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ABSTRACT
Motivation: Novel high-throughput genomic and proteomic tools are
allowing the integration of information from a range of biological assays
into a single conceptual framework. This framework is often described
as a network of biochemical reactions. We present strategies for the
analysis of such networks.
Results: The direct differential method is described for the system-
atic evaluation of scaled sensitivity coefficients in reaction networks.
Principal component analysis, based on an eigenvalue–eigenvector
analysis of the scaled sensitivity coefficient matrix, is applied to rank
individual reactions in the network based on their effect on system
output. When combined with flux analysis, sensitivity analysis allows
model reduction or simplification. Using epidermal growth factor (EGF)
mediated signaling and trafficking as an example of signal transduc-
tion, we demonstrate that sensitivity analysis quantitatively reveals
the dependence of dual-phosphorylated extracellular signal-regulated
kinase (ERK) concentration on individual reaction rate constants. It
predicts that EGF mediated reactions proceed primarily via an Shc-
dependent pathway. Further, it suggests that receptor internalization
and endosomal signaling are important features regulating signal
output only at low EGF dosages and at later times.
Contact: neel@eng.buffalo.edu
Supplemental data: http://www.eng.buffalo.edu/∼neel/bio_reaction_
network.html

INTRODUCTION
Mathematical modeling and simulation of complex biological pro-
cesses has gained momentum in the area of quantitative cell biology
and bioinformatics. In silico models have been developed for various
cells including Escherichia coli (Edwards et al., 2001), Saccharo-
myces cerevisiae (Vaseghi et al., 1999), Mycoplasma genitalium-like
cells (Tomita et al., 1999) and erythrocytes (Rapoport et al., 1977;
Kauffman et al., 2002). Complex reaction network models for signal
transduction (Bhalla and Iyengar, 1999; Lee et al., 2003), apop-
tosis (Fussenegger et al., 2000) and blood coagulation (Kuharsky
and Fogelson, 2001) have also emerged. Gene networks have also
been described (Kholodenko et al., 2002; Gardner et al., 2003).
While many of the above models require knowledge of reaction
stoichiometry or detailed kinetics, models based on Boolean and
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self-similarity networks have also been developed. The objective
of these studies is to quantitatively understand the features regu-
lating cellular metabolism, biochemical reaction networks and cell
response to stimulus.

Strategies developed and applied to date for analyzing biological
reaction networks include metabolic flux analysis (Stephanopoulos
et al., 1998), metabolic control analysis (Kacser and Burns, 1973;
Heinrich and Rapoport, 1974; Fell, 1997), biochemical systems
theory (Savageau, 1976), genetic algorithms (Kikuchi et al., 2003),
flux balance analysis (Edwards et al., 2001), phase plane ana-
lysis and time-lagged correlation analysis (Kauffman et al., 2002),
and Bayesian network approaches (Sachs et al., 2002). Among
these methods, while metabolic flux analysis, flux balance analysis
and metabolic control analysis are appropriate for understanding
steady state and quasi-steady-state processes, they are not well suited
for transient processes. Biochemical systems theory can be applied to
steady-state problems, but estimation of kinetic orders and rate con-
stants under unsteady state conditions is challenging. Phase plane and
statistical time-lagged correlation analysis allow recognition of pat-
terns emerging in complex reaction systems by identifying metabolic
‘pools’. While phase plane analysis is easy to visualize, it misses
features when the concentrations of two or more species move in
tandem with a time delay. Correlation analysis overcomes this lim-
itation, but it is more difficult to interpret. Bayesian methods require
vast amounts of experimental data for model development.

To complement the above approaches, we suggest that sensitiv-
ity analysis along with principal component analysis (PCA) may
provide a simple, systematic and powerful methodology for analysis
of biological networks. Such analysis can be applied to study the
characteristics of non-steady-state phenomena, such as are typical
during signal transduction. Drawing on knowledge in the field of
reaction engineering (Varma et al., 1999), in this paper we demon-
strate the utility of the direct differential method for evaluation of
sensitivity coefficients. Eigenvalue–eigenvector analysis of these
results using PCA reveals the set of strongly interacting reactions
that together regulate system output. PCA is analogous to the sin-
gular value decomposition method used for analysis of gene array
data (Alter et al., 2000; Holter et al., 2000). When combined with
flux analysis, sensitivity analysis allows model reduction. Model
reduction extends sensitivity and PCA by identifying the neces-
sary and sufficient reactions required to simulate any biochemical
network.
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For illustrative purposes, we choose the model of epidermal growth
factor (EGF) mediated signaling, since signaling via the receptor
tyrosine kinase family is important for cell growth and differenti-
ation (Starbuck and Lauffenburger, 1992; Kholodenko et al., 1999;
Schoeberl et al., 2002; Resat et al., 2003). Of the published mod-
els, we choose the model by Schoeberl et al. (2002) as a starting
point for our calculations since it simultaneously considers receptor
trafficking, signaling and degradation. Our analysis reveals the rate-
limiting reactions in this network as a function of time and EGF
stimulus dose. It compares the relative importance of Shc-dependent
and -independent pathways in regulating cell signaling. Further, it
illustrates that simulation of gene knock-out models based on sens-
itivity analysis can allow development of experimentally testable
hypothesis. While the example of signal transduction is discussed
here, it is apparent that this method can be extended to analysis of
gene networks as well.

