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To effectively manage the material handling in Flexible Manufacturing Systems (FMS), 
where a large amount of data is required in the dynamic decision-making, integrated 
control is needed to consider the overall production schedule. The focus of this research is 
on the development of an integrated Automated Guided Vehicle System (AGVS) control 
model that includes essential features like dynamic vehicle path determination and 
conflict-free routing. An object-oriented implementation of the AGVS model is proposed 
that forms the basis of systems integration with a production planning module such as 
MRI? Static and dynamic informational and functional models of the AGVS are developed. 
The system incorporates: (i) conflict-free shortest path routing procedures, and (ii) vehicle 
assignment rules or scheduling strategies. A prototype version of each of these has been 
developed for demonstrative purposes. This object-oriented. modelling methodology 
provides the capability of rapid development and change. The approach has been demon- 
strated for a real manufactured product through simulation studies which confirm the 
superior performance of anticipatory AGVS control rules, even in a production order- 
driven environment. 0 1997 Elsevier Science Ltd. 
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Introduction 

With advances in computer and electronic technolo- 
gies making automation an integral part of manufac- 
turing systems, the recent technological trend is 
towards developing Flexible Manufacturing Systems 
(FMS) due to their obvious advantages. The primary 
benefits of an FMS are reduced setup times, 
increased equipment utilization, reduced work-in-pro- 
gress inventories, better throughput and reduced 
manual intervention’.‘. An FMS typically consists of 
several numerically controlled machines for produc- 
tion processes, an automated storage/retrieval system 
(AS/RS) for raw material and finished goods, and an 
automated material handling system for material 
transfer between the work centres. An Automated 
Guided Vehicle System (AGVS) is a material 
handling system for transferring material between 
work centrcs (or flexible manufacturing cells) by 
means of one or more Automated Guided Vehicles 
(AGVs). AGVs controlled by a centralized computer 
system typically move along a guide path in the shop. 

Since FMS involve high capital costs, significant 
attention has been paid to improving system 
efficiency via production scheduling3-‘. Similar efforts 

have independently been undertaken on various 
aspects of AGVS design and operation (see the next 
section); most of the AGVS research has revolved 
around AGV allocation and dispatching strategies. 
The central idea of any of these strategies is to 
improve the AGVS performance, i.e. to improve the 
AGV utiization, to reduce total distance travelled, 
etc. For example, the nearest work centre allocation 
rule assumes that since the nearest vehicle will take 
the shortest time to reach the work station, the 
allocation will improve the performance for the job; 
and hence, such a strategy will improve the overall 
system efficiency. 

However, even though the scheduling of work 
centres and AGVs are intimately related, and which 
collectively define the productivity of the overall 
system, little attention has been paid to considering 
them in a unified manner. Most research in AGVS 
lacks interest in the manufacturing system require- 
ment-based allocation of AGVs. For this reason, the 
effect of a ‘good’ vehicle allocation strategy for a 
particular environment may cause only localized 
improvement; and the performance of the entire shop 
in terms of throughput does not necessarily improve. 
It has been realized that the very important link 
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between the shop requirements and AGV allocation studied, it must be noted that production order- 
is largely missing so far. driven AGV control has received little attention. 

Recently some literature has focused on developing 
hierarchical approaches to the FMS control model’-“. 
The advantage of hierarchical control is that it allows 
the control problem to be partitioned to limit the 
complexity of any module in the hierarchy, regardless 
of the complexity of the entire structure’.“‘. 

Guide path network design 

In this paper, we develop an AGV control model 
that is driven by shop production orders. An object- 
oriented implementation of the AGVS mode1 is 
proposed that forms the basis of system integration. 
Static and dynamic informational and functional 
models of the AGVS are developed. The system 
incorporates: (i) conflict-free shortest path routing 
procedures, and (ii) vehicle assignment rules or 
scheduling strategies. A prototype version of both of 
these has been developed to demonstrate the 
system’s effectiveness. This object-oriented modelling 
methodology provides the capability of rapid software 
development and adaptability to changes of system 
configuration. 

For production planning or generating shop 
requirements, a Material Requirements Planning 
(MRP) system is assumed. To integrate the MRP 
module with the AGVS and thus make it a shop 
requirement-driven AGVS, an order file acts as a 
common link. The MRP module, based on the BOM 
data file and final order due date, computes due 
dates for the component parts and accordingly places 
part orders in the order file. The AGVS retrieves 
orders from the order file and correspondingly 
allocates the AGV. Further, once an operation is 
performed, the part order updates the order file 
according to the next operation due date. 

A guide path usually defines the possible vehicle 
movement path. From the modelling viewpoint, the 
guide path is represented by a set of links and nodes. 
The nodes represent the action points (e.g. pick- 
up/drop-off points, maintenance areas) and intersec- 
tions, whereas the links represent the aisle along 
which AGV movement takes place. The guide path 
design can be of an active or passive nature. For 
active guide paths, the central controller is connected 
to the entire guide path, and hence the AGVs receive 
command directives and also provide feedback to the 
controller via the guide path. However, the high 
implementation cost and inflexibility of such a design 
makes it impractical in many situations. A relatively 
inexpensive alternative, the passive type of guide 
path, has a primary function of keeping the vehicle 
on the track. In this case, the AGV communicates 
with the controller by means of RF/IR (radio 
frequency/infra red) waves. 

The guide path network can be divided into four 
types, according to the allowed vehicle movement: 
uni-directional single lane; bi-directional single lane; 
multiple lanes; and mixed”. A uni-directional 
network, even though simple from the control and 
routing perspectives, is inferior in performance to a 
bi-directional network”. The multi-lane approach is 
practically cost prohibitive due to the extra space 
requirements. 

