uses 30_0 data channels corresponding to a 300 s scan with ) (X, v) = 1 / Q(x, v, t) dt, 3]

1 s counting intervals. The large number of data channels used te Jy,

ensures that the resolution of the measurements is limited b ) . . ] .

the capabilities of the instrument and not by the selection of thé€reti is the time when the counting for channiebegins
channels to be used. (properly adjusted for flow time between the DMA and CPC,

In the present work, the ill posedness of the data inversi6iF-)- o ) _ ]
problem has been managed using constrained regularizatiorf* NUmerical integration method employing the trapezoid rule
procedures like those described by Wolfenbarger and Seinfé(@s used for the integration in Equation (1), with the number
(1990). Efficient implementation of the inversion procedure h&§ Sizé channels in the computed size distribution taken to be
been made possible by supplying analytical expressions R§fual to the number of data points. This provides a good ap-
the gradient and hessian matrix of the objective function usBfPximation of the integral due to the large number of size and
in the regularization method. A key issue in the regularizéi-ata chgnnels used. This contrasts with the relatively complex
tion procedure is to find the “best possible” value of the redtégration schemes necessary when only a small number of
ularization parameter—one that gives a good balance betw&&t@ Points are used, as in traditional fixed-voltage measure-
over-smoothing the solution (losing information in the computég€nts combined with linear inversion methods. After applying
solution) and amplifying measurement errors in the solution (t43€ frapezoid rule to approximate the integral, Equation (1) in
much noise in the computed solution). An efficient way of ddDatrix notation is given by
termining the regularization parameter is to use the L-curve cri- R=SN, [4]
terion, as suggested by Hansen and O’Leary (1993). Optimum =
solutions are located at the corner of the L-curve. Numeric4hereSis a matrix of sizeD x D andD is the number of data
examples of inversion of synthetic data with a predeterminéfannels. This matrix is nearly singular. Thus a simple inversion

noise level are presented below to demonstrate the capabiliffé§1e above equation to obtain the size distributnyill usu-
of this data inversion program. ally generate a noisy solution with negative elementhl tat

are not feasible. The solution is unstable in the sense that a small
error in the data can result in a large error in the solution. The ill
METHODOLOGY posedness of this problem has been discussed by Kandlikar and
In order to determine a smooth particle size distribution frof/Ramachandran (1999), Lesnic et al. (1996), and Wolfenbarger
the data, the relationship between the measured instrumentated Seinfeld (1990), among others. Regularization methods as
sponse and the particle size distribution is mathematically farsed by Tikhonov and Arsenin (1977) and Morozov (1966) have

mulated as a Fredholm integral equation: been widely used to find solutions to ill-posed problems like this
one. These methods essentially force the solution to be smooth
R = /oo Ki(x)N(logx) d log x, [ as well as to reproduce the observed response. This is done by

x=0 penalizing solutions that are not smooth, while obtaining an ap-

proximate least-squares solution of Equation (4). This results in

whereR; is theith instrument response (channelesponse), 5 minimization problem as suggested by Tikhonov and Arsenin
Kj is the nonnegative kernel function of the instrument, for ”@977) and Wolfenbarger and Seinfeld (1990):

time range or voltage setting corresponding to chanriis the
particle size distribution function, andis the particle diameter. Q(h, N)
The kernel function of the system is given by the following ’

nel IR-SNI®  x o/ &N \?
expression: = = + = f ( 2) d(logx),
I tmax Nguessmax 0 d(IOg X)