SYSTEMS AND METHODS

EGF signaling reaction network
The EGF reaction network described by Schoeberl et al. (2002) includes 94
reactants and 125 reversible reactions (Supplemental Fig. S1 and Table S1).
Of the reactants, 48 are cytoplasmic species, 33 are endosomal species,
3 are degraded species and 10 species are either coated pit proteins or are
molecules complexed with these proteins. Among the reactions, 48 are sig-
naling reactions in the cytoplasm, 43 in the endosome, 30 are internalization
reactions, 3 are degradation reactions, and 1 reaction mediates EGF receptor
(EGFR) synthesis. The entire reaction network begins with the binding of
EGF to EGFR, and culminates with the double phosphorylation of ERK to
form ERK-PP. This network can be conceptually divided into four modules
(Fig. 1, Supplemental Fig. S1). In module A, the EGF–EGFR complex is
formed and undergoes dimerization and auto-phosphorylation. In module B,
the dimerized EGFR sequentially recruits adaptor proteins Shc (Src homolog
and collagen domain protein), Grb2 (growth factor receptor-binding protein
2), and exchange factor Sos (Son of Sevenless homolog protein). This mod-
ule, which is termed ‘Shc-dependent’, mediates the conversion of Ras-GDP
to form Ras-GTP. In module C, Ras-GTP is formed in a similar fashion as in
module B, except that the adaptor protein Shc is not involved. The module is
thus ‘Shc-independent’. In module D, Raf activated by Ras-GTP triggers the
MAP-kinase pathway, which finally produces ERK-PP (dual-phosphorylated
extracellular signal-regulated kinase). The phosphorylation of Raf at the start
of module D thus forms a critical bridge linking upstream binding and traf-
ficking with cytoplasmic signaling. The above reactions take place at both
the cell-surface and endosomal compartments following EGFR internaliza-
tion. A fraction of internalized reactants also undergo lysosomal degradation.
We note that ERK-PP is formed both in the cytoplasm and in endosomes. In
our example, the cytoplasmic ERK-PP is considered to be the final network
output. The concentration of this species is denoted as CERK-PP. CMEK-PP

denotes cytoplasmic concentration of double phosphorylated MEK.
The prototypic reaction in this model is second-order with respect to the

reacting species. Thus, the velocity (v) of the reaction where A and B com-
bine to form product X with forward and reverse rate constants kf and kr

respectively is described as v = kfCACB − krCX , where CA, CB and CX

denote the concentrations of the reactants and products. In general, the velo-
city of the ith reaction (vi ) is given by the difference between the ith forward
(r f

i ) and reverse reaction rates (r r
i ):

vi = r f
i − r r

i = kf
i

m∏
l=1

C
µf

il
l − kr

i
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l=1

C
µr

il
l (1)

Here, kf
i and kr

i are the forward and reverse rate constants for the ith reaction,
Cl , is the concentration of the lth species, and µf

il (µr
il ) refers to the forward

(reverse) reaction order of the ith reaction with respect to the lth species.
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Fig. 1. EGF mediated signaling: Signaling through the EGF reaction network
can be divided into four modules, A–D. Signal transduction is initiated with
the binding of EGF (system input) to its receptor, and it culminates with
the formation of ERK-PP (system output). Double headed arrows depict
the reversible nature of the reactions. Key reactions (labelled v8, etc.) that
form the connections between the modules are shown in the figure using the
nomenclature of Schoeberl et al. (2002). Detailed reaction equations, rate
constants and initial concentrations are shown in supplemental Figure S1 and
Table S1. It is noted that the interconnections between the modules described
here is based only on reactions connecting them. Some reactants like Grb2
and Sos are common to modules B and C. Thus, the consumption of these
molecules in module B affects the reaction rates in C and vice versa. This
provides additional coupling between the modules.

Taken together, the above network is described as an initial value problem,
which in matrix form includes m reactants and n reactions:

dC

dt
=f (kf , kr , C) = αT · v

C(at t = 0) = C0

(2)

Here, vector v consists of the n individual reaction velocities, C the concen-
trations of the m reactants, kf and kr are n × n diagonal matrices with the
forward and reverse rate constants arranged along the diagonal, and the m×n

matrix αT contains the stoichiometric coefficients for the reaction network.
For our calculations, we modified the Matlab code provided by Schoeberl
et al. along with their manuscript. Changes made to reaction rate constants
and initial concentrations are discussed in Section I of Supplemental Mater-
ial. Additional codes were also written for sensitivity, principal component
and flux distribution analysis as discussed below.

