
A production order-driven AGV
control model with object-oriented
implementation

Manish Shah, Li Lin and Rakesh Nagi
Dqartment of Industrial Engineering, 342 Bell Hall, SUNYat Buffalo, Bufab, NY 14260, USA

To effectively manage the material handling in Flexible Manufacturing Systems (FMS),
where a large amount of data is required in the dynamic decision-making, integrated
control is needed to consider the overall production schedule. The focus of this research is
on the development of an integrated Automated Guided Vehicle System (AGVS) control
model that includes essential features like dynamic vehicle path determination and
conflict-free routing. An object-oriented implementation of the AGVS model is proposed
that forms the basis of systems integration with a production planning module such as
MRI? Static and dynamic informational and functional models of the AGVS are developed.
The system incorporates: (i) conflict-free shortest path routing procedures, and (ii) vehicle
assignment rules or scheduling strategies. A prototype version of each of these has been
developed for demonstrative purposes. This object-oriented. modelling methodology
provides the capability of rapid development and change. The approach has been demon-
strated for a real manufactured product through simulation studies which confirm the
superior performance of anticipatory AGVS control rules, even in a production order-
driven environment. 0 1997 Elsevier Science Ltd.

Keywords: Flexible Manufacturing System (FMS), Automated Guided Vehicle (AGV), Material Requircmcnts
Planning/Ma,nufacturing Resources Planning Systems (MRP, MRP II), Systems Integration, Scheduling

Introduction

With advances in computer and electronic technolo-
gies making automation an integral part of manufac-
turing systems, the recent technological trend is
towards developing Flexible Manufacturing Systems
(FMS) due to their obvious advantages. The primary
benefits of an FMS are reduced setup times,
increased equipment utilization, reduced work-in-pro-
gress inventories, better throughput and reduced
manual intervention’.‘. An FMS typically consists of
several numerically controlled machines for produc-
tion processes, an automated storage/retrieval system
(AS/RS) for raw material and finished goods, and an
automated material handling system for material
transfer between the work centres. An Automated
Guided Vehicle System (AGVS) is a material
handling system for transferring material between
work centrcs (or flexible manufacturing cells) by
means of one or more Automated Guided Vehicles
(AGVs). AGVs controlled by a centralized computer
system typically move along a guide path in the shop.

Since FMS involve high capital costs, significant
attention has been paid to improving system
efficiency via production scheduling3-‘. Similar efforts

have independently been undertaken on various
aspects of AGVS design and operation (see the next
section); most of the AGVS research has revolved
around AGV allocation and dispatching strategies.
The central idea of any of these strategies is to
improve the AGVS performance, i.e. to improve the
AGV utiization, to reduce total distance travelled,
etc. For example, the nearest work centre allocation
rule assumes that since the nearest vehicle will take
the shortest time to reach the work station, the
allocation will improve the performance for the job;
and hence, such a strategy will improve the overall
system efficiency.

However, even though the scheduling of work
centres and AGVs are intimately related, and which
collectively define the productivity of the overall
system, little attention has been paid to considering
them in a unified manner. Most research in AGVS
lacks interest in the manufacturing system require-
ment-based allocation of AGVs. For this reason, the
effect of a ‘good’ vehicle allocation strategy for a
particular environment may cause only localized
improvement; and the performance of the entire shop
in terms of throughput does not necessarily improve.
It has been realized that the very important link

35

36 Production order-driven AGV control model: M Shah et al.

between the shop requirements and AGV allocation studied, it must be noted that production order-
is largely missing so far. driven AGV control has received little attention.

Recently some literature has focused on developing
hierarchical approaches to the FMS control model’-“.
The advantage of hierarchical control is that it allows
the control problem to be partitioned to limit the
complexity of any module in the hierarchy, regardless
of the complexity of the entire structure’.“‘.

Guide path network design

In this paper, we develop an AGV control model
that is driven by shop production orders. An object-
oriented implementation of the AGVS mode1 is
proposed that forms the basis of system integration.
Static and dynamic informational and functional
models of the AGVS are developed. The system
incorporates: (i) conflict-free shortest path routing
procedures, and (ii) vehicle assignment rules or
scheduling strategies. A prototype version of both of
these has been developed to demonstrate the
system’s effectiveness. This object-oriented modelling
methodology provides the capability of rapid software
development and adaptability to changes of system
configuration.

