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An improved program has been developed that inverts data ob-
tained from an electrical differential mobility analyzer (DMA) to
obtain the particle size distribution. The central problem for data
inversion is to find a smooth particle size distribution function,N(x),
from the instrument response,R(t). Linear data inversion tech-
niques for this problem, as developed by Hagen and Alofs (1983)
work by using a small number of size channels carefully selected so
that data channels for multiply-charged particles overlap channels
for smaller singly-charged particles. However, these techniques fail
when a large number of data channels are used. The program devel-
oped here typically uses 300 data channels, making it particularly
appropriate for inverting data obtained in scanning mode, where
the number of channels can be made arbitrarily large. It is based
on regularization procedures like those described by Wolfenbarger
and Seinfeld (1990) and Lesnic et al. (1996). To estimate the optimal
value of the regularization parameter, an automated L-curve based
method has been selected, as described by Hansen and O’Leary
(1993). The large number of data channels used ensures that the
resolution of the measurements is limited by the capabilities of the
instrument and not by the selection of the size channels to be used.
Efficient implementation of the inversion program is made possible
by supplying analytical expressions for the gradient and hessian of
the objective function that is minimized to solve the regularized
problem.

INTRODUCTION
Aerosol size distributions are obtained by inverting raw data

from instruments, such as the differential mobility analyzer
(DMA), that provide a response that depends on particle concen-
tration and size. A DMA acts as a narrow bandpass filter for par-
ticles, only transmitting particles corresponding to a small range
of electrical mobility. The electrical mobility of a particle de-
pends on its size and its charge. The voltage applied to the DMA
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and the flow rates through it determine the range of electrical
mobility of the particles that are transmitted through the DMA.
The transmitted particles are then detected using a condensation
particle counter (CPC) or an electrometer. Most commonly, the
flow rates are held constant while the voltage applied to the DMA
is varied. The inversion of the raw data (particle counts versus
DMA voltage or time) is not a straightforward problem due to
the presence of multiply-charged particles and due to the finite
width of the DMA transfer function. Multiply-charged parti-
cles have the same electrical mobility as smaller singly-charged
particles, such that there is not a unique relationship between
particle size and electrical mobility. This makes the inversion
problem ill posed, and in general no unique solution exists for
this type of problem. The relationship between the inverted size
distribution and the raw data is given by a Fredholm-type inte-
gral equation. Linear data inversion techniques for this problem,
like those described by Hagen and Alofs (1983), work by using
a small number of data channels so that the width of the DMA
transfer function is much smaller than the width of a data chan-
nel. These are chosen so that the channels for multiply-charged
particles overlap channels for smaller singly-charged particles.
This makes the kernel that relates the instrument response to the
size distribution a nearly diagonal matrix with a well-defined in-
verse. However, this approach does not work for a large number
of arbitrarily chosen size channels for which the matrix repre-
senting the kernel becomes nearly singular.

The main difficulty of the inversion problem lies in the inabil-
ity to find a unique solution for the size distribution when the data
contains a finite amount of noise. According to Wolfenbarger
and Seinfeld (1990), unique solutions do not always exist for
the Fredholm-type integral equations. This ill-posed problem
of data inversion has been discussed by several groups, includ-
ing Wolfenbarger and Seinfeld (1990) and Lesnic et al. (1996).
Our work focuses on size distributions obtained from a DMA
operated in scanning mode. In our laboratory, this consists of
an aerosol neutralizer, a DMA (TSI Instruments model 3081), a
CPC (TSI Instruments model 3010), and associated flow control
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and measurement devices. This configuration can measure the
concentration and size distribution of particles from roughly
10 to 1000 nm in diameter. To measure a particle size distri-
bution, we ramp the DMA voltage exponentially in time and
monitor the number of particles detected by the CPC. A com-
plete particle size distribution is typically acquired in 5 min in
our laboratory, but can be acquired in as little as 30 s if de-
sired. Details of this method have been presented by Wang and
Flagan (1990). The data inversion program described here typi-
cally uses 300 data channels corresponding to a 300 s scan with
1 s counting intervals. The large number of data channels used
ensures that the resolution of the measurements is limited by
the capabilities of the instrument and not by the selection of the
channels to be used.