We note some limitations of the model discussed above. First, the EGF
signaling pathway analyzed here is relatively simple with regard to receptor
degradation. The effects of EGFR ligation on other signaling molecules,
like phospholipase-Cγ , are also not considered. The complexity of this
network can be expanded in the future to account for more biomolecular
interactions. Second, the rate constants and initial reactant/receptor concen-
trations for the simulation may vary with the cell-type being studied and
this may affect data interpretation. Third, the reaction network above treats
the cells as a ‘perfectly mixed’ system without accounting for concentration
gradients and mass transfer limitations which likely occur in real cases. In
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spite of these limitations, the model does represent a reasonable starting point
for meaningful biological analysis.

Sensitivity analysis
Sensitivity analysis is a linear perturbation method that is applied to study
the effect of infinitesimal changes in system parameters on system variables
(Varma et al., 1999). Examples of system parameters include the individual
reaction rate constants (kf

j and kr
j ), the pathway structure and the initial condi-

tions of the system. System variables include individual species concentration
(Ci ) and reaction velocity (vi ). In our case, the system variable considered
is Ci and system parameter is either kf

j or kr
j . Sensitivity coefficients are

derived for forward and reverse rate constants independently. For forward
rates, Zf

ij ≡ ∂Ci/∂kf
j . Zf , the m × n matrix containing the sensitivity coef-

ficients for the forward reaction rates, can be derived by solving the initial
value problem in Equation (3a) (detailed derivation provided in Supplemental
Material, Section II):

dZf

dt
= αT ·

[
rf · kf−1 + (rf · µf · C−1 − rr · µr · C−1) · Zf

]
(3a)

with initial condition Zf (at t = 0) = 0. Similarly for the reverse rate constant,
it can be shown that

dZr

dt
= αT ·

[
−rr · kr−1 + (rf · µf · C−1 − rr · µr · C−1) · Zr

]
(3b)

with initial condition Zr (at t = 0) = 0. Here r f and rr are n × n diagonal
matrices with the forward and reverse rates as the diagonal elements. C−1

is an m × m diagonal matrix with 1/Ci arranged along the diagonal. µf and
µr are n × m reaction order matrices for the forward and reverse reactions
respectively.

The Matlab ODE15s function was used to solve Equations (2) and (3)
simultaneously. Once Zf

ij and Zr
ij were obtained, we normalized the result

to obtain the scaled sensitivity coefficients, Wij [Equation (4)]. These coeffi-
cients are dimensionless and they vary with time and stimulus dose. In order
to keep the presentation of our results simple, we typically plot the maximum
or minimum Wij in a given time interval.

Wij ≡ kf
j

Ci

∂Ci

∂kf
j

or
kr
j

Ci

∂Ci

∂kr
j

(4)

All our calculations were performed in two steps. In the first step, the
reactants in the system were equilibrated for long times by setting the EGF
concentration to zero. This resulted in a decrease in the number of EGFR
per cell from 50 000 to 36 888, and the formation of complexes among the
adaptor proteins. In support of this equilibration step, others have also shown
that Sos forms a stable complex with Grb2 in resting cells even in the absence
of EGF stimulation (Sastry et al., 1995). Following equilibration, EGF was
added at a fixed dosage and the effect of this stimulation was studied. Here,
we only provide results for the second step.

By default, in this paper, Ci corresponds to the concentration of ERK-
PP in the cellular cytoplasm (CERK-PP, species 59 in Supplemental Fig. S1)
since this is the output of the reaction network. In some cases, to validate the
direct differential method, finite perturbations of 1, 5 or 50%, were applied
to the rate constant. The effect of this change on network output signal was
quantified in terms of % change in CERK-PP (= 100 ∗ [CERK-PP, perturbed −
CERK-PP, original]/CERK-PP, original).

Principal component analysis
Sensitivity analysis results in vast amounts of Wij data. The number of sens-
itivity coefficients studied depends on the choice of system variables and
system parameters. These coefficients also vary with both time and stimulus
dosage. Manual analysis of Wij data can thus be complex and tedious. With
the objective of addressing this issue, PCA is applied to quantitatively weight
the effects of the above features (i.e. time, stimulus dosage and choice of
system variable) on the reaction network. Briefly, this method involves the
construction of a scaled sensitivity coefficient matrix S (and its transpose

ST) whose elements are Wij derived from the sensitivity analysis. Detailed
explanation is provided in Section III (Supplemental Material).

The product matrix STS can be diagonalized using its eigenvalues and
eigenvectors as shown in Equation (5), where the individual eigenvalues (λl )
form the diagonal elements of the diagonal matrix �, and U denotes the
matrix whose columns are the normalized eigenvectors. ujl represents an
element of U.

STS = U�UT (5)

In such an analysis, the eigenvalue provides an absolute measure of the sig-
nificance of some part of the biological system that is composed of strongly
coupled reactions. Each eigenvector is a linear combination of reactions, and
the relative magnitude of the elements of each eigenvector measures the rel-
ative importance of each reaction for the corresponding eigenvalue. In the

current paper, we use the PCA parameter ej

(
= ∑2n

l=1 λlujl/
∑2n

l=1 λl

)
as

a measure of the importance of the j th reaction. Taken together, eigenval-
ues and eigenvectors of STS evaluated using PCA provide a measure of the
significance of individual reactions.