We also study the effects of vehicle selection 
strategy and an anticipatory dispatching on the 
overall system performance for an adopted order 
dispatching policy. Three models that adopt different 
strategies are implemented: Dedicated vehicle & 
Non-anticipatory; Nearest vehicle & Non-anticipa- 
tory; and Nearest vehicle & Anticipatory dispatching. 
These models are evaluated in a simulation frame- 
work. The comparison of their system performance 
indicates the superiority of anticipatory dispatching. 

The concept of single loop guide paths was intro- 
duced by Tanchoco and Sinriech”. In this approach, 
the entire path is divided into valid single loops which 
have at least one out of several arcs which make up 
each department. For single loop guide paths, the 
control system becomes simple due to the absence of 
possible collisions, etc. However, the system needs to 
have additional transfer points, as products may need 
to traverse through several loops before reaching 
their destinations. 

The paper is structured as follows. A literature 
review of the current topics of interest in AGVS 
design is presented in the next section. The proposed 
modelling methodology is then presented, and the 
system development issues, simulation framework 
and performance are discussed. Several important 
issues identified in the research are addressed, and 
finally, the conclusions are presented. 

Optimal number of vehicles 

Literature review 

The cost and complexity of introducing additional 
vehicles against the marginal improvement in the 
system performance dictates the optima1 number of 
vehicles in the system. Maxwell and Muckstadt” used 
an analytical model for determining the number of 
vehicles required under static and dynamic condi- 
tions. A simulation approach was used by Tanchoco’4 
for determining the number of vehicles, and a non-si- 
mulation approach by Egbelu15. 

The following discussion of the literature focuses on 
the basic elements of AGVS design: (i) guide path 
network design; (ii) optimal number of AGVs; (iii) 
vehicle dispatching; (iv) vehicle routing; and (v) 
traffic control. While these elements have been well 

Ve&cle dispatching 

Once a demand for an AGV is initiated by a work 
centre, a choice needs to be made regarding which 
vehicle is to be dispatched. Conversely, when several 
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work stations need service and a vehicle becomes 
available, a choice has to be made as to which work 
station is to be serviced. On the basis of the above 
two scenarios and several optimizing criteria, Egbelu 
and Tanchoco’” studied two types of selection rules: 
work centre Initiated Task Assignment (WITA) and 
Vehicle Initiated Task Assignment (VITA). A WITA 
applies in the case of excess vehicles, and the selec- 
tion criteria can be based on random vehicle, nearest 
vehicle, farthest vehicle, longest idle vehicle or least 
utilized vehicle. A VITA is used in the case of one 
vehicle serving several stations. The determining rules 
are random work station, nearest work station, 
farthest work station, maximum queue size, minimum 
remaining queue size, modified FCFS, unit load 
arrival time, unit load due date, priority of unit load, 
etc. 

The authors established that, in the long run, 
WITA rules have little application because the system 
is expected to have an optimum number of vehicles, 
so the chances of having several vehicles available at 
one point of time are quite slim. Thus, VITA rules 
are more important and practical. 

Vehicle routing 

To dispatch the AGV to a station at any point in 
time, a shortest feasible path from the existing 
position is desired. For a guide path network repre- 
sentation of links and nodes, the algorithm developed 
by Dijkstra” provides the shortest path. One 
approach is to determine a static path assuming that 
all the guide paths are available. However, in the 
presence of other vehicles, this assumption is not 
valid due to possible collisions. Collisions can be of 
two types: head-on and catching-up. To resolve these 
conflicts, a dynamic routing is required. It takes into 
account the current and future positions of all the 
vehicles in generating a feasible conflict-free path, 
which may not be the shortest one. 

Several approaches have been proposed to create a 
conflict-free route. One is to generate the shortest 
path using Dijkstra’s algorithm, and then define the 
node occupation times for each vehicle on the 
shortest path. These occupation times then can be 
used to detect partial conflicts’S. The catching up 
conflict can be resolved by slowing down the trailing 
vehicle, and head-on conflict can be avoided by 
removing the conflicting segment from the network 
and using Dijkstra’s algorithm to find the shortest 
path from the remaining network links. Another 
approach of using ‘time-windows’ was introduced by 
Huang’<‘, which used the physical arcs of the original 
network as time windows. However, it allows only 
one vehicle at a time in a zone. This approach was 
improved by Kim and Tanchoco”” by maintaining 
time windows for reserved and free time slots on 
each node of the network. 

Trajjk control 

In a system having conventional (intersecting) guide 
paths, the issues of AGV routing and collision avoid- 
ance are very important. The entire working of the 
system depends upon the control logic applied, which 
is divided into three main categories: (i) forward 
sensing control; (ii) zone sensing control; and (iii) 
combinatorial control. 

Forward sensing control can be termed as a local- 
ized control in which each AGV is equipped with 
obstruction detecting sensors that can identity 
another AGV in front of it, and slow down or stop. 
The benefit of such a control is improved vehicle 
utilization due to closer allowable distances between 
the vehicles. However, this approach is unreliable for 
detecting obstacles around a corner and at 
intersections. 

The zone control approach is more global. The 
control computer keeps track of the entire guide 
path, which is divided into zones. Once an AGV 
enters a zone, that zone (or a number of adjacent 
zones, depending on the location) is blocked so that 
no other AGV can enter that path”. In a simplistic 
implementation, zone control introduces some ineffi- 
ciencies. However, sophisticated logic and rules can 
be used to improve the performance of such a 
control. 

In combinatorial control, both the above strategies 
are selectively used to obtain the benefits of both 
strategies. For long straight paths, sensor control is 
appropriate, while for intersections, zone control is 
more suitable. 

