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Abstract

An overview of methods for preparing nanoparticles in the vapor phase is given, and recent advances are reviewed.
Developments in instrumentation for monitoring vapor-phase synthesis of nanoparticles and in modeling these processes are also
included. The most important developments relate to improved control and understanding of nanoparticle aggregation and
coalescence during synthesis, and to methods for producing multi-component nanoparticles.
� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Nanoparticles are viewed by many as fundamental
building blocks of nanotechnology. They are the starting
point for many ‘bottom-up’ approaches for preparing
nanostructured materials and devices. As such, their
synthesis is an important component of rapidly growing
research efforts in nanoscale science and engineering.
Nanoparticles of a wide range of materials can be
prepared by a variety of methods. This review focuses
on methods for preparing nanoparticles in the vapor
phase. It provides broad but shallow coverage of this
field. An attempt to describe advances in a wide range
of synthesis methods has been made, at the expense of
detailed coverage of any particular technique. More
detailed coverage of flame synthesis of nanoparticles is
given by Kammler et al.w1x. Gas-phase synthesis of
nanoparticles for electronics-related applications was
reviewed by Kruis et al.w2x. Hahnw3x presented a useful
overview of gas-phase synthesis of nanocrystalline
materials.
Synthesis of nanoparticles in the liquid phase is not

covered here. Reviews in this area have been presented
by Grieve et al.w4x, Trindade et al.w5x, and Murray et
al. w6x, among others. The production of fullerenes,
carbon nanotubes, and related materials is also outside
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the scope of this review. Finally, we do not attempt to
discuss applications of nanoparticles produced in the gas
phase, though these clearly provide the ultimate driving
force for the advances in synthesis that are covered here.
In vapor-phase synthesis of nanoparticles, conditions

are created where the vapor phase mixture is thermo-
dynamically unstable relative to formation of the solid
material to be prepared in nanoparticulate form. This
includes usual situation of a supersaturated vapor. It also
includes what we might call ‘chemical supersaturation’
in which it is thermodynamically favorable for the vapor-
phase molecules to react chemically to form a condensed
phase. If the degree of supersaturation is sufficient, and
the reactionycondensation kinetics permit, particles will
nucleate homogeneously. Once nucleation occurs,
remaining supersaturation can be relieved by condensa-
tion or reaction of the vapor-phase molecules on the
resulting particles, and particle growth will occur rather
than further nucleation. Therefore, to prepare small
particles, one wants to create a high degree of supersat-
uration, thereby inducing a high nucleation density, and
then immediately quench the system, either by removing
the source of supersaturation or slowing the kinetics, so
that the particles do not grow. In most cases, this happens
rapidly (milliseconds to seconds) in a relatively uncon-
trolled fashion, and lends itself to continuous or quasi-
continuous operation. This contrasts with many colloidal
syntheses of nanoparticles that are carried out in discrete
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Fig. 1. TEM image of agglomerated nanoparticles typical of those
produced in many vapor-phase processes. These particular particles
are silicon produced by laser pyrolysis of silane, but the degree of
polydispersity and agglomeration is typical of many vapor-phase pro-
cesses in which no special efforts have been made to avoid agglom-
eration or narrow the size distribution of the primary particles.

batches under well-controlled conditions with batch
times of hours to days.
Once particles form in the gas phase, they coagulate