Model reduction
With the goal of devising a systematic method for eliminating reactions that
do not contribute significantly to network output, we combined flux analysis
with sensitivity analysis. The rationale for this is that reactions deleted during
model reduction must not only have low Wij but also low flux. As an example,
if a sequence of reactions occurs in series and one reaction is rate limiting,
all of these reactions will have comparable flux but only one will have a large
value of Wij. Clearly all the reactions must be retained in the reduced model
since we would otherwise break the series of reactions.

For any given EGF concentration, model reduction was performed inde-
pendently in two distinct time-scales or phases: One in the first several minutes
during which CERK-PP increased (Phase I), and the next when this species
concentration decreased (Phase II). These phases are described in detail in
the next section. For model reduction, in any phase, the mean reaction flux

Fj (=
∣∣∣∫ t2

t1
vj dt/(t2 − t1)

∣∣∣ with units molecules/cell/min) was calculated for

each of the reactions over the time interval from t1 to t2. This time inter-
val corresponds to either Phase I (t1 = 0, t2 = end of Phase I) or Phase II
(t1 = end of Phase I, t2 = end of Phase II). Simultaneously, the maximum
absolute value of the scaled sensitivity coefficient was determined for all the
reactions in this time interval. This maximum value was denoted |Wij|max.
In the following step, a parameter |Wcrit| was chosen for the entire network
based on a fitted ‘reduction factor’, ε and |Wij|max:

|Wcrit| = ε · |Wij|max (6)

All reactions with absolute value of scaled sensitivity coefficient greater than
|Wcrit| were classified to be ‘essential reactions’ and the remaining was termed
‘non-essential’. These essential reactions were identified for each module
(A–D); some of the non-essential reactions that had low flux were eliminated
during model reduction as follows. In some cases, we observed that none of
the reactions in a given module were essential, in which case all reactions in
that module were eliminated during model reduction. For modules that had
essential reactions, we identified which essential reaction in that module had
the lowest mean reaction flux. In this module 90% of this lowest flux value
was termed the ‘critical flux’, Fcrit according to

Fcrit = 0.9(smallest Fj among essential reactions) (7)

All non-essential reactions in the module with absolute flux less than Fcrit

were then eliminated while all other reactions were retained in the reduced
model. The degree of model reduction is thus controlled by two parameters,
primarily by the reduction factor ε and also by the factor of 0.9 in Equation (7).

For EGF network reduction, calculations for Phases I and II as described
above were performed over a range of EGF stimulus dosages. In the final
reduced model, only reactions that were eliminated in both phases and for all
EGF dosages were deleted.
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Fig. 2. Time course of ERK-PP: Simulations were carried out at three dif-
ferent EGF stimlus dosages: 50, 0.5 and 0.125 ng/ml. Signal output was
monitored in terms of cytoplasmic ERK-PP concentration. Signaling can
be conceptually divided into two phases: In Phase I, ERK-PP concentra-
tion increases and in Phase II it decreases. The transition between the two
phases occurs later for lower EGF concentrations. This transition takes place
at 4 min for a stimulus dosage of 50 ng/ml, 8 min for 0.5 ng/ml and 14 min
for 0.125 ng/ml.

IMPLEMENTATION AND RESULTS

Time dependent evolution of scaled sensitivity coefficient
Figure 2 illustrates the output signal (i.e. concentration of cytoplas-
mic ERK-PP, CERK-PP) following EGF stimulus under our simulation
conditions. As seen, a 100-fold reduction in EGF concentration from
50 to 0.5 ng/ml decreases peak output by ∼25%. Further 4-fold
reduction in stimulus to 0.125 ng/ml halves the network output. The
time point where ERK-PP concentration is highest, which marks the
transition from Phase I to Phase II, is smaller for the higher EGF
concentrations. This transition point ranges from 4 min for an EGF
dosage of 50 ng/ml to 14 min for 0.125 ng/ml.

Figure 3A–D, derived using the direct differential scheme [Equa-
tion (3)], demonstrates that the scaled sensitivity coefficients (Wij)
evolve with time in different ways depending on the reaction being
considered. The forward reactions illustrated here describe the
degradation of internalized EGFR (kf

60), the binding of EGF to EGFR
(kf

1), the dephosphorylation of MEK-PP (kf
49) and the phosphoryla-

tion of MEK to form MEK-P (kf
44). While Wij remains zero for

some reactions (panel A), it either decreases (panel C) or increases
(panel D) in other cases. Negative Wij implies that the signal output
decreases with increasing rate constant and vice versa. |Wij| > 1
suggests that changes in reaction rate and corresponding reactant
concentrations in one region may have an amplified effect on sig-
nal output. We note that detailed analysis of signal amplification
and dampening in protein kinase mediated signal transduction is
discussed elsewhere (Heinrich et al., 2002). While some reactions
apparently only affect either Phase I (panel B) or Phase II (panel C),

others display non-zero sensitivity coefficients in both phases
(panel D).