K100 = Gate 3 B0, X0 (X, v)(x). 2 SLN >0, [
v=1

whereQ is the objective function to be minimized along with
whereq, is the volumetric flow rate of aerosol entering théhe constraint that all elementsNfare positive, in order to ob-
DMA, t;isthe counting time (how long datais collected for eactain the final size distributiorRnaxis the maximum element of
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the instrument response vecRirandNg,essmaxis the maximum been minimized with respectb There are 2 distinct parts to the
element ofNyuess NguessiS the initial guess for the size distribu-L-curve—a nearly-vertical part and a nearly-horizontal padt. If
tion, which is obtained as described below. The first term of tiesufficiently small, then minimizin@® will become equivalent
right-hand side of Equation (5) is the least-squares error in tteeminimizing min, alone (the second term will be negligible).
solution of Equation (4). Minimizing it alone would lead to a~urther decreases inwill have no additional effect on minbut
physically unrealistic, oscillatory solution. The second term will continue to increase min Thus for small values of, the
Equation (5) penalizes solutions that are not smooth. We haslet of mirn, versus min is almost vertical. Conversely, if is
taken the measure of smoothness to be the integral of the cusatficiently large, then minimizing) corresponds to minimiz-
ture of N(log x) with respect to log(). This corresponds to the ing min, alone. Further increases lnwill cause little further
intuitive notion that we expect aerosol size distributions to lecrease in min but will continue to increase minThus for
smooth on a plot that is logarithmic in particle size. The secosdfficiently largex, the plot of min versus min is nearly hori-
derivative was approximated using the standard finite diffezontal. The L-curve is generally found to have a distinct corner,
ence expression and was written in matrix form. Both terms which gives a nearly optimal value af—one that provides a
Equation (5) have been normalized so thatoes not depend balance between smoothness and fidelity to the data. Locating
directly on the magnitude & and therefore does not vary overthe corner of the L-curve thus allows one to find a good value for
a large range from one data set to another. In order to facilitdtes regularization parameter for a given data set. Detailed prop-
the minimization ofQ, analytical expressions for its gradienterties of the L-curve are given by Hansen and O’Leary (1993).

and hessian (first and second derivatives with respect to edchlocate the corner of the L-curve, a simplified version of the
element and pair of elements Nf respectively) were derived algorithm of Hansen and O’Leary (1993) has been employed.

and included in the data inversion progra@was minimized

using the publicly available routine dmnhb, downloaded fromIgorithm for Finding the Corner of the L-Curve

Netlib (www.netlib.org). It should be noted that these expres- 1.
sions for the gradient and hessian@flo not change when the
DMA transfer function or other components $fire changed. 2,
So, to use this program with different experimental systems, one
only needs to change the appropriate parts of the DMA transfer
function, which are incorporated in the matfx

The regularization parameter,which controls the degree of
smoothing, must be adjusted to get a good balance between so-
lutions that are too “noisy” and solutions that are oversmoothed. 3.
Increasing. will lead to a loss of information in the computed
solution and result in oversmoothing. On the other hand, de-#
creasingh will improve the agreement between the measured
and computed responses, but will lead to unrealistic, oscillatory
size distributions. Thus finding an optimumis of vital impor-
tance to the constrained regularization procedure. Several meth-
ods (Hansen and O’Leary 1993; Kandlikar and Ramachandran®:
1999) have been suggested in order to find the best valuge of
such as the discrepancy principle, generalized cross validation
(GCV) (Wahba 1977), L-curve methods, and derivation of a tar- 6.
get value for the first term of the objective function based on in-
formation about the uncertainties in the response (Wolfenbarger
and Seinfeld 1990). In our work we only used the latter 2 as the
GCV and discrepancy principle have been shown by others to

Amin @NdAmay the 2 ends of the interval within whichis
expected to lie, are selected.

The interval is divided into 10 equal segments on a loga-
rithmic scale.

Amax /10
Ai = )Lmin<—> i =0to 1Q [7]

)»min

For each value of, Q is minimized with respect tbl to
obtain a pair of point§log(miny),log(miny)}.

A cubic spline is fit through the above points (Gerald and
Wheatley 1989), and the point with the maximum curva-
ture is obtainedX(cyre)- Note that the maximum curvature

of a cubic spline will always be at one of the points through
which it is fit.