In summary, FM% are capital-intensive systems 
that comprise expensive manufacturing centres and 
AGVS for material handling, therefore the efficient 
use of these resources is essential for their cost justi- 
fication. Alongside, with ever-intensifying competition 
in the global market, there is an increasing need to 
further reduce product manufacturing cycle-time. 
Consequently, for material handling systems, it is 
necessary to minimize: (i) undesirable waiting time at 
machines due to the unavailability of AGVs; and (ii) 
excessive distances travelled by the AGVs in idle or 
loaded moves. Historical control approaches in FMSs 
have put much emphasis on the scheduling of work 
centres. Without a sufficient integration of the 
AGVS, only simple dispatching rules are adopted for 
AGV dispatching. The need for a unified approach to 
scheduling the material processing system and the 
material handling system has been well recognized, 
and effective control systems are expected to be 
adopted soon. This is exactly the focus of this 
research. 

Modelling methodology 

The following sections discuss the stand-alone AGVS 
modelling with related issues of conflict-free routing, 
the shop requirements planning by the MRP module, 
and finally, the AGVS integration with the shop 
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requirements. A two-step approach is used to present 
the modelling and integration of the system. First, the 
design of an independent AGVS is described using 
the object-oriented modelling technique. Both the 
static and dynamic informational and functional 
models, and an algorithm for generating the conflict- 
free routing, are discussed. In the second step, based 
on a typical product structure and bill of materials, 
the AGVS control and an MRP module are unified 
in one framework. The relevance of the MRP-based 
methods to generating part orders and back- 
calculating due dates is established, and finally, the 
integration of AGVS with the MRP module and 
related issues are explored. 

A G VS design 

Given the complexity of manufacturing systems .and 
frequent product changes, system changes are often 
introduced. It gives the need for a stand-alone AGVS 
that can be integrated with a shop-order or require- 
ment module. Traditional modelling and develop- 
ment methods fall short of these adaptability 
expectations. Hence, a powerful modelling methodo- 
logy is essential. As a result of recent software 
engineering development, object-oriented modelling 
is gaining increasingly wider acceptance. Several 
methodologies have been proposed to model 
particular systems22~2”. The object-oriented AGVS 
design will be employed later to demonstrate system 
performance for alternative global strategies. 

The concept of ‘objects’ is at the heart of object- 
oriented modelling. An object in a system can be 
defined as a physical or conceptual entity with a well 
defined boundary, components and responsibilities2”. 
The first step of the modelling is to identify the basic 
objects in the system and analyse the interaction 
between them. Table 1 summarizes the objects identi- 
fied in the AGVS along with their key attributes. 

As for the modelling approach, Information 
Processing Object Hierarchy (IPOH), proposed by 
Changchien24, a system has a dual dichotomy: a 
functional and an informational model, each with a 
static and dynamic view. These models are developed 
and implemented for the current system. 

Static functional model. This is the basic model of the 
system, depicting the attributes (data members) and 

Table 1 Objects in the AGVS 

Objects 

Traffic controller 

Major attributes 

No-of_AGV, No_of_Workstation, 
No-of-Sensor 

AGV 

Sensor 

Order 

Work station 

AGV_id, current-position, destination, 
moving-status, loading-status, route 

Sensor-id, connectivity, importance 

Order-id, order-route, 
order_processing_time, due-date 

Workstation-id, processing_status, 
workstation_position 

responsibilities (functions) of each object without 
considering the dynamic interactions between them. 
The information is displayed in a structured template 
called CARD (Class, Attributes, Responsibilities and 
Directive) classes. 

Class stands for the name of the object class, while 
the attributes refer to the key features of the object. 
Responsibility is divided into three sub-sections, 
Input, Output and Processing. Directive classes is the 
list of all the classes which are connected to this 
particular class. Figures 1 and 2 represent the CARD 
template for AGV and Traffic_controller. Appendix 
A contains the remaining CARD templates. 

In the CARD templates for AGV class and Traffic_ 
Controller, the attributes included some inherent 
characteristics of the object class that do not change 
during operation, such as AGV_Id_ #, List_AGVs, 

Class : Automated Guided Vehicle (AGV) 

Attributes 
AGV_Id_# 
Load -Time 

Unload_Time 

Cur_Position 

Pre_Position 

Cur-Status (Waiting,Moving) 

AGV_avail(Assigned.Unassigned) 
Load_Statas (Loaded, Unloaded) 

Dest_Position 

Initial_Position 

Assigned-Wait-Time 

Unassigned_Wait_Time 
Path-List 

Responsibilities 

lnDut 
Move-Position 
Lo&order 
UnIoac_Gxler 
Assigned-Wait 
Unassigned_Wait 

Processing; 

Update-Position 
Update_Status 
Update-Avail 
Update_%_Util 

Update_Path 

Report_Cur_Pos 
Report_Cur_Status 
Report_Task_Comp 
Report-Statistics 

Directwe Classes 

Tr&ic_Controller 

Sensor 
Work-Station 
Par-Order 

Figure 1 CARD template for AGV class 
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List Sensors and Layout Of Sensors. Since these 
are static information often related to a given system 
configuration, they are called static attributes. Other 
attributes in CARD that change values during opera- 
tion are system states, termed dynamic attributes. 
These include LoaddTime, Unload_Time, CurPosi- 
tion, etc. Responsibilities of the object classes are 
divided into input and output handling functions, and 
processing functions that update system states, i.e. 
dynamic attributes of the objects. Some examples are 
Update Position, Update Status, etc. Finally, the 
directive classes are objects that may be affected by 
the actions of the object. For AGV, for instance, 
Traffic ~Controller, Sensor, Work_ Station, are likely 
to change due to changes in the AGV’s states. 