Figure 3E–H provide validation of the direct differential analysis
scheme. In these panels, finite perturbations of 1, 5 or 50% were
applied to individual reaction rate constants, and the effect of this
change on cytoplasmic ERK-PP concentration was monitored. Upon
comparing Figure 3A with Figure 3E, it is apparent that reactions with
zero sensitivity coefficient have no effect on signal output following
perturbation. Similarly, if the peak of scaled sensitivity coefficient is
∼1 (as in Fig. 3B), a 1% change in kf

1 results in a corresponding ∼1%
change in signal output (Fig. 3F). Larger perturbations of 5 and 50%
result in corresponding larger increases in signal output, though the
relationship is not strictly linear. Increasing reaction rate constants
in cases with negative sensitivity coefficients decreases output signal
(Fig. 3C and 3G). Similarly, non-zero sensitivity coefficients in both
Phase I and Phase II (Fig. 3D and 3H) affect system output at all
times.

Identification of key reactions using sensitivity analysis
Figure 4 shows the maximum and minimum scaled sensitivity coef-
ficients for all reactions in the system for an EGF stimulus dosage
of 50 ng/ml. To obtain this data, plots like Figure 3 were generated
for each forward and reverse rate, and the maximum and minimum
Wij was determined in a given time interval. Panel A presents data
for Phase I (0–4 min), while panel B presents the same information
for Phase II (beyond 4 min). Data for other EGF concentrations are
presented in supplemental material (Supplemental Fig. S2A–F).

As seen in Figure 4A, in module A, the binding of EGF to EGFR
(reaction 1) and binding of GAP (GTPase activating protein) to
autophosphorylated dimerized EGFR (reaction 8) are key steps con-
trolling the output signal. Of the reactions in module B, reactions
26 and 27, which control the formation of Ras-GTP in module B,
have larger Wij compared to other reactions in this module. The
reactants in module C have low sensitivity coefficients suggesting
that EGF signaling proceeds primarily via an Shc-dependent rather
than Shc-independent fashion. In support of this proposition, we
note that at the point where the flux from module A bifurcates into
module B and C (Fig. 1), the flux from reaction 8 (module A) to
reaction 22 (Shc-dependent pathway, module B) is 100–3000 fold
greater than that to reaction 16 (Shc-independent pathway, module
C) over the range of our simulation conditions. Many of the reac-
tions in module D exhibit high sensitivity coefficients. As examples,
reactions 45 and 46, which mediate single and dual phosphorylation
of MEK, respectively, exhibit high Wij. Similarly, reactions 28 and
42, which control the phophorylation and dephosphorylation of Raf,
have high Wij. This confirms the central importance of Raf in link-
ing upstream binding events with the MAPK pathway (Morrison and
Cutler, 1997). Finally, of the internalization reactions, only 118 and
121, which control internalization via the coated-pit pathway, are
relevant in Phase I of the signaling process.

The reactions that affect system output in Phase II (Fig. 4B) dif-
fer from those in Phase I. First, it is observed that receptor binding
and autophosphorylation (reactions 1 and 8) in module A are relat-
ively unimportant in Phase II, since signaling following EGF binding
has passed downstream of this module in Phase II. Second, while
reactions that phosphorylate MAP kinase proteins are important
during the first phase, it is phosphatase activity that peaks in the
second phase. For example, while the sensitivity coefficients of phos-
phorylating reactions like 45 and 46 are high during Phase I (Fig. 4A),
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Fig. 3. Time-dependent evolution of scaled sensitivity coefficients: Panels A–D illustrate temporal changes in Wij for four forward rate constants based on the
direct differential method. The EGF concentration was 50 ng/ml. Below each of these panels are corresponding figures where the same rate constants were
perturbed by a finite amount (1, 5 or 50%), and the effect on ERK-PP signal output was monitored. Panels A and E correspond to kf

60, B and F to kf
1, C and G

to kf
49, and D and H to kf

44.

Wij for phosphatase reactions (numbers 48–51) are relatively high in
Phase 2 (Fig. 4B). This result is expected since the ERK-PP con-
centration increases in the first phase due to phosphorylation and
decreases in the second phase due to dephosphorylation. Finally,
while endosomal signaling is not important in Phase I, the contribu-
tion of these mechanisms to output signal increases in Phase II. In
both Figure 4A and 4B, it is primarily the forward, rather than the
reverse, rate constants that exhibit high sensitivity coefficients.