The interval is updated by setting the 2 nearest neighbors
(Acurve-1, Acurver1) Of the corresponding to the maximum
curvature Ecurve) @SAmin @NdAmax respectively.

Steps 2-5 are repeated a fixed number of times, guarantee-
ing thaticuneWill be determined to a predefined precision
(the interval is refined by a factor of 5 each time that steps
2-5 are repeated).

be less effective as compared to the L-curve method (Hans%ﬂed”"" of a Target Value Based on the Estimated

and O’Leary 1993).

Uncertainty in the Response

Wolfenbarger and Seinfeld (1990) suggested that an appro-
priate value of. could be determined by setting a “target” value

L-Curve Method
Equation (5) can be written as
Q(1) = miny(2) + Aminy(3). [6]

The L-curve is a parametric plot between mamd min, as de-
fined above, on alog-log scale, where for each value Qf has

minl()\target) =

for min; based on knowledge of the expected measurementerror.

E(IR— SN|?)

E (|l €instrumenR|| 2)
Réax

2
Upriori

Rrgnax

R?, [8]

o

i=1
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whereeinsrumens 1S the fractional error in th&h measurement Table 1

(the fractional difference between the measured response and thigarameters of the normal and lognormal distributions used
“true” response that would be obtained if there were no mea- in generating the synthetic data, as given in Equation (9)
surement error), andyioi iS the a priori estimated fractional } )
uncertainty in the response.Nfin Equation (5) were the “true” M1 01 M2 02 M3 03 !
size dist_ributionutme, miny (1) would be the sum of the squarescgse | o 0 0 0 0 0 100 nm 1.4

of the differences between the actual respoigeand the re- case || 20 nm 10nm 60nm 10nm 230nm 20nm 150 nm 1.2
sponse arising from the true size distribution in the absence-of

any measurement errdd ). Thus the expectation value of this
difference is a reasonable “target value.” Of course, there are
infinite number of size distributions that will make miequal R = Ruiitial (1 + &i). [10]

to this value, so the one to which the program converges Withe error g, is obtained using a pseudo-random number gen-
not be the true size distribution. However the response resulti®@@or from a normal distribution with mean 0 and standard de-
from it (SN) will be at the same “distance” from the measuregiation ¢, Thus in these distributions, the absolute error is
responseR) as the response resulting from the true size distiiyonortional to the response. To generate the artificially noisy
bution & Nyre)- Thus we want to pick such that it results in gata we used Equation (10), with independent errors for each
this “target” value of min. For this method to work with actual yata channel. Systematic errors were not considered in gen-
experimental data, a good estimate of the error in the respoRsgting this synthetic data as the inversion program presented
must be provided. Given that estimate, the correct valueisf nhere was developed for measurements from a single instrument.
obtained in our program by the false position method of ro@ystematic errors can be explicitly considered when data from

I\A?‘ise is then added to this response as shown in Equation (10):

finding (Press et al. 1999). multiple instruments are inverted simultaneously (Wolfenbarger
and Seinfeld 1990). However, if we have a single instrument that
Minimization of Q for Given \ gives systematic errors that affect all of the data channels, then

The minimization ofQ with respecttdNrequires areasonablewe cannot compensate for those errors in the data inversion
initial guess for the size distributioN. To generate the initial program.

guess, we do the following: The inversion program was tested using many sets of syn-
1. Shiial iS obtained by summing the rows Sfand placing thetic data, and here we present 2 typical cases, as shown in
the results on the diagonal 8fital - - Table 1. Figure 1 shows that the particle size distribution for the

2. Nguessis obtained by a simple matrix inversion of Equasynthetic datale) is recovered effectively using a wide range
tion (4) usingSnisar in place ofS This is possible since of values ofi.. The error between the inverted synthetic data and
S isadiagonal matrix. the true distribution Kirue) is measured using 3 different error
Egﬁfésis used as the starting value firin Equation (5) indicators: 1-Norm, 2-Norm, and infinity-Norm. The average
for the minimization routine. absolute deviation is calculated from the 1-Norm as follows:
4. For a given value of, Q is minimized using standard Z'D INi — Niueil
methods to give the size distributiaX, E, = &=t ID el