In the present work, the ill posedness of the data inversion
problem has been managed using constrained regularization
procedures like those described by Wolfenbarger and Seinfeld
(1990). Efficient implementation of the inversion procedure has
been made possible by supplying analytical expressions for
the gradient and hessian matrix of the objective function used
in the regularization method. A key issue in the regulariza-
tion procedure is to find the “best possible” value of the reg-
ularization parameter—one that gives a good balance between
over-smoothing the solution (losing information in the computed
solution) and amplifying measurement errors in the solution (too
much noise in the computed solution). An efficient way of de-
termining the regularization parameter is to use the L-curve cri-
terion, as suggested by Hansen and O’Leary (1993). Optimum
solutions are located at the corner of the L-curve. Numerical
examples of inversion of synthetic data with a predetermined
noise level are presented below to demonstrate the capabilities
of this data inversion program.

METHODOLOGY
In order to determine a smooth particle size distribution from

the data, the relationship between the measured instrument re-
sponse and the particle size distribution is mathematically for-
mulated as a Fredholm integral equation:

Ri =
∫ ∞

x=0
Ki (x)N(logx) d logx, [1]

whereRi is the i th instrument response (channeli response),
Ki is the nonnegative kernel function of the instrument, for the
time range or voltage setting corresponding to channeli , N is the
particle size distribution function, andx is the particle diameter.
The kernel function of the system is given by the following
expression:

Ki (x) = qatc
∞∑
ν=1

φ(ν, x)Ǟi (x, ν)η(x), [2]

whereqa is the volumetric flow rate of aerosol entering the
DMA, tc is the counting time (how long data is collected for each

channel),φ is the charge distribution on the particles, as given
by Alofs and Balakumar (1982),̄Äi (x, ν) is the DMA transfer
function for channeli , which includes diffusional broadening
and losses (Flagan 1999; Stolzenburg 1988),ν is the number of
elementary charges on the particle, andη(x) is the CPC count-
ing efficiency. When the DMA voltage is being continuously
scanned, the average transfer function over counting intervali
is as follows (Wang and Flagan 1990):

Ǟi (x, ν) = 1

tc

∫ ti+tc

ti

Ä(x, ν, t) dt, [3]

where ti is the time when the counting for channeli begins
(properly adjusted for flow time between the DMA and CPC,
etc.).

A numerical integration method employing the trapezoid rule
was used for the integration in Equation (1), with the number
of size channels in the computed size distribution taken to be
equal to the number of data points. This provides a good ap-
proximation of the integral due to the large number of size and
data channels used. This contrasts with the relatively complex
integration schemes necessary when only a small number of
data points are used, as in traditional fixed-voltage measure-
ments combined with linear inversion methods. After applying
the trapezoid rule to approximate the integral, Equation (1) in
matrix notation is given by

R= SN, [4]

whereS is a matrix of sizeD× D andD is the number of data
channels. This matrix is nearly singular. Thus a simple inversion
of the above equation to obtain the size distribution,N, will usu-
ally generate a noisy solution with negative elements ofN that
are not feasible. The solution is unstable in the sense that a small
error in the data can result in a large error in the solution. The ill
posedness of this problem has been discussed by Kandlikar and
Ramachandran (1999), Lesnic et al. (1996), and Wolfenbarger
and Seinfeld (1990), among others. Regularization methods as
used by Tikhonov and Arsenin (1977) and Morozov (1966) have
been widely used to find solutions to ill-posed problems like this
one. These methods essentially force the solution to be smooth
as well as to reproduce the observed response. This is done by
penalizing solutions that are not smooth, while obtaining an ap-
proximate least-squares solution of Equation (4). This results in
a minimization problem as suggested by Tikhonov and Arsenin
(1977) and Wolfenbarger and Seinfeld (1990):

Q(λ, N)