at a rate that is proportional to the square of their
number concentration and that is only weakly dependent
on particle size. At sufficiently high temperature, parti-
cles coalesce(sinter) faster than they coagulate, and
spherical particles are produced. At lower temperatures,
where coalescence is negligibly slow, loose agglomerates
with quite open structures are formed. At intermediate
conditions, partially sintered non-spherical particles are
produced. If individual, non-agglomerated nanoparticles
are desired, control of coagulation and coalescence is
crucial. In contrast to the liquid phase, where a disper-
sion of nanoparticles can be stabilized indefinitely by
capping the particles with appropriate ligands, nanopar-
ticles in the gas phase will always agglomerate. So, by
non-agglomerated nanoparticles, we usually mean par-
ticles agglomerated loosely enough that they can be
redispersed without Herculean effort, as compared to
hard (partially sintered) agglomerates that cannot be
fully redispersed. Fig. 1 illustrates typical degrees of
agglomeration and polydispersity obtained in gas phase
processes when no special efforts have been made to
control agglomeration or narrow the particle size distri-
bution. In the cases of carbon black, fumed silica, and
pigmentary titania, such particles are produced commer-
cially in huge quantities(millions of metric tons per
year). In some applications, such as catalysis, agglom-
erates with an open structure like those in Fig. 1 are
desired. However, in many potential applications non-
agglomerated spherical nanoparticles of uniform size are

needed. Thus, many of the advances reviewed here
relate to understanding and controlling particle aggre-
gation and coalescence to produce non-agglomerated
particles of desired size and narrow size distribution.

2. Recent examples of and advances in particle
synthesis techniques

In this section, recent examples of and advances in
gas-phase methods for preparing nanoparticles are
reviewed. One useful way of classifying such methods
is by the phase of the precursor and the source of energy
used to achieve a state of supersaturation. This section
is structured around such a classification.

2.1. Methods using solid precursors

One general class of methods of achieving the super-
saturation necessary to induce homogeneous nucleation
is to vaporize the material into a background gas and
then cool the gas.

2.1.1. Inert gas condensation
Perhaps the most straightforward method of achieving

supersaturation is to heat a solid to evaporate it into a
background gas, then mix the vapor with a cold gas to
reduce the temperature. This method is well suited for
production of metal nanoparticles, since many metals
evaporate at reasonable rates at attainable temperatures.
By including a reactive gas, such as oxygen, in the cold
gas stream, oxides or other compounds of the evaporated
material can be prepared. Wegner et al.w7 x presented a●

detailed, systematic modeling and experimental study of
this method, as applied to preparation of bismuth nano-
particles, including both visualization and computational
fluid dynamics simulation of the flow fields in their
reactor. They clearly showed that they could control the
particle size distribution by controlling the flow field
and the mixing of the cold gas with the hot gas carrying
the evaporated metal. Other advances in this method
have been in preparing composite nanoparticles and in
controlling the morphology of single-component nano-
particles by controlled sintering after particle formation.
Maisels et al.w8 x prepared composite nanoparticles of●

PbS with Ag by separate evaporationycondensation of
the two materials followed by coagulation of oppositely
charged PbS and Ag particles selected by size and
charge. Ohnow9x prepared SiyIn, GeyIn, AlyIn and Aly
Pb composite nanoparticles by condensation of In or Pb
onto Si, Ge, or Al particles prepared by inert gas
condensation and brought directly into a second conden-
sation reactor. Nakaso et al.w10 x conducted a detailed●

experimental and theoretical study of the in-flight sin-
tering (coalescence) of gold nanoparticle agglomerates
after evaporationycondensation synthesis. They were
able to differentiate between different sintering mecha-
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nisms, and extracted rate constants for the restructuring
process from their experiments. Similarly, Nanda et al.
w11x studied the in-flight sintering of PbS nanoparticles.
They were able to tune the band-gap of these semi-
conductor nanoparticles by changing the particle size
and morphology.

2.1.2. Pulsed laser ablation
Rather than simply evaporating a material to produce

supersaturated vapor, one can use a pulsed laser to
vaporize a plume of material that is tightly confined,
both spatially and temporally. This method can generally
only produce small amounts of nanoparticles. However,
laser ablation can vaporize materials that cannot readily
be evaporated. Marine et al.w12x presented a recent
analysis of this method, in which they also reviewed its
development. Nakata et al.w13 x used a combination of●

laser-spectroscopic imaging techniques to image the
plume of Si atoms and clusters formed during synthesis
of Si nanoparticles. They investigated the dependence
of the particle formation dynamics on the background
gas, and found that it was substantial. Some other recent
examples include the preparation of magnetic oxide
nanoparticles by Shinde et al.w14x, titania nanoparticles
by Harano et al.w15x, and hydrogenated-silicon nano-
particles by Makimura et al.w16x.