The root-mean-square (rms) error (error in the 2-Norm) for the
RESULTS inversion of the synthetic data is calculated as follows:

The inversion program described above was tested using a
wide range of synthetic data obtained as sums of normal and IN — Nyell \/ZiDzl (Ni — Niryei)?
lognormal distributions. The general form for the size distribu- Bz = /D = /D . [12]
tions used here is

(11]

The error corresponding to the infinity-Norm is
P, xIn10 —(x — ui)?
> exp| ———— Ee = Max|N — Nyel- [13]
i=1
o
=1

Nirue(logx) =
true( g ) |: Wi 20_i2

A
_log? (L) Figur_e 2 shpws theE;, E,, andE,, all show the same trend
+ Y exp 1 ’ [9] when 1 is varied from 1019 to 1. The best value of. that
J. 2|ng(al-/) minimizes the error for the synthetic datads), for all
3errorindicatorsEy, Ez, andE., (Apeste, = 3 X 107>, Apeste, =
where A is the scaling constany is the number of normal 7 x 1075, Apesie,, = 8 x 107°), is roughly an order of magnitude
distributions,p’ is the number of lognormal distributions, andarger than that determined by the L-curve methag,fe=
Wi, oi, u’j , o]f are the mean and standard deviation of the norm@# x 10-%). However, for most cases the L-curve method is
and lognormal distributions, respectively. Equation (4) is usedasonably accurate and, as explained below, it is the preferred
to generateRinitial, the instrument response without any noisenethod for selection of. Thus these 3 error indicators are
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Figure 1. Comparison of size distributions (obtained usigss Aicurves Marged) t0 the true size distributiorNge) for case | using
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Figure 2. Three different error indicatorsEq, E,, Ey) as a function of the regularization parameterfor case |. Values
corresponding to the distributions shown in Figure 1 are labeled.
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Table 2 using the target value of) suffers from mild oversmoothing.

Regularization parameters and resulting rms error per chanfdiis is also apparent from Figure 2, which shows the rms error
(Ey) for the values ofs corresponding to the distributions in

Case | Case ll Figure 1. Table 2 lists the values bfand the resulting errors
A rms erroft A rms errof  in the size distributions. pest(7 x 107°) can be considered to
be the optimal value of, thenicuve (8.4x 1076) does a rea-
Apest  7.0x107°  7.8x10° 2.0x10° 15x10° gonable job of estimating the best valugiofThe rms error in
Meuve 8.4x10°°  8.6x10° 24x107  1.9x10° the size distribution fokiume is just 10.8% larger than fores:
Maget  5.8x 107 1.3x10° 6.8x10° 17x10° ysing Marget (5.8 x 107%), on the other hand, gives a rms error
that is 63.7% greater than that obtained withs;and causes
the final distribution to be slightly oversmoothed. Note that
consistent and any of them could reasonably be used for cdior this synthetic data, the level of error in the data is known
paring the inverted synthetic data to the true distributiép. and the value fopioi Used to estimate the target value is
was chosen for reference throughout this paper. The value of itientical to that used to generate the responsgof). How-
regularization parametex, that corresponds to the minimumever, as seen in Figure 2 ger Obtained in this case is still an
error is referred to aspest and is used to generabd,.: This overestimation of the best value. In the case of experimental
value of corresponds to the “best” value as it minimizes thdata when the error is unknown, this method would introduce
error. However, in real experiments (whidf,e is not available), further uncertainties via the assignmentogfioi, which must
one of the methods described above must be used to estinmeestimated from the data. Figure 3 shows the noisy dta (
the optimum value of. Here we compare the distributions thatind the responseRf; = SNicurve) resulting from the size dis-
were obtained using generated by the L-curve and target valugibution obtained from the inversion program. The regulariza-
methods. Figure 1 shows that the distributions obtained usitign procedure has the effect of forcing this fitted response to
the different values of almost overlap. However, a closer lookbe smooth. The noisy data for this simulated case was gener-
as shown in the inset verifies thdtescandNcurve are in excel- ated using 5% noise in the data (g, used to calculate the
lent agreement withyye, While Niarget (the distribution obtained random error added to the data was set to 0.05). The effect of