=
‖R− SN‖2

R2
max

+ λ

N2
guess,max

∫ ∞
0

(
d2N

d(logx)2

)2

d(logx),

st. N > 0, [5]

whereQ is the objective function to be minimized along with
the constraint that all elements ofN are positive, in order to ob-
tain the final size distribution,Rmax is the maximum element of
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the instrument response vectorR, andNguess,max is the maximum
element ofNguess. Nguessis the initial guess for the size distribu-
tion, which is obtained as described below. The first term of the
right-hand side of Equation (5) is the least-squares error in the
solution of Equation (4). Minimizing it alone would lead to a
physically unrealistic, oscillatory solution. The second term in
Equation (5) penalizes solutions that are not smooth. We have
taken the measure of smoothness to be the integral of the curva-
ture of N(log x) with respect to log(x). This corresponds to the
intuitive notion that we expect aerosol size distributions to be
smooth on a plot that is logarithmic in particle size. The second
derivative was approximated using the standard finite differ-
ence expression and was written in matrix form. Both terms in
Equation (5) have been normalized so thatλ does not depend
directly on the magnitude ofN and therefore does not vary over
a large range from one data set to another. In order to facilitate
the minimization ofQ, analytical expressions for its gradient
and hessian (first and second derivatives with respect to each
element and pair of elements ofN, respectively) were derived
and included in the data inversion program.Q was minimized
using the publicly available routine dmnhb, downloaded from
Netlib (www.netlib.org). It should be noted that these expres-
sions for the gradient and hessian ofQ do not change when the
DMA transfer function or other components ofSare changed.
So, to use this program with different experimental systems, one
only needs to change the appropriate parts of the DMA transfer
function, which are incorporated in the matrixS.

The regularization parameter,λ, which controls the degree of
smoothing, must be adjusted to get a good balance between so-
lutions that are too “noisy” and solutions that are oversmoothed.
Increasingλ will lead to a loss of information in the computed
solution and result in oversmoothing. On the other hand, de-
creasingλ will improve the agreement between the measured
and computed responses, but will lead to unrealistic, oscillatory
size distributions. Thus finding an optimumλ is of vital impor-
tance to the constrained regularization procedure. Several meth-
ods (Hansen and O’Leary 1993; Kandlikar and Ramachandran
1999) have been suggested in order to find the best value ofλ,
such as the discrepancy principle, generalized cross validation
(GCV) (Wahba 1977), L-curve methods, and derivation of a tar-
get value for the first term of the objective function based on in-
formation about the uncertainties in the response (Wolfenbarger
and Seinfeld 1990). In our work we only used the latter 2 as the
GCV and discrepancy principle have been shown by others to
be less effective as compared to the L-curve method (Hansen
and O’Leary 1993).

L-Curve Method
Equation (5) can be written as

Q(λ) = min1(λ)+ λmin2(λ). [6]

The L-curve is a parametric plot between min1 and min2, as de-
fined above, on a log-log scale, where for each value ofλ, Q has

been minimized with respect toN. There are 2 distinct parts to the
L-curve—a nearly-vertical part and a nearly-horizontal part. Ifλ

is sufficiently small, then minimizingQ will become equivalent
to minimizing min1 alone (the second term will be negligible).
Further decreases inλwill have no additional effect on min1, but
will continue to increase min2. Thus for small values ofλ, the
plot of min2 versus min1 is almost vertical. Conversely, ifλ is
sufficiently large, then minimizingQ corresponds to minimiz-
ing min2 alone. Further increases inλ will cause little further
decrease in min2, but will continue to increase min1. Thus for
sufficiently largeλ, the plot of min2 versus min1 is nearly hori-
zontal. The L-curve is generally found to have a distinct corner,
which gives a nearly optimal value ofλ—one that provides a
balance between smoothness and fidelity to the data. Locating
the corner of the L-curve thus allows one to find a good value for
the regularization parameter for a given data set. Detailed prop-
erties of the L-curve are given by Hansen and O’Leary (1993).
To locate the corner of the L-curve, a simplified version of the
algorithm of Hansen and O’Leary (1993) has been employed.

Algorithm for Finding the Corner of the L-Curve
1. λmin andλmax, the 2 ends of the interval within whichλ is

expected to lie, are selected.
2. The interval is divided into 10 equal segments on a loga-

rithmic scale.

λi = λmin

(
λmax

λmin

)i /10

i = 0 to 10. [7]

3. For each value ofλ, Q is minimized with respect toN to
obtain a pair of points{log(min2),log(min1)}.

4. A cubic spline is fit through the above points (Gerald and
Wheatley 1989), and the point with the maximum curva-
ture is obtained (λcurve). Note that the maximum curvature
of a cubic spline will always be at one of the points through
which it is fit.

5. The interval is updated by setting the 2 nearest neighbors
(λcurve−1,λcurve+1) of theλ corresponding to the maximum
curvature (λcurve) asλmin andλmax, respectively.