For production planning or generating shop
requirements, a Material Requirements Planning
(MRP) system is assumed. To integrate the MRP
module with the AGVS and thus make it a shop
requirement-driven AGVS, an order file acts as a
common link. The MRP module, based on the BOM
data file and final order due date, computes due
dates for the component parts and accordingly places
part orders in the order file. The AGVS retrieves
orders from the order file and correspondingly
allocates the AGV. Further, once an operation is
performed, the part order updates the order file
according to the next operation due date.

A guide path usually defines the possible vehicle
movement path. From the modelling viewpoint, the
guide path is represented by a set of links and nodes.
The nodes represent the action points (e.g. pick-
up/drop-off points, maintenance areas) and intersec-
tions, whereas the links represent the aisle along
which AGV movement takes place. The guide path
design can be of an active or passive nature. For
active guide paths, the central controller is connected
to the entire guide path, and hence the AGVs receive
command directives and also provide feedback to the
controller via the guide path. However, the high
implementation cost and inflexibility of such a design
makes it impractical in many situations. A relatively
inexpensive alternative, the passive type of guide
path, has a primary function of keeping the vehicle
on the track. In this case, the AGV communicates
with the controller by means of RF/IR (radio
frequency/infra red) waves.

The guide path network can be divided into four
types, according to the allowed vehicle movement:
uni-directional single lane; bi-directional single lane;
multiple lanes; and mixed”. A uni-directional
network, even though simple from the control and
routing perspectives, is inferior in performance to a
bi-directional network”. The multi-lane approach is
practically cost prohibitive due to the extra space
requirements.

We also study the effects of vehicle selection
strategy and an anticipatory dispatching on the
overall system performance for an adopted order
dispatching policy. Three models that adopt different
strategies are implemented: Dedicated vehicle &
Non-anticipatory; Nearest vehicle & Non-anticipa-
tory; and Nearest vehicle & Anticipatory dispatching.
These models are evaluated in a simulation frame-
work. The comparison of their system performance
indicates the superiority of anticipatory dispatching.

The concept of single loop guide paths was intro-
duced by Tanchoco and Sinriech”. In this approach,
the entire path is divided into valid single loops which
have at least one out of several arcs which make up
each department. For single loop guide paths, the
control system becomes simple due to the absence of
possible collisions, etc. However, the system needs to
have additional transfer points, as products may need
to traverse through several loops before reaching
their destinations.

The paper is structured as follows. A literature
review of the current topics of interest in AGVS
design is presented in the next section. The proposed
modelling methodology is then presented, and the
system development issues, simulation framework
and performance are discussed. Several important
issues identified in the research are addressed, and
finally, the conclusions are presented.

Optimal number of vehicles

Literature review

The cost and complexity of introducing additional
vehicles against the marginal improvement in the
system performance dictates the optima1 number of
vehicles in the system. Maxwell and Muckstadt” used
an analytical model for determining the number of
vehicles required under static and dynamic condi-
tions. A simulation approach was used by Tanchoco’4
for determining the number of vehicles, and a non-si-
mulation approach by Egbelu15.

The following discussion of the literature focuses on
the basic elements of AGVS design: (i) guide path
network design; (ii) optimal number of AGVs; (iii)
vehicle dispatching; (iv) vehicle routing; and (v)
traffic control. While these elements have been well

Ve&cle dispatching

Once a demand for an AGV is initiated by a work
centre, a choice needs to be made regarding which
vehicle is to be dispatched. Conversely, when several

Production order-driven AGV control model: M Shah et al. 37

work stations need service and a vehicle becomes
available, a choice has to be made as to which work
station is to be serviced. On the basis of the above
two scenarios and several optimizing criteria, Egbelu
and Tanchoco’” studied two types of selection rules:
work centre Initiated Task Assignment (WITA) and
Vehicle Initiated Task Assignment (VITA). A WITA
applies in the case of excess vehicles, and the selec-
tion criteria can be based on random vehicle, nearest
vehicle, farthest vehicle, longest idle vehicle or least
utilized vehicle. A VITA is used in the case of one
vehicle serving several stations. The determining rules
are random work station, nearest work station,
farthest work station, maximum queue size, minimum
remaining queue size, modified FCFS, unit load
arrival time, unit load due date, priority of unit load,
etc.

The authors established that, in the long run,
WITA rules have little application because the system
is expected to have an optimum number of vehicles,
so the chances of having several vehicles available at
one point of time are quite slim. Thus, VITA rules
are more important and practical.