Static information model. This mode1 depicts the static 
relationship between the system objects. The model 
bears a very close resemblance to the Entity 
Relationship Diagram (ERD) in relational database 
design, where each entity (object) is placed in a box 
and is connected to one or more objects via one-to- 
one, one-to-many or many-to-one relationships. The 

Class : Traffk_ControMer 

Attributes 

List_AGVs 

List-Sensors 

List_workstations 

List-Routing 

Layout_Of_Sensors 
Order-Queue 

Responsibilities 

TnDut 

WS_Status 

AGV_Status 

Order_Routing_file 

Processine 

Find-Shortest-Path (AGV_Id_#) 

Select_AGV(WS_Id_#,AGV_Id_#) 

Assigned_Wait(AGV_Id_#) 

Unassigned_Wait(AGV_Id_#) 

QII!zBI 
Move_AGV 

Begin_I_oading 

Begin_Unloading 

Directive Classes 
AGV 
MRP 

Order 
Sensor 

Work-Station 

Figure 2 CARD template for Traffic -Controller class 

USER 

System Boundary 
---------- -------- r 
I I 
I I 
I Creates Network 

I SYSTEM 
MANAGER Provides Order 

I Information 
I 

I Gets Gets System 

I 0 
Statistics Parameters 
I 

I 

’ SENSOR 
TRAFFIC 

CONTROLLER 

I 
Gets Status I 

Gets Command Gets Gets I 
Stam Command Gets stani I 

1 Loads/ 1 I r I 1 

I T Transfers Y 
I 

I I 

L-__________________-_----! 

Figure 3 Static information model of AGVS 

model does not contain any dynamic information on 
how data are processed, which is achieved by the 
dynamic information model. Figure 3 illustrates the 
static information model for the AGVS. 

This mode1 shows the general interaction among 
object classes in the AGVS. For instance, the 
relationship between Work Station and (production) 
Order is a many-to-many process, i.e. one Work 
Station can process more than one order, and one 
order can be processed by more than one Work 
Station. 

Dynamic functional model. This mode1 depicts the 
temporal behaviour of the objects in the system. 
Typically, the dynamic functional mode1 is imple- 
mented with the help of State Transition Diagrams 
(STD). Each object has several states during the 
system execution which consume a finite amount of 
time. A state transition is caused by an event which 
occurs at a discrete point in time. The events can be 
of the external or internal type. Figures 4 and 5 show 
the STDs for the Traffic controller and the AGV. For 
instance, an AGV will change its state from ‘AGV 
Loading’ to ‘AGV Loaded’ by the event ‘Loading 
done’; and it will proceed to an ‘AGV Moving’ state 
by the event of ‘Moving to drop-off (load)‘. 

Dynamic informational model. This mode1 depicts the 
dynamic data flow between the objects. Data flow 
diagrams are used to implement this model. The data 
flow diagrams have the following main components 
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start 
Simulation 

Terminatio.\ I inIZ%Lon 
Condition 

\ 

Figure 4 State transition diagram for Traffic_Controller 
class 

which define the origin, conversion and destination of 
data”: 

(4 

(b) 

(c) 

(4 

Processes: to transform the input values to output 
values. 
Data flows: to connect the output of one object 
to the input of another. 
Data stores: the permanent store from which the 
input values are read, i.e. databases. 
Objects: which trigger different processes to start 
converting the input values. 

Figure 6 illustrates the data flow diagram for the 
AGVS and the symbols used to represent the compo- 
nents of the data flow. Note that all data flow 
between processing function are attributes, such as 
‘Order Number’, ‘Sensor Position’, etc. All attributes 
are contained in the attributes of the object class 
defined by the static function model. 

Loading 
done 

Figure 5 State transition diagram for AGV class 

Data Base Data Flow 

Order Data 
Base 

I 

Work Station 
Data Base 

I 
Work Station Id. / 

TkT 
Data Base 

Figure 6 Dynamic information model for AGVS 

Conflict-free routing of AGVs. As discussed earlier, a 
number of research efforts have focused on conflict- 
free routing of AGVs. The purpose of this section is 
to present a simple algorithm for conflict-free routing 
to be incorporated into the AGVS for demonstrative 
reasons. This simple algorithm can always be 
replaced by more appropriate techniques with 
relative ease due to its object-oriented 
implementation. 

This algorithm considers it AGVs in the system. 
The concept of time window is applied to predict the 
position of each AGV with reference to the AGV 
under consideration. Consider the case where it is 
required to generate a conflict-free path for the nth 
vehicle. In the first step, depending on the origin and 
destination positions, a static shortest path is gener- 
ated using Dijkstra’s algorithm. Based on this static 
path, a time window is generated which has the time 
unit and corresponding sensor position as its 
attributes. 

Next, similar lists having lengths equal to the time 
window list are generated for all the other n-l 
vehicles. If a vehicle is at a stop (loading, unloading 
or waiting) or comes to a stop during the time 
window span, it is assumed to remain at the same 
location, at least for the remaining time period. 
Based on this assumption, after creating the time 
window lists, each time window is compared with the 
original one, and if a conflict is found, it is stored in a 
conflict-set. 

If the conflict-set is non-null, the respective sensor 
associations are removed for Dijkstra’s algorithm and 
a path is recalculated. This process is repeated until a 
feasible path is found. It is realized that the algorithm 
will require separate queues, and a more sophisti- 
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cated logic in case of a very large number of vehicles 
in a congested network. However, for this study, the 
algorithm is found to generate conflict-free routines 
for a moderate number of AGVs and medium-size 
window list. A flow chart of the algorithm is as shown 
in Figure 7. 

MRP module 

For planning the production tasks of multi-level 
assemblies, although contemporary planning 
techniques such as Just-In-Time (JIT) and Optimized 
Production Technology (OPT) have gained some 
popularity, the Materials Requirements Planning 
(MRP) (and Manufacturing Resources Planning, 
MRP II) philosophy is still employed by the majority 
of manufacturing enterprises. MRP has been found 
as an effective way to translate the requirements of a 
Master Production Schedule (MPS) into a detailed 
schedule of manufacturing parts and sub-assemblies. 