6. Steps 2–5 are repeated a fixed number of times, guarantee-
ing thatλcurvewill be determined to a predefined precision
(the interval is refined by a factor of 5 each time that steps
2–5 are repeated).

Selection of a Target Value Based on the Estimated
Uncertainty in the Response

Wolfenbarger and Seinfeld (1990) suggested that an appro-
priate value ofλ could be determined by setting a “target” value
for min1 based on knowledge of the expected measurement error.

min1(λtarget) '
E〈‖R− SN‖2〉

R2
max

= E〈‖εinstrumentR‖2〉
R2

max

= σ 2
priori

R2
max

D∑
i=1

R2
i , [8]
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whereεinstrument,i is the fractional error in theith measurement
(the fractional difference between the measured response and the
“true” response that would be obtained if there were no mea-
surement error), andσpriori is the a priori estimated fractional
uncertainty in the response. IfN in Equation (5) were the “true”
size distribution,Ntrue, min1(λ) would be the sum of the squares
of the differences between the actual response (R) and the re-
sponse arising from the true size distribution in the absence of
any measurement error (SN). Thus the expectation value of this
difference is a reasonable “target value.” Of course, there are an
infinite number of size distributions that will make min1 equal
to this value, so the one to which the program converges will
not be the true size distribution. However the response resulting
from it (SN) will be at the same “distance” from the measured
response (R) as the response resulting from the true size distri-
bution (S Ntrue). Thus we want to pickλ such that it results in
this “target” value of min1. For this method to work with actual
experimental data, a good estimate of the error in the response
must be provided. Given that estimate, the correct value ofλ is
obtained in our program by the false position method of root
finding (Press et al. 1999).

Minimization of Q for Given λ
The minimization ofQ with respect toNrequires a reasonable

initial guess for the size distributionN. To generate the initial
guess, we do the following:

1. Sinitial is obtained by summing the rows ofSand placing
the results on the diagonal ofSinitial .

2. Nguessis obtained by a simple matrix inversion of Equa-
tion (4) usingSinitial in place ofS. This is possible since
S

initial
is a diagonal matrix.

3. Nguessis used as the starting value forN in Equation (5)
for the minimization routine.

4. For a given value ofλ, Q is minimized using standard
methods to give the size distribution,N.

RESULTS
The inversion program described above was tested using a

wide range of synthetic data obtained as sums of normal and
lognormal distributions. The general form for the size distribu-
tions used here is

Ntrue(logx) = A

[
p∑

i=1

x ln 10

µi
exp

(−(x − µi )2

2σ 2
i

)

+
p′∑

j=1

exp

(− log2
(

x
µ′j

)
2 log2(σ ′j )

)]
, [9]

where A is the scaling constant,p is the number of normal
distributions,p′ is the number of lognormal distributions, and
µi , σi ,µ′j , σ

′
j are the mean and standard deviation of the normal

and lognormal distributions, respectively. Equation (4) is used
to generateRinitial , the instrument response without any noise.

Table 1
Parameters of the normal and lognormal distributions used
in generating the synthetic data, as given in Equation (9)

µ1 σ1 µ2 σ2 µ3 σ3 µ′1 σ ′1

Case I 0 0 0 0 0 0 100 nm 1.4
Case II 20 nm 10 nm 60 nm 10 nm 230 nm 20 nm 150 nm 1.2

Noise is then added to this response as shown in Equation (10):

Ri = Rinitial (1+ εi ). [10]

The error,εi , is obtained using a pseudo-random number gen-
erator from a normal distribution with mean 0 and standard de-
viation σ error. Thus in these distributions, the absolute error is
proportional to the response. To generate the artificially noisy
data, we used Equation (10), with independent errors for each
data channel. Systematic errors were not considered in gen-
erating this synthetic data as the inversion program presented
here was developed for measurements from a single instrument.
Systematic errors can be explicitly considered when data from
multiple instruments are inverted simultaneously (Wolfenbarger
and Seinfeld 1990). However, if we have a single instrument that
gives systematic errors that affect all of the data channels, then
we cannot compensate for those errors in the data inversion
program.