Vehicle routing

To dispatch the AGV to a station at any point in
time, a shortest feasible path from the existing
position is desired. For a guide path network repre-
sentation of links and nodes, the algorithm developed
by Dijkstra” provides the shortest path. One
approach is to determine a static path assuming that
all the guide paths are available. However, in the
presence of other vehicles, this assumption is not
valid due to possible collisions. Collisions can be of
two types: head-on and catching-up. To resolve these
conflicts, a dynamic routing is required. It takes into
account the current and future positions of all the
vehicles in generating a feasible conflict-free path,
which may not be the shortest one.

Several approaches have been proposed to create a
conflict-free route. One is to generate the shortest
path using Dijkstra’s algorithm, and then define the
node occupation times for each vehicle on the
shortest path. These occupation times then can be
used to detect partial conflicts’S. The catching up
conflict can be resolved by slowing down the trailing
vehicle, and head-on conflict can be avoided by
removing the conflicting segment from the network
and using Dijkstra’s algorithm to find the shortest
path from the remaining network links. Another
approach of using ‘time-windows’ was introduced by
Huang’<‘, which used the physical arcs of the original
network as time windows. However, it allows only
one vehicle at a time in a zone. This approach was
improved by Kim and Tanchoco”” by maintaining
time windows for reserved and free time slots on
each node of the network.

Trajjk control

In a system having conventional (intersecting) guide
paths, the issues of AGV routing and collision avoid-
ance are very important. The entire working of the
system depends upon the control logic applied, which
is divided into three main categories: (i) forward
sensing control; (ii) zone sensing control; and (iii)
combinatorial control.

Forward sensing control can be termed as a local-
ized control in which each AGV is equipped with
obstruction detecting sensors that can identity
another AGV in front of it, and slow down or stop.
The benefit of such a control is improved vehicle
utilization due to closer allowable distances between
the vehicles. However, this approach is unreliable for
detecting obstacles around a corner and at
intersections.

The zone control approach is more global. The
control computer keeps track of the entire guide
path, which is divided into zones. Once an AGV
enters a zone, that zone (or a number of adjacent
zones, depending on the location) is blocked so that
no other AGV can enter that path”. In a simplistic
implementation, zone control introduces some ineffi-
ciencies. However, sophisticated logic and rules can
be used to improve the performance of such a
control.

In combinatorial control, both the above strategies
are selectively used to obtain the benefits of both
strategies. For long straight paths, sensor control is
appropriate, while for intersections, zone control is
more suitable.

In summary, FM% are capital-intensive systems
that comprise expensive manufacturing centres and
AGVS for material handling, therefore the efficient
use of these resources is essential for their cost justi-
fication. Alongside, with ever-intensifying competition
in the global market, there is an increasing need to
further reduce product manufacturing cycle-time.
Consequently, for material handling systems, it is
necessary to minimize: (i) undesirable waiting time at
machines due to the unavailability of AGVs; and (ii)
excessive distances travelled by the AGVs in idle or
loaded moves. Historical control approaches in FMSs
have put much emphasis on the scheduling of work
centres. Without a sufficient integration of the
AGVS, only simple dispatching rules are adopted for
AGV dispatching. The need for a unified approach to
scheduling the material processing system and the
material handling system has been well recognized,
and effective control systems are expected to be
adopted soon. This is exactly the focus of this
research.

Modelling methodology

The following sections discuss the stand-alone AGVS
modelling with related issues of conflict-free routing,
the shop requirements planning by the MRP module,
and finally, the AGVS integration with the shop

38 Production order-driven AGV control model: M Shah et al.

requirements. A two-step approach is used to present
the modelling and integration of the system. First, the
design of an independent AGVS is described using
the object-oriented modelling technique. Both the
static and dynamic informational and functional
models, and an algorithm for generating the conflict-
free routing, are discussed. In the second step, based
on a typical product structure and bill of materials,
the AGVS control and an MRP module are unified
in one framework. The relevance of the MRP-based
methods to generating part orders and back-
calculating due dates is established, and finally, the
integration of AGVS with the MRP module and
related issues are explored.

A G VS design

Given the complexity of manufacturing systems .and
frequent product changes, system changes are often
introduced. It gives the need for a stand-alone AGVS
that can be integrated with a shop-order or require-
ment module. Traditional modelling and develop-
ment methods fall short of these adaptability
expectations. Hence, a powerful modelling methodo-
logy is essential. As a result of recent software
engineering development, object-oriented modelling
is gaining increasingly wider acceptance. Several
methodologies have been proposed to model
particular systems22~2”. The object-oriented AGVS
design will be employed later to demonstrate system
performance for alternative global strategies.