MRP uses an explosion calculus procedure to 
result in the time phased plan for all component 
parts and raw materials required to produce all the 
products in the MPS. This materials plan can there- 
after be utilized for detailed capacity planning, and 
finally shop-floor scheduling. Explosion calculus relies 
heavily on Bills-Of-Materials (BOM, or product 
structures), and refers to the set of rules by which 
gross requirements at one level of the BOM is trans- 
lated into a production plan at that level and the 
requirements at lower levels. A BOM details the 

I Generate. Static 
Path for vehicle n I 

REPEAT 
Create dynamic path after 

Figure 7 Conflict-free routing algorithm Due date for Sl: 

assembly structure or the parent-child relationship of 
components and end-items, the number of compo- 
nents per assembly, and the lead-time required for 
the production of each component. An accurate 
estimate of a component lead time considers (or 
should consider) the operation sequence (routing, or 
process sheets) and for each operation accumulates 
process time, setup time, queue time and material 
handling duration. The material handling duration 
estimates can be derived from the same process sheet 
by estimating the time required to move the material 
from one station to another. 

The estimation of material handling duration and 
the process duration can be done with a fair amount 
of accuracy. However, the estimation of queue time 
due to either unavailability of a machine or unavail- 
ability of a vehicle introduces a degree of complexity 
to this particular problem. Various approaches have 
been proposed in the literature’“. As the main objec- 
tive of this paper is to develop a control model that 
integrates AGVSs and shop production orders, 
sophisticated methods of estimating queue times are 
beyond our research scope. Thus we did not include 
such an estimation, and only assumed static travel 
time. 

The current work is based on the scheduling of 
production orders by an MRP module and its 
integration with an AGVS to dispatch the vehicles 
accordingly. To illustrate the approach, consider an 
example of a product having a Nevel structure as 
shown in Figure 8. Product A (representing the final 
assembly) is made up of three sub-assemblies (Sl, S2 
and S3) which are in turn made of several parts (Pl 
to P5) with different associations. Thus, product A is 
at level 0, sub-assemblies are at level 1 and the parts 
are at level 2. Each part and sub-assembly has a set 
of operations to undergo at several work stations. 

To schedule the operations of the parts and sub-as- 
semblies, MRP’s backward scheduling logic is 
applied. The procedure for backward calculation, 
illustrated in Figure 8 is summarized below by taking 
an example of sub-assembly Sl and its component 
parts Pl and P2: 

Symbols 

Sub-assembly: 
Parts: 
Work stations: 
Process times: 

(assuming, one 
operation per 
process sheet) 

Travel time: 

Process route: 

Due date for 
vehicle dispatch: 

Sl 
Pl, P2 

i, j, k, 1, m 
Pl -PPl 
P2 +PP2 
Sl +SPl 

t (start_work__station, 
end_workkstation) 
Pl -i-j-l 
P2+i-k-l 
Sl+l-m 
Pl+al, bl 
P2+a2, b2 
Sl +dl 
T2 
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T2 represents the time at which the sub-assembly 
Sl is required for further assembly. Hence this is 
the due date for Sl from which all other due dates 
are back calculated using the above process route, 
process time and travel time estimates. 
Since it takes time t(1, m) to transfer Sl from 
station ‘1’ to station ‘m’, the due date for vehicle 
dispatch becomes dl, and is the time by which the 
operation for Sl must complete. This also means 
that parts Pl and P2 must be ready for assembly at 
station ‘1’ by time [dl - SPl]. This further leads to 
the due dates bl and b2 by similar logic. 
Extending the same logic further and using the 
process times and travel times for parts Pl and P2, 
it is found that the first due date of part P2 falls 
before that of part Pl (a2 <al). Hence, the 
dispatch of part P2 is scheduled before that of part 
Pl. In other words, Pl has a slack time compared 
to P2. This scenario also leads to the latest start 
time Tl by which the dispatch must start. 

The orders are scheduled by their operation due 
dates, and hence the vehicles are assigned accord- 
ingly. A logical first choice in case of multiple 
vehicles being available is to allocate the nearest 
vehicle. A significant advantage of this strategy is that 
the parts are dispatched in the order of their required 

Tl 
Do 

I 

Figure 8 Product structure and due-date calculation 

4 4 

/ \ 4 

4 

AGVS - e- 
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Figure 9 AGVS-MRP integration 

completion time, and hence the overall final due date 
is the ultimate driving force for scheduling and AGV 
dispatching in the integrated control system. 

Integration of MRP module and AGVS control 

To integrate the MRP module with the AGVS and 
thus make it a shop requirement driven system, the 
order file acts as a common link. As shown in Figure 
9, the MRP module, based on the BOM data file and 
final due date, calculates and assigns the due dates 
for the parts and accordingly places the part orders in 
the order file. 

The AGVS retrieves the first order from the order 
file and correspondingly allocates the AGV. Further, 
once an operation is performed, the part order is 
updated in the order file according to the next opera- 
tion due date. 

It is realized that the material handling time 
estimates should be arrived at by considering not only 
the static distances between the work centres, but 
expected distances for non-conflicting paths and, 
more importantly, queue times due to waiting for an 
AGV. This problem is similar to the one of deter- 
mining accurate estimates for part lead-times, where 
parts spend time in queues waiting for machines to 
become available25. In the lack of a systematic 
material handling time estimation procedure, we have 
adopted the static travel time between work-centres 
for demonstrative purposes. Possible improvements 
of this simple strategy are offered later in the 
discussion. 

An industrial example 

Another objective of the AGVS design is to demon- 
strate the overall system performance based on alter- 
native parameters and strategies. Since AGVS is a 
shop support system, and its utility and performance 
are related to improvements in the performance of 
the system being served, operational parameters like 
AGV selection, order selection and routing vary 
according to the strategy chosen. The proposed 
strategy for a typical manufacturing scenario is 
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exemplified in this section by considering an example 
of a ‘real life manufactured product and the 
coresponding shop-floor layout. 