The inversion program was tested using many sets of syn-
thetic data, and here we present 2 typical cases, as shown in
Table 1. Figure 1 shows that the particle size distribution for the
synthetic data (Ntrue) is recovered effectively using a wide range
of values ofλ. The error between the inverted synthetic data and
the true distribution (Ntrue) is measured using 3 different error
indicators: 1-Norm, 2-Norm, and infinity-Norm. The average
absolute deviation is calculated from the 1-Norm as follows:

E1 =
∑D

i=1 |Ni − Ntrue,i |
D

. [11]

The root-mean-square (rms) error (error in the 2-Norm) for the
inversion of the synthetic data is calculated as follows:

E2 = ‖N− Ntrue‖√
D

=
√∑D

i=1 (Ni − Ntrue,i)2

√
D

. [12]

The error corresponding to the infinity-Norm is

E∞ = Max |N− Ntrue|. [13]

Figure 2 shows thatE1, E2, andE∞ all show the same trend
when λ is varied from 10−10 to 1. The best value ofλ that
minimizes the error for the synthetic data, (λbest), for all
3 error indicators,E1, E2, andE∞ (λbest,E1 = 3× 10−5,λbest,E2 =
7× 10−5,λbest,E∞ = 8× 10−5), is roughly an order of magnitude
larger than that determined by the L-curve method (λlcurve=
8.4× 10−6). However, for most cases the L-curve method is
reasonably accurate and, as explained below, it is the preferred
method for selection ofλ. Thus these 3 error indicators are
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Figure 1. Comparison of size distributions (obtained usingλbest, λlcurve, λtarget) to the true size distribution (Ntrue) for case I using
σerror= 5%.

Figure 2. Three different error indicators (E1, E2, E∝) as a function of the regularization parameter,λ, for case I. Values
corresponding to the distributions shown in Figure 1 are labeled.
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Table 2
Regularization parameters and resulting rms error per channel

Case I Case II

λ rms errora λ rms errora

λbest 7.0× 10−5 7.8× 102 2.0× 10−6 1.5× 103

λlcurve 8.4× 10−6 8.6× 102 2.4× 10−7 1.9× 103

λtarget 5.8× 10−4 1.3× 103 6.8× 10−6 1.7× 103

aParticles per cm3.

consistent and any of them could reasonably be used for com-
paring the inverted synthetic data to the true distribution.E2

was chosen for reference throughout this paper. The value of the
regularization parameter,λ, that corresponds to the minimum
error is referred to asλbest and is used to generateNbest. This
value ofλ corresponds to the “best” value as it minimizes the
error. However, in real experiments (whenNtrue is not available),
one of the methods described above must be used to estimate
the optimum value ofλ. Here we compare the distributions that
were obtained usingλ generated by the L-curve and target value
methods. Figure 1 shows that the distributions obtained using
the different values ofλ almost overlap. However, a closer look
as shown in the inset verifies thatNbest andNlcurve are in excel-
lent agreement withNtrue, whileNtarget (the distribution obtained

Figure 3. Noisy data,R, and the response resulting from the size distribution obtained from the inversion program (Rfit =SNbest)
for case I usingσerror= 5%.

using the target value ofλ) suffers from mild oversmoothing.
This is also apparent from Figure 2, which shows the rms error
(E2) for the values ofλ corresponding to the distributions in
Figure 1. Table 2 lists the values ofλ and the resulting errors
in the size distributions. Ifλbest(7× 10−5) can be considered to
be the optimal value ofλ, thenλlcurve (8.4× 10−6) does a rea-
sonable job of estimating the best value ofλ. The rms error in
the size distribution forλlcurve is just 10.8% larger than forλbest.
Usingλtarget (5.8× 10−4), on the other hand, gives a rms error
that is 63.7% greater than that obtained withλbest and causes
the final distribution to be slightly oversmoothed. Note that
for this synthetic data, the level of error in the data is known
and the value forσ priori used to estimate the target value is
identical to that used to generate the response (σ error). How-
ever, as seen in Figure 2,λtarget obtained in this case is still an
overestimation of the best value. In the case of experimental
data when the error is unknown, this method would introduce
further uncertainties via the assignment ofσ priori , which must
be estimated from the data. Figure 3 shows the noisy data (R)
and the response (Rfit=SNlcurve) resulting from the size dis-
tribution obtained from the inversion program. The regulariza-
tion procedure has the effect of forcing this fitted response to
be smooth. The noisy data for this simulated case was gener-
ated using 5% noise in the data (theσ error used to calculate the
random error added to the data was set to 0.05). The effect of
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Figure 4. Comparison of size distributions (obtained usingλbest, λlcurve, λtarget) to the true size distribution (Ntrue) for case II
usingσerror= 5%.

increasing the noise level on the inverted distributions is dis-
cussed below.