EGF–EGFR binding kinetics is important at
low stimulus dosage
We performed sensitivity analysis over a range of EGF dosages in
order to determine if the identity of the key reactions affecting output
signal is altered with stimulus dose. We observed, prominently, that
endosomal signaling becomes important at low EGF concentrations
since several of the reactions between numbers 63 and 101 exhib-
ited non-zero Wij only at low concentrations (Supplemental Fig. S2).
Simultaneously, besides 118 and 121, several other internalization
reactions also display non-zero sensitivity coefficients at lower EGF
doses (Supplemental Fig. S2). Among the cytoplasmic reactions,
the sensitivity coefficient of the EGF binding reaction (number 1)
and Raf de-phosphorylation reaction (number 42) are augmented at
the lower doses, suggesting that these are important steps regulating
EGF signaling (Fig. 5). Finally, we observed that some reactions, in
particular the reaction regulating the binding of GAP with autophos-
phorylated dimerized EGFR (number 8) and the reaction controlling
Ras-GTP formation in module B (number 27), exhibited higher Wij

at an intermediate concentration (Fig. 5). The behavior of these reac-
tions is analogous to the ultra-sensitivity behavior predicted by others
for the MAP kinase pathway (Chi-ying and Ferrell, 1996), though
these authors perform their analysis for the steady-state case.

Overall, changing initial EGF concentration does not affect the key
regulating reactions in the EGF signaling cascade, though endosomal
signaling and internalization processes that did not play a role at high
concentrations do make significant contributions at lower stimulus
doses and longer times.

PCA complements and extends sensitivity analysis
Sensitivity analysis data results can be weighted using PCA. Key
reactions that contribute to this function can then be determined using
eigenvalue–eigenvector analysis using Equation (5) (Fig. 6). In this
figure, reactions with higher values of PCA parameter, ej , contribute
more markedly to system output. Upon comparison of Figure 6 with
data in Figure 4 and Supplemental Figure S2, we observe that the
single plot of Figure 6 efficiently captures the essential features of
the EGF pathway for the range of concentrations and time scales
depicted in the other multi-panel plots.

Model reduction by combining sensitivity analysis with
flux analysis
Model reduction involves elimination of reactions that do not con-
tribute significantly to the final output. We used a combination of
flux and sensitivity analysis for model reduction as discussed in
Methods and illustrated in Figure 7. According to this scheme, all
eliminated reactions satisfied two criteria: (i) they exhibited low sens-
itivity coefficients and (ii) the flux through these reactions was low.
These two analysis schemes were combined since sensitivity analysis
alone may result in erroneous deletion of reactions with high flux but
low sensitivity coefficients; such reactions often occur as intermedi-
ates in a sequence of consecutive reactions. Flux analysis alone also
does not capture the critical rate controlling features of the reaction
network.
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Fig. 4. Sensitivity analysis applied to determine key reactions: Maximum
and minimum sensitivity coefficients (Wij) are shown for all 125 reactions
in the signaling cascade in Phase I (panel A) and Phase II (panel B) for an
EGF concentration of 50 ng/ml. Squares, diamonds, triangles and circles
depict Wij in modules A, B, C and D respectively. Filled symbols are used
for Wij associated with forward rate constants (kf ), and open symbols for
those associated with reverse rate constants (kr). Reactions corresponding
to receptor binding, signaling, degradation and internalization are marked
between panels A and B. Reactions 6 and 7 correspond to internalization of
EGF receptor or its complex via the smooth-pit pathway, and reactions 10–12
and 14 correspond to signaling via these internalized molecules.

Figure 7 illustrates the relationship between the sensitivity coef-
ficient of individual reactions and mean reaction flux (Fj ). For
generating this plot, calculations were performed for Phase II, the
reduction factor ε was set to 0.07 and the EGF concentration was
0.125 ng/ml. As seen, there is no direct relationship between sensit-
ivity coefficient and reaction flux. Rectangles drawn for modules A,
B and D in this figure enclose reactions in each module that were not
eliminated during model reduction. The left-hand edge of each rect-
angle corresponds to the critical flux (Fcrit) for that module, while
the right-hand edge corresponds to the reaction with the greatest flux
in that module. The upper and lower bounds of the rectangle corres-
pond to the greatest and least scaled sensitivity coefficients in that
module. Reactions in module C are not considered during this ana-
lysis since the absolute value of the scaled sensitivity coefficient for
all reactions in this module is less than |Wcrit|. In order to simplify the

Fig. 5. Effect of EGF dosage on scaled sensitivity coefficients: Detailed
analysis of Wij for a range of EGF dosages is presented in Supplemental
Figure S2. Selected data from this analysis are presented here for reactions 1,
8, 27 and 42. The figure illustrates that some Wij either increase (reaction 1)
or decrease (reaction 42) monotonically with decreasing EGF dosage. Others
(reactions 8 and 27) peak at an intermediate EGF concentration.

Fig. 6. PCA analysis: A 183×250 sensitivity coefficient matrix (S) was con-
structed by accounting for Wij at three EGF dosages (50, 0.5 and 0.125 ng/ml)
and 61 time points (0–60 min at 1 min intervals). The system parameter
consisted of the 250 reaction rate constants that describe the network’s
125 reversible reactions. The only system variable considered was CERK-PP.
Eigenvalues and eigenvectors for the product matrix STS (250 × 250) were
compared. These were applied to quantify the PCA parameter, ej , for each
of the 250 reactions as described in Methods. The Symbol notations used for
this figure are identical to those in Figure 4.