The integrated AGVS-MRP model was applied to 
a situation observed in a manufacturing company 
with some simplifications. Figure 10 represents the 
layout of the manufacturing shop, and Table 2 iden- 
tifies the significance/utility of each of the work- 
stations. Table 3 represents the BOM data for the 
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Figure 10 The facility layout 

Table 2 Workstation data 

Work station ID Sensor ID Function 

I I 
2 I6 
3 23 
4 36 
5 41 
6 32 
7 57 

Entry/storage 
Cover manufacturing 
Housing manufacturing 
Turning 
Inspection 
Assembly 
Exit/finished goods storage 

Table 3 Bill-of-material information 

Compo- Compo- No. of Process Process duration 
nent name nent ID operations route (at work station) 

Housing I 2 1-3-5-h 30(3) lO(5) 
Cover 7 

1 
2 I-2-5-h 20(2) IO(S) 

Flywheel 2 I -4-5-h 40(4) IO(S) 
Damper 4 1 h-*7 20(h) 

Table 4 Static distance data 

WSl ws2 ws3 ws4 ws5 WS6 ws7 

Ws* **e 4 7 II IS I2 18 
ws2 4 *** II 9 II IO I6 
ws3 7 ,l **xi IO IS 9 I3 
ws4 I I 9 IO X*9 5 - 7 
ws5 IS II IS 5 -x * ,. I; 6 
WS6 I2 IO 9 5 I() :**li 8 
ws7 I8 I6 I3 7 6 8 *+* 

product, a viscous torsional vibration damper, which 
has a 24evel product structure. The final product is 
made of three parts, a Housing, a Cover and a 
Flywheel, with corresponding process routes and 
times. Tubfe 4 represents the static (minimum) 
distance between the various work centres which is 
used in the back calculation of due dates. 

AGVS control strategies 

As mentioned earlier, the orders are processed in the 
sequence of their completion requirements, and 
hence the driving force for AGV dispatching is the 
order completion time. In the short run, however, 
this strategy may lead to the increase in tardiness of a 
particular job. However, as local optimality is not the 
objective, an overall reduction in the tardiness of all 
the jobs is expected in the long run. This is a signifi- 
cant potential benefit. 

It is recognized that the performance of the system 
would strongly depend upon the system parameters 
like bill of material structure, product mix, order 
arrival times, order due dates, shop layout and the 
number of vehicles. Thus, the strategy to sort the part 
orders only on the basis of the most pessimistic time 
is too simplistic to produce consistently good 
performance for all shop conditions. Alternative 
strategies could (i) assign priorities by studying the 
effect of a new part arrival in the system on the 
existing parts being served, or (ii) sort orders by their 
most pessimistic dispatch times and by their arrival 
times so as to reduce the tardiness in the short term 
(at the expense of possibly higher tardiness in the 
long run). 

The complexity involved in the determination of 
the possible logic for such a scheduling and 
dispatching renders it outside the scope of this work. 
Instead, we keep our focus on integrated control and 
study the effects of vehicle selection strategy and 
anticipatory dispatching on the overall system 
performance for the adopted order dispatching 
policy. The vehicle selection strategy involves deter- 
mining the dynamic distance of each available vehicle 
(i.e. the shortest distance considering the obstacles in 
the path) and the subsequent selection of the nearest 
vehicle. The anticipatory dispatching strategy assumes 
that information related to the location of the 
immediate next order arrival is available, and there- 
fore dispatches the assigned vehicle before the order 
arrives. This means that the AGV, once available, 



44 Production order-driven AGV control model: M Shah et al. 

receives information about the location of the next 
ariving order, proceeds to the destination and waits 
for the processing to complete. The combination of 
the above two strategies gave rise to the following 
three models: 

The base model (dedicated vehicle & non-anticipatory). 
The base model consisted of a dedicated vehicle 
selection rule. In the case of multiple vehicle avail- 
ability, a dedicated vehicle was always assigned 
irrespective of its distance from the order location. 
the model was non-anticipatory in nature, meaning 
that once the vehicle became available, it would wait 
at its current location for the arrival of the next order 
to start moving. 

For simulation purposes, it is imperative that all 
the objects be stored or acted upon at different stages 
of the program by the same framework. Hence, the 
concept of a virtual class was used to refer to all the 
relevant objects together. A virtual base class ROOT 
is defined with common data member ‘object-type’ 
and a common member function ‘event-handler’. 
Other objects like AGV, Traffic_Controller, Sensor, 
WorkkSt, Partorder, etc., are derived from this class. 
The main purpose of this declaration is to achieve 
dynamic binding and a commonality in event 
handling. 

Model 1 (nearest vehicle d non-anticipatory). This 
model employed the distance criteria to dispatch the 
nearest vehicle from the order location. The distance 
was determined based on the existing layout 
configuration and location of other vehicles, hence 
the model was dynamic in nature. The vehicle 
dispatch strategy was non-anticipatory. 

The container classes of Borland C++ were used 
while developing the program. The availability of 
such class libraries made it possible to directly use the 
data structures like Queue, Sorted Array, Array for 
objects and Sets without concerning the development 
of their underlying mechanisms. Some common 
functions available for such container classes also 
made it easy to perform operations on the entire 
structure. It should be noted that the availability and 
use of such classes is in accordance with the object- 
oriented philosophy of ‘reusability’. 

Model 2 (nearest vehicle 6; anticipatory dispatch). This 
model included both dynamic distance selection 
criteria as well as anticipatory dispatching on the 
basis of the availability of the next order information. 

Simulation framework 

The three models gave rise to three different sets 
of computer codes. They correspond to three sets of 
order files that have 6, 12 and 18 orders, respectively. 
The following section provides a comparison of the 
system performance using these three strategies, and 
comments on the simulation results obtained. 

To implement the order processing strategy and 
demonstrate system performance, a discrete event 
simulation framework was developed. This frame- 
work consisted of two main classes: TEvent: the event 
class, and Calendar: the manager of events. The class 
TEvent has three main data members: 

(a) EventTime: the time of occurrence of the event. 
(b) EventObject: the active object to be acted upon 

with the event. 
(c) EventType: the type of event for the object. 