aparticles per cfh
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Figure 3. Noisy dataR, and the response resulting from the size distribution obtained from the inversion pr@rtafrngesa
for case | usin@eror = 5%.
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Figure 4. Comparison of size distributions (obtained usitigs; Aicurves Atarger) t0 the true size distributionNge) for case |
usingoerror = 5%.

increasing the noise level on the inverted distributions is disversmoothed, even though it still retains the overall shape of the
cussed below. distribution. This is not a shortcoming of the L-curve method,

The second case shown here uses a more complicated disui-rather is simply a result of the large amount of noise in the
bution with 3 peaks from normal distributions and 1 peak fromaata. Figure 7b shows that even with the best valug, dhe
lognormal distribution, as shown in Table 1 and Figure 4. Ond@everted distribution is slightly oversmoothed. From Figures 8a
again, all 3 inverted distributions closely approximate the truand 8b, it can be seen that even with significant noise in the data,
size distributionNyye. From the inset in Figure 4, it can be seetthe inversion program succeeds in obtaining a size distribution
thatNcurve Shows an artificial ripple that is not present in the truehat approximates the true distribution well and nicely repro-
distribution. In contrast to the first case, for this synthetic dathuces a smoothed version of the noisy data. For the second case,
SetAtarget (6.8 % 1079) is closer toipest (2 x 107°6) thanAicuve  as shown in Figure 9a, with 5% relative error in the dsi@e
(2.4x 10°7). However, this is an exception to the general trendaptures the true distribution well. When the error is increased
as for all other cases the L-curve method predicts a better vatae&50%, the L-curve method still manages to recover the distri-
of 1 than the target method. The plot of error verstisr case Il, bution effectively, although it suffers from slight oversmoothing
shown in Figure 5, shows that as in case I, all 3 error indicataasthe higher peaks (around 100 nm and higher) and overshoots
show a similar trend. The simulated instrument resp&(gen- the peak around 20 nm. The fact that the L-curve method of pre-
erated with 5% noise) and fitted responBe;) in Figure 6 are dicting » does an excellent job is verified in Figure 9b, which
similar to those shown in Figure 3 for the previous case. ShowsNire along with Npes¢soe), Noestosoe), andNpestsoos). With

The effect of increasing the level of error in the data is shovthe best value of, the final distribution obtained looks almost
for case | in Figures 7 and 8 and for case Il in Figures 8 andiflentical to that obtained using thedetermined by the L-curve
When the relative errobferor) is increased from 5% to 50%, themethod. Even withipes; the inverted distribution at the high-
regularization procedure with the L-curve method of selectirest error level shows some structure that is not present in the
A for the final size distributions is still able to invert the dat&rue distribution. It appears that there is simply not enough in-
for both cases and recover a good approximation to the true siaemation content in the response with 50% relative error to
distribution. As shown in Figure 7a, for 5% relative error iraccurately obtain the true structure of the size distribution in its
the dataNcune iS @almost identical to the true size distributionentirety. This becomes rather obvious by looking at Figures 10a
Increasing the error to 50% results Mi.yrve being somewhat and 10b, which show the increased noise in the instrument
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Figure 5. Three different error indicatorsef, E,, E) as a function of the regularization parameterfor case Il. Values
corresponding to the distributions shown in Figure 4 are labeled.
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Figure 11. The effect ofoeror ON E; as a function of regularization parameterfor case Il. The positions of the different values
Of Atarget, Meurves @NdApestCOrresponding to the 3 errors are also shown on the plot.