The second case shown here uses a more complicated distri-
bution with 3 peaks from normal distributions and 1 peak from a
lognormal distribution, as shown in Table 1 and Figure 4. Once
again, all 3 inverted distributions closely approximate the true
size distributionNtrue. From the inset in Figure 4, it can be seen
thatNlcurveshows an artificial ripple that is not present in the true
distribution. In contrast to the first case, for this synthetic data
setλtarget (6.8× 10−6) is closer toλbest (2× 10−6) thanλlcurve

(2.4× 10−7). However, this is an exception to the general trend,
as for all other cases the L-curve method predicts a better value
of λ than the target method. The plot of error versusλ for case II,
shown in Figure 5, shows that as in case I, all 3 error indicators
show a similar trend. The simulated instrument responseR(gen-
erated with 5% noise) and fitted response (Rfit) in Figure 6 are
similar to those shown in Figure 3 for the previous case.

The effect of increasing the level of error in the data is shown
for case I in Figures 7 and 8 and for case II in Figures 8 and 9.
When the relative error (σ error) is increased from 5% to 50%, the
regularization procedure with the L-curve method of selecting
λ for the final size distributions is still able to invert the data
for both cases and recover a good approximation to the true size
distribution. As shown in Figure 7a, for 5% relative error in
the dataNlcurve is almost identical to the true size distribution.
Increasing the error to 50% results inNlcurve being somewhat

oversmoothed, even though it still retains the overall shape of the
distribution. This is not a shortcoming of the L-curve method,
but rather is simply a result of the large amount of noise in the
data. Figure 7b shows that even with the best value ofλ, the
inverted distribution is slightly oversmoothed. From Figures 8a
and 8b, it can be seen that even with significant noise in the data,
the inversion program succeeds in obtaining a size distribution
that approximates the true distribution well and nicely repro-
duces a smoothed version of the noisy data. For the second case,
as shown in Figure 9a, with 5% relative error in the dataNlcurve

captures the true distribution well. When the error is increased
to 50%, the L-curve method still manages to recover the distri-
bution effectively, although it suffers from slight oversmoothing
at the higher peaks (around 100 nm and higher) and overshoots
the peak around 20 nm. The fact that the L-curve method of pre-
dicting λ does an excellent job is verified in Figure 9b, which
showsNtrue along withNbest(5%), Nbest(25%), andNbest(50%). With
the best value ofλ, the final distribution obtained looks almost
identical to that obtained using theλ determined by the L-curve
method. Even withλbest, the inverted distribution at the high-
est error level shows some structure that is not present in the
true distribution. It appears that there is simply not enough in-
formation content in the response with 50% relative error to
accurately obtain the true structure of the size distribution in its
entirety. This becomes rather obvious by looking at Figures 10a
and 10b, which show the increased noise in the instrument
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Figure 5. Three different error indicators (E1, E2, E∝) as a function of the regularization parameter,λ, for case II. Values
corresponding to the distributions shown in Figure 4 are labeled.

Figure 6. Noisy data,R, and the response resulting from the size distribution obtained from the inversion program (Rfit =
SNbest) for case II usingσerror= 5%.
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(a)

(b)

Figure 7. Effect of increasing relative error fromσerror= 5% toσerror= 50% on the size distributions obtained using (a)λlcurve

and (b)λbestas compared to the true distribution (Ntrue) for case I.
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(a)

(b)

Figure 8. Effect of increasing relative error to (a)σerror= 25% and (b)σerror= 50% on the noisy dataR, and the response resulting
from the size distribution obtained from the inversion program (Rfit = SNbest) for case I.
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(a)

(b)

Figure 9. Effect of increasing relative error fromσerror= 5% toσerror= 50% on the size distributions obtained using (a)λlcurve

and (b)λbestas compared to the true distribution (Ntrue) for case II.
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(a)

(b)