2.1.3. Spark discharge generation
Another means of vaporizing metals is to charge

electrodes made of the metal to be vaporized in the
presence of an inert background gas until the breakdown
voltage is reached. The arc(spark) formed across the
electrodes then vaporizes a small amount of metal. This
produces very small amounts of nanoparticles, but does
so relatively reproducibly. Weber et al.w17 x recently●

used this method to prepare well-characterized nickel
nanoparticles for studies of their catalytic activity in the
absence of any support material. By preparing the
nanoparticles as a dilute aerosol they were able to carry
out reactions on the freshly prepared particles while they
were still suspended. Metal-oxides or other compounds
can be prepared by using oxygen or another reactive
background gas. Rather than having the background gas
present continuously, it can be pulsed between the
electrodes at the same time that the arc is initiated, as
in the pulsed arc molecular beam deposition system
described by Rexer et al.w18x.

2.1.4. Ion sputtering
A final means of vaporizing a solid is via sputtering

with a beam of inert gas ions. Urban et al.w19x recently
demonstrated formation of nanoparticles of a dozen
different metals using magnetron sputtering of metal
targets. They formed collimated beams of the nanopar-
ticles and deposited them as nanostructured films on
silicon substrates. This process must be carried out at

relatively low pressures(;1 mTorr), which makes
further processing of the nanoparticles in aerosol form
difficult.

2.2. Methods using liquid or vapor precursors

An alternate means of achieving the supersaturation
required to induce homogeneous nucleation of particles
is chemical reaction. Chemical precursors are heated
andyor mixed to induce gas-phase reactions that produce
a state of supersaturation in the gas phase.

2.2.1. Chemical vapor synthesis
In this approach, vapor phase precursors are brought

into a hot-wall reactor under conditions that favor
nucleation of particles in the vapor phase rather than
deposition of a film on the wall. It is called chemical
vapor synthesis or chemical vapor condensation in
analogy to the chemical vapor deposition(CVD) pro-
cesses used to deposit thin solid films on surfaces. This
method has tremendous flexibility in producing a wide
range of materials and can take advantage of the huge
database of precursor chemistries that have been devel-
oped for CVD processes. The precursors can be solid,
liquid or gas at ambient conditions, but are delivered to
the reactor as a vapor(from a bubbler or sublimation
source, as necessary).
There are many good examples of the application of

this method in the recent literature. Ostraat et al.w20 x●

have demonstrated a two-stage reactor for producing
oxide-coated silicon nanoparticles that have been incor-
porated into high-density nonvolatile memory devices.
By reducing the silane precursor composition to as low
as 10 parts per billion, they were able to produce non-
agglomerated single-crystalline spherical particles with
mean diameter below 8 nm. This is one of relatively
few examples of a working microelectronic device in
which vapor-phase synthesized nanoparticles perform an
active function. In other recent examples of this
approach, Magnusson et al.w21x produced tungsten
nanoparticles by decomposition of tungsten hexacarbon-
yl and Nasibulin et al.w22x produced copper and copper
oxide nanoparticles from copper acetylacetonate.
Another key feature of chemical vapor synthesis is

that it allows formation of doped or multi-component
nanoparticles by use of multiple precursors. Schmechel
et al. w23x prepared nanocrystalline europium doped
yttria (Y O :Eu ) from organometallic yttrium and3q

2 3

europium precursors. Senter et al.w24x incorporated
erbium into silicon nanoparticles using disilane and an
organometallic erbium compound as precursors. Srdic et´
al. w25x prepared zirconia particles doped with alumina.
It is also possible to make composite nanoparticles
where one material is encapsulated within another. A
particularly promising approach to this is the sodium
metalymetal halide chemistry used by Ehrman et al.
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w26 x. In this approach, a halide, such as SiCl , is●
4

reacted with sodium vapor in a heated furnace to
produce NaCl-encapsulated particles. For example
SiCl reacts with Na to produce NaCl-encapsulated Si4

particles. The salt-encapsulation can potentially be used
to prevent agglomeration of the particles, and the salt
can then be washed away in a post-processing step.