System implementation and results 

Implementation issues 

The object-oriented models and order assignment 
methodology developed were implemented using 
Borland C++ as the programming language on the 
IBM/OS/2 platform. In the following, we discuss the 
software implementation approach and highlight the 
important features of the program structure and 
development. 

As the EventObject can be of any one of the 
objects involved, it is type cast as the ROOT which is 
the virtual parent object. The events are organized 
into an array sorted by their EventTime, and are 
identified by the EventType. The array is a private 
data member of the Calendar class, and the primary 
responsibility of the calendar object is to schedule the 
event and retrieve the first event in the array. 

The entire C++ code was divided into three main 
modules, namely a class declarations module, a 
member function declaration module and the main 
program. These three modules were developed in 
three different files under a common directory, so as 
to keep the complications at minimum and at the 
same time make changes and additions easier. 

The simulation is initiated by reading an order 
from a file, which is further decomposed into several 
part orders. Each part order has several types of 
processing to be done. After each process, it is 
updated in the part order array for further transport- 
ation. Each object which is acted upon during an 
event retrieval has an event-handler member 
function that performs the intended task and also 
schedules other events as required. 

The header file contains the definition for all the The simulation is run till an event termed as ‘END 
objects defined in Table I, as well as the objects of SIMULATION’ is encountered, which is the 
the MRP module. In addition to these system objects, prescribed time to end the simulation. After the 
two more objects for simulation (Calendar and 
TEvent) were declared. All the type casting for the 

termination of the simulation, an output report 
showing the statistics of the system is printed to an 

container classes of Borland C++ was also defined output file. Figure II shows the logic flow of this 
in this file. simulation framework. 
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Program description. The following describes the 
sequence of events in the program, its input data file 
structure and its output file specifications. The 
program was developed with industrious effort in 
enforcing the data and logic independency required 
of such systems. Hence, the first steps of the main 
program included retrieval of data from various data 
files. This modularity is necessary to facilitate future 
changes or additions. Table 5 reviews the data files 
used for input and output. 

i ;?-triri;? Event from j , 

t 

Update the Simulation Clock 

I 

L J Sho;ita’ 

Figure 11 Flowchart for the simulation framework 

Table 5 Data files used for input/output 

In the main program, first the initialization of the 
system parameter takes place in which various data 
input files are read, and accordingly the objects of 
various classes are created. The pointers of various 
objects like Traffic_controller, Sensorlist, AGVlist, 
MRP and WSList are initialized for message passing 
and referencing. Next, orders from the order data file 
are read and the MRP module decomposes the 
orders into corresponding part orders in creating an 
order list. The system simulation then starts and 
proceeds to execute the various events in sequence. 
The simulation terminates when the END SIMULA- 
TION event is encountered and the system statistics 
are written to an output file. 

Simulation results 

As mentioned earlier, the code developed for each 
model was subjected to the three order sets 
containing 6, 12 and 18 orders. The simulation 
provided the statistics related to the overall system 
performance in the following format: 

Overall system statistics 
(a) Number of orders received 
(b) Number of orders processed 
(c) Number of tardy orders 
(d) Maximum tardiness (Units) 
(e) Minimum tardiness (Units) 
(f) Average tardiness (Units) 

Order statistics 
(a) Order number 
(b) Order arrival time 
(c) Order due time 
(d) Order completion time 
(e) Tardiness 

AC V statistics 

(a> 
(b) 
(cl 
(4 
I;; 
Cd 
(h) 

The travel statistics for the AGV number 
Unloaded travel time (Units) 
Loaded travel time (Units) 
Unassigned wait time (Units) 
Assigned wait time (Units) 
Loading time (Units) 
Unloading time (Units) 
Total number of part orders processed 

Name of 
object 

Container 
class 

Used in 
class Purpose 

TEvent BI SArrayAsVector(TEvent) Calendar Used to store the events in an array sorted according to 
the event time 

Integer 

partorder 

partorder 

Sensor 

Work _St 

AGV 

BI QueueAsVector(int) 

BI SArrayAsVector (partorder) 

BL tArrayAsVector(partorder) 

BI ArrayAsVector(Sensor) 

BI ArrayAsVector(Work-St) 

BI ArrayAsVector(AGV) 

Traffic controller 

MRP 

MRP 

Traffic controller 

TraffLcontroller 

Traffic _controller 

Used to store the node numbers of the route for AGV 
dispatch 

Used to store the part orders in a sorted array 

Used to store the permanent list of the components 
having BOM information 

Used to store the permanent list of sensors 

Used to store the permanent list of the work stations 

Used to store the permanent list of the AGVs 
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Table 6 The model statistics 

No. of 
orders 

6 
12 
18 

Dedicated (base model) 

Total No. of 
tardiness tardy orders 

293 6 
1207 12 
2179 18 

Nearest vehicle (model 1) 

Total No. of 
tardiness tardy orders 

227 6 
1257 12 
1903 18 

Anticipatory (model 2) 

Total No. of 
tardiness tardy orders 

42 2 
274 7 
658 10 

Table 6 shows the relative performance, and Figure 
12 shows the comparative total tardiness of the three 
models. The following inference is drawn by analysing 
the graph. 