response and the corresponding fitted response obtained fltation between the errors in the data and the effectiveness of the
the size distribution. Figure 11 shows the rms erigy)(in the L-curve method. Table 3 shows tl&& value for each value of
inverted solution as a function of the regularization parameténg regularization parameter and each level of error in the instru-
A, for the 3 levels of error in the instrument response. As threent response. The rms error usihgine iS generally higher
level of error in the data increases, the best valueiotreases than that usingpestand varies from 32.4% highes {iror = 5%)
slightly because more smoothing is needed to filter out the ito- 0.1% lower §enor = 25%) to 2.4% higherderor = 50%),
creasing noise. The sensitivity of the error to the value. of which indicates that the L-curve method works reasonably well
decreases as the error level of the data increases and the nainall error levels. The corresponding values for the target value
mum in the error with respect tcdbecomes less pronounced. Thenethod are higher at 17.5% {ror = 5%), 25.2% §error =
L-curve method still remains reliable at these larger relative 625%), and 139.8%(c1ror = 50%), respectively. Comparing the
rors. Figure 11 shows that while feter = 5%, Aicurve (2.4%  rms error between the target value and L-curve method for all
10~7) is about an order of magnitude smaller thiaps (2 x 3 error levels and for both cases, the L-curve method proved to
1079), for oenor = 50%, Ajcurve (5.9x 107°) is closer toipes; be more reliable in all but one case (case |l, ee05%). The

(3% 1075, and foroenor = 25%, Ajcurve (1.03x 107°) is al-  L-curve method was thus adopted as our preferred method for
most identical toupest (1 x 107°). Thus there is no clear corre-selectingh in all cases.

Table 3
Regularization parameters and resulting rms error per channel for 3 levels of
relative error in the data for Case Il

Oerror = 5% Oerror = 25% Oerror = 50%

A rms errof A rms errof A rms errof

Abest 20x10% 15x10° 1.0x10° 6.1x10° 3.0x10° 1.2x10
Marve 2.4x107 1.9x10® 1.0x10° 6.1x10 59x10° 1.2x10
Marget 6.8 106 1.7x10° 8.1x10° 7.6x10° 23x10°% 28x10

aparticles per crh
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The L-curve method of predicting the optimal valuexois even though with increasingeor the curvature in the L-curve
based on finding the corner of the L-curve from the maximuplot becomes less distinct, it is still possible to locate a cor-
curvature of the log(mig) versus log(min) plot, soitisinstruc- ner using this method. This explains the ability of the L-curve
tive to look at how this plot changes as the level of error imethod to obtain reasonably good distributions even at higher
the data increases. Figures 12a—c for the second case showrtative errors. Thus the method we have implemented here,
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Figure 12. The effect of increasing error on the L-curve plot for case Il. Increasipg from (a) 5% to (b) 25% to (c) 50%. The
corner of the L-curve is retained, thereby making the L-curve method usable for all of these erro(Gwetmued)
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Figure 12. (Continued)

with L-curve selection of the regularization parameter, can b&tions and correspondingly high levels of relative uncertainty
expected to perform well for a wide range of the level of erran individual data points.

in the data. This includes cases where particle concentrationsThe 2 cases using synthetic data presented above show that
are high (and therefore relative errors can be low), as in stutie distributions obtained using our inversion program give ex-
ies of intentional particle production as well as atmospheric oellent agreement with the true distributions for a wide range
closed environment monitoring with very low particle concersf error levels. The major improvement of our current inversion