2.2.2. Spray pyrolysis
Rather than delivering the nanoparticle precursors into

a hot reactor as a vapor, one can use a nebulizer to
directly inject very small droplets of precursor solution.
This has been called spray pyrolysis, aerosol decompo-
sition synthesis, droplet-to-particle conversion, etc.
Reaction often takes place in solution in the droplets,
followed by solvent evaporation. Recent examples of
this include preparation of TiO nanoparticles by Aho-2

nen et al.w27x and copper nanoparticles by Kim et al.
w28x.

2.2.3. Laser pyrolysisyphotothermal synthesis
An alternate means of heating the precursors to induce

reaction and homogeneous nucleation is absorption of
laser energy. Compared to heating the gases in a furnace,
this allows highly localized heating and rapid cooling,
since only the gas(or a portion of the gas) is heated,
and its heat capacity is small. Heating is generally done
using an infrared(CO ) laser, whose energy is either2

absorbed by one of the precursors or by an inert
photosensitizer such as sulfur hexafluoride. The silicon
particles shown in Fig. 1 were prepared in our laboratory
by laser pyrolysis of silane. Nanoparticles of many
materials have been made using this method. A few
recent examples are MoS nanoparticles prepared by2

Borsella et al. w29x, SiC nanoparticles produced by
Kamlag et al.w30x, and Si nanoparticles prepared by
Ledoux et al.w31,32x. Ledoux et al. use a pulsed CO2
laser, thereby shortening the reaction time and allowing
preparation of even smaller particles.

2.2.4. Thermal plasma synthesis
Yet another means of providing the energy needed to

induce reactions that lead to supersaturation and particle
nucleation is to inject the precursors into a thermal
plasma. This generally decomposes them fully into
atoms, which can then react or condense to form
particles when cooled by mixing with cool gas or
expansion through a nozzle. Heberlein et al.w33 x have●

applied these methods to the production of nanoparticles
of SiC and TiC for nanophase hard coatings.

2.2.5. Flame synthesis
Rather than supplying energy externally to induce

reaction and particle nucleation, one can carry out the
particle synthesis within a flame, so that the heat needed
is produced in situ by the combustion reactions. This is

by far the most commercially successful approach to
nanoparticle synthesis—producing millions of metric
tons per year of carbon black and metal oxides. How-
ever, the coupling of the particle production to the flame
chemistry makes this a complex process that is rather
difficult to control. It is primarily useful for making
oxides, since the flame environment is quite oxidizing.
Recent advances are expanding flame synthesis to a
wider variety of materials and providing greater control
over particle morphology. Janzen and Rothw34 x recent-●

ly presented a detailed study of flame synthesis ofg-
Fe O nanoparticles, including comparison of their2 3

results to a theoretical model. Lee and Choiw35 x●

controlled nanoparticle morphology by using a CO2
laser to re-heat flame-synthesized titania and silica
nanoparticle agglomerates, thereby sintering them in
situ. Wegner et al.w36x controlled the size and mor-
phology of titania nanoparticles by extracting them from
the flame through a critical flow nozzle, quenching
particle growth and agglomeration. Kammler et al.
w37 x have shown that they can influence flame condi-●

tions and primary particle size by application of a DC
electric field to the particle synthesis flame.

2.2.6. Flame spray pyrolysis
Rather than injecting vapor precursors into the flame,

one can directly spray liquid precursor into it. This
process is generally called flame spray pyrolysis. This
method allows use of precursors that do not have
sufficiently high vapor pressure to be delivered as a
vapor. Madler et al.w38 x presented a very detailed●¨
study of this method, as applied to the synthesis of silica
particles from hexamethyldisiloxane.