The base model with dedicated vehicle selection 
and non-anticipatory dispatching shows the worst 
performance as expected. The vehicle dispatching 
logic of the other two models is designed to improve 
the baseline performance. From the figure, it can be 
seen that the situation marginally improves with the 
dynamically nearest vehicle selection strategy in 
model 1 when the number of orders increases. This 
slight improvement is attributed to the saving of 
vehicle travel time by selecting the nearest vehicles 
instead of dedicated ones. Given the small size of 
AGVS network, thus less difference in vehicle 
locations, the improvement was not significant, just as 
expected. However, model 2 with the anticipatory 
strategy (AGVs move to expected order locations in 
advance) shows remarkable improvements mainly due 
to the reduction in the wait time for the order pick 
up. It can also be seen that the total tardiness 
increases proportionally with the increase of orders. 
This is true for all three models. 
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Figure 12 Relative performance of AGVS models 

Discussions 

The model developed in this research has touched 
upon some of the essential yet very important aspects 
of an AGVS like vehicle selection, dynamic path 
generation, vehicle dispatching, order scheduling and 
the integration of the MRP with the AGVS. 
However, the real challenges faced by a typical real 
world system are numerous and much too compli- 
cated to be addressed in a single framework such as 
this. Nonetheless, the advantage of using the object- 
oriented methodology to model a system effectively 
has been demonstrated in this work. Given the flexi- 
bility of the framework, the present model can be 
improved and embellished in numerous ways to 
handle the real world challenges, some of which are 
listed below: 

The current model uses a simulation framework to 
simulate the real world events and to capture the 
interaction between the various objects. To make 
the model applicable to a real system, it is neces- 
sary to replace the simulation framework with the 
relevant software/hardware interface to allow the 
transfer of data between the system and the 
physical objects. A desirable feature of the object- 
oriented implementation is the structured function 
definition in the object CARD templates. The real 
system signal, digital or analogue, may be included 
to replace the input/output handling functions in 
CARD. Of course, the memory location of the 
signals in a memory-mapped I/O interface must be 
specified. 
The present model rests on many underlying 
assumptions. The constant velocity of the vehicles, 
no external obstacles in the path, no machine 
break-downs, exact timings for travel and order 
processing, etc., are just some of these assump- 
tions. However, the real system needs to address 
these issues with thoroughness to account for each 
normal and abnormal activity that could take place. 
One possible approach is to enhance the functions 
of sensors in the network so that exact vehicle 
movement can be monitored closely. 
The present model has a dynamic path generation 
algorithm which is capable of handling only a few 
normal conditions. For a real system, the algorithm 
needs to be improved and tested for each possible 
condition. In addition, an error-handling routine 
may also be necessary. 
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Eventually, the AGVS model needs to be run not 
by a primitive MRP module but by a more complex 
module based on the MRP II closed-loop frame- 
work, which incorporates the needs of shop 
capacity planning and other realistic constraints 
and performs the scheduling accordingly. 

In addition to the above system development 
issues, vehicle dispatch strategy can also be improved. 
The simplistic strategy of using shortest static travel 
times as the estimates of transportation duration can 
be made more realistic by relaxing it using the 
following approaches: 

The MRP module in the present model performs a designed to be data independent. The system can be 
very important function of incorporating the BOM utilized for different scenarios by modifying the data 
structure and disaggregating an order into several files for system components like AGV, sensor 
part orders according to the due date considera- connectivity, work station location, bill of material 
tions. It also utilizes a very basic dispatching matrix and order sequencing. The MRP module was 
strategy in terms of back-calculation. However, as proposed for a general case, and was implemented 
noted earlier, this simplistic strategy may not be for a specific case observed in a manufacturing 
useful for many cases. The MRP module needs a company. The main task of the MRP module was to 
significant improvement in terms of generality in break down the final order into several part orders 
storing and using the BOM structures for several and sequence them according to the individual due 
parts, scheduling parts in an effective order and dates. The code developed on the basis of the above 
considering alternative strategies for relaxation of model was then further modified to incorporate the 
back-calculation in case of any abnormal events. various strategies of vehicle selection and vehicle 
The present model does not allow the vehicle path dispatching. The three strategies were then subjected 
to be changed once it has been dispatched. to the three order sets containing 6, 12 and 18 orders 
However, the inclusion of such a strategy is a must with varying due dates and arrival times, and the 
in order to account for sudden obstacles or break- statistics were collected. The results obtained corrob- 
downs. In this way, the control becomes truly orated the inherent advantages and disadvantages of 
dynamic. the individual strategies. 

The concept of object-orientation was kept at the 
heart of the system development. It was realized 
during the stages of development that the model 
building was the most important phase which, once 
accomplished, led to a relatively easy coding. The 
inherently appealing concept of object-based develop- 
ment made the additions and modifications quite 
easy. The features of Borland C++ like virtual class 
and container class libraries helped to avoid the 
coding at a basic level, and thus made the tasks of 
dynamic binding and event handling quite simple. 
Thus, more effort could be applied for the actual 
system development. 

apply a uniform relaxation factor to the material 
handling duration estimates (e.g. a factor of 1.5); 
replace the shortest duration by an average of the 
shortest and the longest non-repetitive path; 
use different relaxation factors according to the 
shop loading conditions, etc. 

Summary and conclusions 

A software model for an AGVS was developed in this 
research. Salient features like dynamic path genera- 
tion, AGV allocation and dispatch, order processing, 
etc. were incorporated in the model. In addition, the 
integration of the AGVS control to a production 
order system was established. The static and dynamic 
functional and informational models were adapted to 
receive orders from the MRP module and accord- 
ingly dispatch the AGVs. The aim of this strategy is 
to minimize the overall due dates for the orders. The 
MRP module was utilized as a demonstrative 
approach, and hence a very basic back-calculation 
strategy with shortest material handling duration was 
used. 

To understand the system operation, a small scale 
discrete event simulation framework was developed, 
and the different objects in the model were 
conformed to pass the messages and retrieve the 
events as dictated by the simulation framework. The 
entire system was developed in C++ and was 

In conclusion, it was found that the system design 
and development using the object-oriented technique 
was realistic in representing real system components 
and behaviour. It offers a flexible modelling and 
software implementation tool for the control of 
complex systems such as FMSs. The unique effort to 
integrate the AGVS; with the MRP module has suffi- 
ciently demonstrated the all important issue of 
integrated FMS control. The poptential application of 
this framework in the development of FMS control 
systems appears to be promising. 
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