(08s) aw NdD

1 103% - ! [ 10"
50 100 150 200 250 300
Channels

Figure 13. Effect of changing the number of data channdly on the rms error per channel and CPU time. CPU time for 3
different cases: using analytical gradient and hessian (squares), using analytical gradient and numerical hessian (triangles), an
using numerical gradient and hessian (diamonds).
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program over previous implementations that also perform wej

is the computationally economic use of a large number of chaN-
nels. To observe the effect of the number of channels on tNgest
CPU time (obtained on a SUN Blade 100 workstation, comp&lyess

rable in processor speed to a desktop PC)BEntms error per Nguess,max

channel in the resulting size distribution), our program was ru¥icyrve
for case Il using a relative error of 5% (shown in Figures 4Nget
6), with the L-curve method of finding. Figure 13 shows that Nire
increasing the number of channels significantly reduces the er-
ror in the data (by 282% going from 50 to 300 channels) gt
the cost of increased CPU time (from 0.92 to 125 s). Howevay,

it should be noted that for some simulations (not shown herg)
the CPU time could increase to about 5 min, depending on the
synthetic data chosen. So, for 300 channels the time for d&a
inversion is at most roughly the same as the time for data col-
lection. The computational efficiency of our program using thi,
analytical gradient and hessian of the objective function is al&ta
demonstrated in Figure 13. When only the gradient, but not tig,ax
hessian, is provided, the required CPU time increases by ab8ut
an order of magnitude. When neither the gradient nor the hes-
sian is provided, the required CPU time is about 3 orders §i1r:1itial
magnitude greater than when both are provided. Thus providing
analytical expressions for the gradient and hessian of the objgc-
tive function is necessary to make the use of a large numbenof
size channels with this method computationally feasible.

CONCLUSIONS

A new program for inversion of scanning electrical mobilityCreek Symbols

spectrometer data was developed that uses a Tikhonov regu-
larization approach with a large number of data channels and
analytical expressions for the gradient and hessian of the objec-

tive function. Use of a large number of channels ensures tlfatrument

the resolution of the measurements is limited by the capabilitiés

of the instrument and not by the selection of the size channéls.
The analytical expression for the gradient and hessian in the
minimization procedure makes the use of a large number of datast
channels computationally economical. The program was tested
using synthetic data and performed well. A multimodal distribudcurve
tion with a noise level of 5%{eror = 5%) was easily recovered. Amax
The presence of a large amount of relative error did not prevent
us from obtaining reasonable size distributions. Of the 2 methobisn
used to find the best estimate of the regularization parameter,

the L-curve method proved to be the most effective and robustarget
Both the program itself and the expressions for the gradient athd
hessian of the objective function are available from the authots

upon request. v

o

O,/
NOMENCLATURE
A scaling constant ifNgye Oerror
D number of data points
=] error corresponding to 1-Norm Opriori
E, error corresponding to 2-Norm _
E« error corresponding to infinity-Norm Qi

nonnegative kernel function of instrument
particle size distribution

size distribution corresponding #@est

initial guess for the size distribution
maximum element oNgyess

size distribution corresponding #@est

size distribution corresponding 2@arget

true distribution used to simulate synthetic
data

number of normal distributions

number of lognormal distributions
volumetric flow rate of aerosol entering DMA
objective function to be minimized

response resulting froMlpes; Obtained from
inversion program

ith instrument response

instrument response without noise
maximum vale ofR

matrix of sizeD x D, representing the kernel
function

used to calculate the initial guess for the size
distribution

counting time

particle diameter

random error added to data from a normal
distribution of mean 0 and standard deviation
Oerror

fractional error inth measurement

charge distribution on particles

CPC counting efficiency

regularization parameter

A corresponding to the minimum error that best
describes the inverted distribution

A corresponding to a corner of the L-curve
maximum value of. used at one end of the
interval

minimum value ofa used at the other end of
the interval

A corresponding to the target value of min
mean of normal distribution

mean of lognormal distribution

number of elementary charges on the particle
standard deviation of the normal distribution
standard deviation of the lognormal distribu-
tion

standard deviation of the normal distribution
used to generatg

a priori estimated fractional uncertainty in the
response

average DMA transfer function for chanriel
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