EGF reaction network, analyses similar to that illustrated in Figure 7
were performed for six different conditions: for Phase I and Phase
II, and for each of the EGF dosages (50, 0.5 and 0.125 ng/ml). Only
reactions that were eliminated under all six conditions were deleted
from the reaction network to give the reduced model.
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Fig. 7. Sensitivity and flux analysis: Peak scaled sensitivity coefficients
(either maximum or minimum) and corresponding flux are plotted for all
125 reactions in modules A (squares), B (diamonds), C (triangles) and D
(circles) for EGF stimulus concentrations of 0.125 ng/ml during Phase II of
the signaling process. As shown, the fluxes for reactions in module D are
greater than in other modules. This demonstrates that signal input is ampli-
fied in this biochemical network. No direct relationship is observed between
the sensitivity coefficient and the flux of individual reactions. Rectangles are
drawn based on our model reduction strategy (ε = 0.07) for rate-controlling
reactions in modules A, B and D. Only reactions within these enclosures are
included in the reduced model shown in Supplemental Figure S3. All reac-
tions in module C were eliminated since the flux and sensitivity coefficients
of all reactions in this module were low.

The output signal from the reduced model was compared with
the results of the original model for varying values of the reduction
factor ε at a fixed EGF concentration of 50 ng/ml (Fig. 8A). When
ε equals zero, all reactions are considered and the reduced model
is identical to the original model with 85 reactions in the first three
modules (A–C), and 40 in module D. Upon varying ε we observed
that none of the reactions in module D were eliminated over the
range of ε tested since the reactions effectively resemble a set of
series reactions, with each reaction having comparable magnitudes
of flux. When ε equals 0.05, some of the reactions in module A and
C were eliminated. The number of reactions in modules A–C was
reduced from 85 to 64 in this case. Some of the eliminated reactions
contributed to internalization via the smooth-pit pathway in module
A, while others corresponded to signaling via the Shc-independent
pathway in module C. Further, increasing ε to 0.07 resulted in com-
plete elimination of all reactions in module C, and a reduction in
number of reactions from 85 to 48 in modules A–C. This reduced
model, for ε = 0.07, is shown in Supplementary Figure S3. When
ε equals 0.2, many of the internalization and endosomal signaling
reactions in module B were eliminated. The number of reactions in
modules A–C dropped to 34. As seen in Figure 8B, 44% reduction
in the number of reactions (ε = 0.07) resulted in only a ∼5% alter-
ation in system output over a range of EGF dosages. Our reduced
model is also able to mimic the time-course of other components
(like MEK-PP in Fig. 8C) with high fidelity.

Knockout experiments yield testable hypothesis
Knockout (KO) models that lack a particular reaction can be sim-
ulated, and sensitivity analysis can be performed on the modified

network. Such an analysis can yield hypotheses that are amenable to
experimental testing. We illustrate this by selectively deleting some
of the reactions shown in Figure 1. As expected, knocking out single
reactions with high sensitivity coefficients dramatically alters the
system output in comparison to knocking out reactions with lower
sensitivity coefficients (Fig. 9A). Here, deleting reaction 27 (peak
Wij = 6.5 in Fig. 4A) results in a >95% decrease in peak CERK-PP

concentration, while only a ∼30% decrease in output is observed
upon creation of a reaction-22 KO (peak Wij = 0.8 for reaction 22
in Fig. 4A). If sensitivity coefficients for normal cells are compared
with Wij for reaction-22 KOs, we observe that most of the sensitivity
coefficients are identical in both cases except for the rates shown
in Figure 9B. Notably, Wij for reaction 27 decreases from 6.7 in
normal control to 0.1 in reaction-22 KO. Because of this, double
knockouts lacking both reactions 22 and 27 more closely resemble
reaction-22 KOs rather than reaction-27 KOs (Fig. 9A). Also, Wij for
reaction 19 increases from 0.6 in normal controls to 4.8 in reaction-
22 KOs. Thus, deletion of reaction 19 abrogates the system output in
reaction-22 KOs, but not in normal controls. For this reason, while
reaction 19 is not a necessary part of the reduced model for normal
controls (Supplemental Fig. S3), it will be an important component
of reduced models generated in reaction-22 KOs. Overall, our ana-
lysis suggests that while single KOs may lead to complete loss of
signal output, dual KOs can partially restore this lost function. Also,
since the sensitivity coefficients evaluated for the gene KO systems
are different from normal controls, model reduction must be done
independently for each gene KO.

DISCUSSION AND CONCLUSION
Mathematical modeling of signal transduction can provide quant-
itative and mechanistic understanding of diverse cellular functions
including cell–cell communication, proliferation, differentiation and
adhesion. When combined with high-throughput datasets, it can also
contribute to the prediction of yet unidentified biochemical reactions
and feedback mechanisms.