Figure 10. Effect of increasing relative error to (a)σerror= 25% and (b)σerror= 50% on the noisy dataR, and the response
resulting from the size distribution obtained from the inversion program (Rfit = SNbest) for case II.
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Figure 11. The effect ofσerror on E2 as a function of regularization parameter,λ, for case II. The positions of the different values
of λtarget, λlcurve, andλbestcorresponding to the 3 errors are also shown on the plot.

response and the corresponding fitted response obtained from
the size distribution. Figure 11 shows the rms error (E2) in the
inverted solution as a function of the regularization parameter,
λ, for the 3 levels of error in the instrument response. As the
level of error in the data increases, the best value ofλ increases
slightly because more smoothing is needed to filter out the in-
creasing noise. The sensitivity of the error to the value ofλ

decreases as the error level of the data increases and the mini-
mum in the error with respect toλbecomes less pronounced. The
L-curve method still remains reliable at these larger relative er-
rors. Figure 11 shows that while forσerror = 5%,λlcurve (2.4×
10−7) is about an order of magnitude smaller thanλbest (2×
10−6), for σ error = 50%,λlcurve (5.9× 10−5) is closer toλbest

(3× 10−5), and forσ error = 25%, λlcurve (1.03× 10−5) is al-
most identical toλbest (1× 10−5). Thus there is no clear corre-

Table 3
Regularization parameters and resulting rms error per channel for 3 levels of

relative error in the data for Case II

σerror= 5% σerror= 25% σerror= 50%

λ rms errora λ rms errora λ rms errora

λbest 2.0× 10−6 1.5× 103 1.0× 10−5 6.1× 103 3.0× 10−5 1.2× 104

λlcurve 2.4× 10−7 1.9× 103 1.0× 10−5 6.1× 103 5.9× 10−5 1.2× 104

λtarget 6.8× 10−6 1.7× 103 8.1× 10−5 7.6× 103 2.3× 10−3 2.8× 104

aParticles per cm3.

lation between the errors in the data and the effectiveness of the
L-curve method. Table 3 shows theE2 value for each value of
the regularization parameter and each level of error in the instru-
ment response. The rms error usingλlcurve is generally higher
than that usingλbestand varies from 32.4% higher (σ error = 5%)
to 0.1% lower (σ error = 25%) to 2.4% higher (σ error = 50%),
which indicates that the L-curve method works reasonably well
at all error levels. The corresponding values for the target value
method are higher at 17.5% (σ error = 5%), 25.2% (σ error =
25%), and 139.8% (σ error = 50%), respectively. Comparing the
rms error between the target value and L-curve method for all
3 error levels and for both cases, the L-curve method proved to
be more reliable in all but one case (case II, error= 5%). The
L-curve method was thus adopted as our preferred method for
selectingλ in all cases.
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The L-curve method of predicting the optimal value ofλ is
based on finding the corner of the L-curve from the maximum
curvature of the log(min2) versus log(min1) plot, so it is instruc-
tive to look at how this plot changes as the level of error in
the data increases. Figures 12a–c for the second case show that

(a)

(b)

Figure 12. The effect of increasing error on the L-curve plot for case II. Increasingσerror from (a) 5% to (b) 25% to (c) 50%. The
corner of the L-curve is retained, thereby making the L-curve method usable for all of these error levels.(Continued)

even though with increasingσ error the curvature in the L-curve
plot becomes less distinct, it is still possible to locate a cor-
ner using this method. This explains the ability of the L-curve
method to obtain reasonably good distributions even at higher
relative errors. Thus the method we have implemented here,
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(c)

Figure 12. (Continued)

with L-curve selection of the regularization parameter, can be
expected to perform well for a wide range of the level of error
in the data. This includes cases where particle concentrations
are high (and therefore relative errors can be low), as in stud-
ies of intentional particle production as well as atmospheric or
closed environment monitoring with very low particle concen-

Figure 13. Effect of changing the number of data channels (D) on the rms error per channel and CPU time. CPU time for 3
different cases: using analytical gradient and hessian (squares), using analytical gradient and numerical hessian (triangles), and
using numerical gradient and hessian (diamonds).

trations and correspondingly high levels of relative uncertainty
in individual data points.