2.2.7. Low-temperature reactive synthesis
For particular materials, it is possible to react vapor-

phase precursors directly without external addition of
heat, and without significant production of heat. Sari-
giannis et al. produced ZnSe nanoparticlesw39x from
dimethylzinc-trimethylamine and hydrogen selenide by
mixing them in a counter-flow jet reactor at room
temperature. Apparently the heat of reaction was suffi-
cient to allow crystallization of the particles without
substantially increasing the gas temperature. This is an
intriguing result, because it is one of few methods
reported for vapor-phase preparation of compound semi-
conductor nanoparticles that are usually produced by
colloidal chemistry.

2.3. Advances in instrumentation

Because vapor-phase nanoparticle synthesis often
takes place on short timescales, in small regions of a
reactor, and in complex mixtures, improvements in
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methods for characterization of reactor conditions and
particle formation are essential to improved understand-
ing and control of particle formation. Thus, a few
examples of the current state-of-the art are included
here. Arabi-Katbi et al.w40 x used Fourier transform●

infrared spectroscopy in both emission and transmission
modes to simultaneously characterize gas temperature,
gas concentrations, particle temperature and particle
concentration during flame synthesis of titania. Cho and
Choi w41 x combined localized thermophoretic sampling●

and in situ light scattering measurements to characterize
particle concentration, size, and morphology during
flame synthesis of silica nanoparticles. Janzen et al.w42x
compared particle mass spectrometry with TEM imaging
of extracted samples from low-pressure reactors, and
saw good agreement for ZnO and Fe O nanoparticles,2 3

but poorer agreement for GeO nanoparticles.2

2.4. Advances in modeling of nanoparticle synthesis

Because in situ characterization and control of many
vapor-phase nanoparticle syntheses is difficult, modeling
studies can play an important role in the development
and improvement of these processes. Several of the
studies cited above had significant modeling compo-
nents. Some additional advances in the modeling of
vapor-phase particle synthesis are included here. It is
increasingly possible to compute particle nucleation rates
based on detailed chemical reaction kinetics in cases
where nucleation does not occur by simple condensation
of a supersaturated vapor. Girshick et al.w43–45x have
done this for several silicon-based systems. There have
recently been many important developments in modeling
multidimensional particle size distributions, where both
particle volume and surface area or some other pair of
particle characteristics are explicitly treated. These
include sectional methods like those presented by Muhl-¨
enweg et al.w46 x, Tsantilis et al.w47 x, Lee et al.w48x,● ●

and Jeong and Choiw49x, as well as bivariate moment
methods like that presented by Rosner and Pyykonen¨
w50 x and Monte Carlo methods like that presented by●

Rosner and Yuw51x. In a similar vein, Efendiev et al.
have developed methodologies for modeling simultane-
ous coagulation and phase segregation in multi-compo-
nent particles containing mutually immiscible phases,
using both a hybrid sectional-moment approachw52 x●

and a Monte Carlo-based methodw53x. Continuing
improvements in simulation methodologies, along with
inevitable advances in computing power, are beginning
to make possible the coupling of detailed chemical
reaction kinetics, multidimensional particle size distri-
butions, and computational fluid dynamics simulations
in two or even three dimensions to create models that
quantitatively describe the details of particle formation
processes and that compare reasonably with experiment.

3. Conclusions

A rather broad but shallow review of recent advances
in vapor-phase synthesis of nanoparticles has been pre-
sented. New approaches and improved understanding of
old approaches for improving control of particle size,
morphology, and polydispersity are appearing regularly.
The variety of materials that can be prepared as nano-
particles in the vapor phase is rapidly growing, and
includes multi-component and doped materials. Advanc-
es in instrumentation and modeling are improving our
detailed understanding of particle formation processes.
In the near future, we can expect these activities to
continue at a rapid pace, and to result in more examples
of vapor-phase synthesized nanoparticles playing impor-
tant roles as building blocks of nanotechnology.
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