Using EGF mediated signaling as an example, we illustrate that
various reactions in the EGF pathway have distinct contributions
to signal output with varying EGF dosage and time after stimu-
lation. While the binding of EGF to its receptor was important
in the first phase, this feature was relatively insignificant at later
times. In contrast while receptor internalization, endosomal signal-
ing and degradation were relatively unimportant in Phase I, these
features became important at low EGF concentrations and at longer
times. These observations are in agreement with other published
data (Vieira et al., 1996), which note that internalization reactions
and signaling from endosomal compartments may be significant at
later times. The current study also extends the observations of others
(Schoeberl et al., 2002), by suggesting that EGF–EGFR binding kin-
etics plays a more prominent role in regulating signal output at the
lower dosages than at higher dosages. Within the MAP kinase cas-
cade also, while phosphorylation reactions were important at early
times, dephosphorylation and phosphatase activity played a more
prominent role at later times.

EGF mediated signaling flowed primarily through the Shc-
dependent pathway (module B), rather than the Shc-independent
pathway (module C) over the range of EGF dosages and times tested.
This proposition is consistent with the results of others (Gong and
Zhao, 2003). Immunoprecipitation experiments also demonstrate
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Fig. 8. Reduced versus original model: ERK-PP/MEK-PP concentrations are compared between reduced (Supplemental Fig. S3) and original (Supplemental
Fig. S1) models. (A) ERK-PP response for EGF dosage of 50 ng/ml and varying values of reduction factor ε. ε = 0 corresponds to the original model. (B)
ERK-PP at constant ε = 0.07 and different EGF dosages. (C) MEK-PP response at constant ε = 0.07 and different EGF dosages. In panels B and C, the thick
lines are the results from the reduced model, while thin lines correspond to the original model. The differences between the original and the reduced model in
panel C are negligible.

Fig. 9. Gene/reaction knockout: KO of particular reactions was generated by setting both the forward and reverse rate constants for that reaction to zero. The
EGF concentration was 50 ng/ml. (A) Effect of knocking out reaction 22 and 27 on system output in comparison to normal control (with all reactions intact).
Reaction 27 (which has a high-sensitivity coefficient) has a larger effect on system output as compared to reaction 22. Dual knockout restores lost function
due to reaction-22 KO. (B) Maximum scaled sensitivity coefficients are different for reaction-22 KOs in comparison to normal control. For example, while the
scaled sensitivity coefficient for reaction 19 is small for normal control, it is dramatically increased in the reaction-27 KOs. (C) Knocking out reaction 19 in
normal control has a very small effect on the system output, while knocking out the same reaction in reaction-22 KOs dramatically reduces the system output.

that a larger fraction of Grb2 is bound to Shc rather than to EGFR
(Sasaoka et al., 1994; Kholodenko et al., 1999). Further, EGFR binds
to Shc with greater affinity than to Grb2 (Sasaoka et al., 1994).
Finally, it is reported that Shc binds EGFR through cooperation
between two domains: the PI domain which binds to the phos-
phorylated tyrosine residue at Y1148 and the SH2 domain which
binds phosphorylated Y1173 (Batzer et al., 1995). Grb2, on the other
hand, binds a single phosphorylated EGFR site at Y1068 through its

SH2 domain. In this model, the multivalent interaction of Shc to
EGFR may stabilize the molecular interaction thus contributing to
EGF signaling via module B.

We demonstrate that sensitivity analysis, when combined with
flux analysis, can aid model reduction and simplification. Overall,
as expected, increasing the value of the reduction factor resulted in
model simplification at the cost of deviation from the full model.
Based on model reduction it appears that the reactions least affecting

1201



G.Liu et al.

signal output correspond to internalization and receptor degradation
in module A. Following this, in the order of increasing importance
are the Shc-independent reactions in module C, the internalization
reactions in module B and finally the reduced model displayed in
Supplemental Figure S3. Of the intermediates, the EGF receptor
complexed with phosphorylated Shc, Grb2 and Sos simultaneously
(e.g. reactants 35 and 36) represent key intermediates that regu-
late system output. The concentrations of these complexes directly
control the rate of Ras-GTP formation via reactions 26 and 27. Intern-
alization of these intermediates also forms an important part of the
reduced model. We note that flux analysis can also be combined
with PCA to yield a reduced model. Results similar to those from
the combined sensitivity and flux analysis above were obtained from
such analysis (data not shown).

In this paper, sensitivity analysis is performed using CERK-PP as the
system variable and many of the rate constants are derived from in
vitro enzymology studies. Similar analyses can be performed using
other system variables, and this can allow the identification of reac-
tion intermediates whose concentrations are sensitive to a particular
important reaction step but are relatively insensitive to others. These
intermediates then represent targets for in situ experimental measure-
ment for obtaining improved reaction rate data and new mechanistic
insights.

Overall, we demonstrate the use of sensitivity analysis combined
with PCA for the analysis of biochemical reaction networks. This
method is particularly suited for the analysis of unsteady-state con-
ditions that are typically observed during cell signaling. The direct
differential method and PCA allow the systematic identification of
rate-controlling steps. Such steps may represent sites for drug devel-
opment or other intervention. Further, it is apparent that sensitivity
and PCA of biochemical networks can be used to generate novel
hypotheses that can guide biological experiments.
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