The 2 cases using synthetic data presented above show that
the distributions obtained using our inversion program give ex-
cellent agreement with the true distributions for a wide range
of error levels. The major improvement of our current inversion
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program over previous implementations that also perform well
is the computationally economic use of a large number of chan-
nels. To observe the effect of the number of channels on the
CPU time (obtained on a SUN Blade 100 workstation, compa-
rable in processor speed to a desktop PC) andE2 (rms error per
channel in the resulting size distribution), our program was run
for case II using a relative error of 5% (shown in Figures 4–
6), with the L-curve method of findingλ. Figure 13 shows that
increasing the number of channels significantly reduces the er-
ror in the data (by 282% going from 50 to 300 channels) at
the cost of increased CPU time (from 0.92 to 125 s). However,
it should be noted that for some simulations (not shown here)
the CPU time could increase to about 5 min, depending on the
synthetic data chosen. So, for 300 channels the time for data
inversion is at most roughly the same as the time for data col-
lection. The computational efficiency of our program using the
analytical gradient and hessian of the objective function is also
demonstrated in Figure 13. When only the gradient, but not the
hessian, is provided, the required CPU time increases by about
an order of magnitude. When neither the gradient nor the hes-
sian is provided, the required CPU time is about 3 orders of
magnitude greater than when both are provided. Thus providing
analytical expressions for the gradient and hessian of the objec-
tive function is necessary to make the use of a large number of
size channels with this method computationally feasible.

CONCLUSIONS
A new program for inversion of scanning electrical mobility

spectrometer data was developed that uses a Tikhonov regu-
larization approach with a large number of data channels and
analytical expressions for the gradient and hessian of the objec-
tive function. Use of a large number of channels ensures that
the resolution of the measurements is limited by the capabilities
of the instrument and not by the selection of the size channels.
The analytical expression for the gradient and hessian in the
minimization procedure makes the use of a large number of data
channels computationally economical. The program was tested
using synthetic data and performed well. A multimodal distribu-
tion with a noise level of 5% (σ error = 5%) was easily recovered.
The presence of a large amount of relative error did not prevent
us from obtaining reasonable size distributions. Of the 2 methods
used to find the best estimate of the regularization parameter,λ,
the L-curve method proved to be the most effective and robust.
Both the program itself and the expressions for the gradient and
hessian of the objective function are available from the authors
upon request.

NOMENCLATURE
A scaling constant inNtrue

D number of data points
E1 error corresponding to 1-Norm
E2 error corresponding to 2-Norm
E∝ error corresponding to infinity-Norm

Ki nonnegative kernel function of instrument
N particle size distribution
Nbest size distribution corresponding toλbest

Nguess initial guess for the size distribution
Nguess,max maximum element ofNguess

Nlcurve size distribution corresponding toλbest

Ntarget size distribution corresponding toλtarget

Ntrue true distribution used to simulate synthetic
data

p number of normal distributions
p′ number of lognormal distributions
qa volumetric flow rate of aerosol entering DMA
Q objective function to be minimized
Rfit response resulting fromNbest, obtained from

inversion program
Ri ith instrument response
Rinitial instrument response without noise
Rmax maximum vale ofR
S matrix of sizeD× D, representing the kernel

function
S

initial
used to calculate the initial guess for the size
distribution

tc counting time
x particle diameter

Greek Symbols
εi random error added to data from a normal

distribution of mean 0 and standard deviation
σerror

εinstrument fractional error inith measurement
φ charge distribution on particles
η CPC counting efficiency
λ regularization parameter
λbest λcorresponding to the minimum error that best

describes the inverted distribution
λlcurve λ corresponding to a corner of the L-curve
λmax maximum value ofλ used at one end of the

interval
λmin minimum value ofλ used at the other end of

the interval
λtarget λ corresponding to the target value of min1

µ mean of normal distribution
µ′ mean of lognormal distribution
ν number of elementary charges on the particle
σ standard deviation of the normal distribution
σ ′ standard deviation of the lognormal distribu-

tion
σerror standard deviation of the normal distribution

used to generateεi

σpriori a priori estimated fractional uncertainty in the
response

Ǟi average DMA transfer function for channeli
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List of Mathematical Symbols

‖X‖ =
√∑

x2
i 2-Norm of vectorX

E〈X〉 expectation operator
|X| absolute value of vectorX
X vectorX
X matrix X
log base-10 logarithm
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