The concept of ‘objects’ is at the heart of object-
oriented modelling. An object in a system can be
defined as a physical or conceptual entity with a well
defined boundary, components and responsibilities2”.
The first step of the modelling is to identify the basic
objects in the system and analyse the interaction
between them. Table 1 summarizes the objects identi-
fied in the AGVS along with their key attributes.

As for the modelling approach, Information
Processing Object Hierarchy (IPOH), proposed by
Changchien24, a system has a dual dichotomy: a
functional and an informational model, each with a
static and dynamic view. These models are developed
and implemented for the current system.

Static functional model. This is the basic model of the
system, depicting the attributes (data members) and

Table 1 Objects in the AGVS

Objects

Traffic controller

Major attributes

No-of_AGV, No_of_Workstation,
No-of-Sensor

AGV

Sensor

Order

Work station

AGV_id, current-position, destination,
moving-status, loading-status, route

Sensor-id, connectivity, importance

Order-id, order-route,
order_processing_time, due-date

Workstation-id, processing_status,
workstation_position

responsibilities (functions) of each object without
considering the dynamic interactions between them.
The information is displayed in a structured template
called CARD (Class, Attributes, Responsibilities and
Directive) classes.

Class stands for the name of the object class, while
the attributes refer to the key features of the object.
Responsibility is divided into three sub-sections,
Input, Output and Processing. Directive classes is the
list of all the classes which are connected to this
particular class. Figures 1 and 2 represent the CARD
template for AGV and Traffic_controller. Appendix
A contains the remaining CARD templates.

In the CARD templates for AGV class and Traffic_
Controller, the attributes included some inherent
characteristics of the object class that do not change
during operation, such as AGV_Id_ #, List_AGVs,

Class : Automated Guided Vehicle (AGV)

Attributes
AGV_Id_#
Load -Time

Unload_Time

Cur_Position

Pre_Position

Cur-Status (Waiting,Moving)

AGV_avail(Assigned.Unassigned)
Load_Statas (Loaded, Unloaded)

Dest_Position

Initial_Position

Assigned-Wait-Time

Unassigned_Wait_Time
Path-List

Responsibilities

lnDut
Move-Position
Lo&order
UnIoac_Gxler
Assigned-Wait
Unassigned_Wait

Processing;

Update-Position
Update_Status
Update-Avail
Update_%_Util

Update_Path

Report_Cur_Pos
Report_Cur_Status
Report_Task_Comp
Report-Statistics

Directwe Classes

Tr&ic_Controller

Sensor
Work-Station
Par-Order

Figure 1 CARD template for AGV class

Production order-driven AGV control model: M Shah et al. 39

List Sensors and Layout Of Sensors. Since these
are static information often related to a given system
configuration, they are called static attributes. Other
attributes in CARD that change values during opera-
tion are system states, termed dynamic attributes.
These include LoaddTime, Unload_Time, CurPosi-
tion, etc. Responsibilities of the object classes are
divided into input and output handling functions, and
processing functions that update system states, i.e.
dynamic attributes of the objects. Some examples are
Update Position, Update Status, etc. Finally, the
directive classes are objects that may be affected by
the actions of the object. For AGV, for instance,
Traffic ~Controller, Sensor, Work_ Station, are likely
to change due to changes in the AGV’s states.

Static information model. This mode1 depicts the static
relationship between the system objects. The model
bears a very close resemblance to the Entity
Relationship Diagram (ERD) in relational database
design, where each entity (object) is placed in a box
and is connected to one or more objects via one-to-
one, one-to-many or many-to-one relationships. The

Class : Traffk_ControMer

Attributes

List_AGVs

List-Sensors

List_workstations

List-Routing

Layout_Of_Sensors
Order-Queue

Responsibilities

TnDut

WS_Status

AGV_Status

Order_Routing_file

Processine

Find-Shortest-Path (AGV_Id_#)

Select_AGV(WS_Id_#,AGV_Id_#)

Assigned_Wait(AGV_Id_#)

Unassigned_Wait(AGV_Id_#)

QII!zBI
Move_AGV

Begin_I_oading

Begin_Unloading

Directive Classes
AGV
MRP

Order
Sensor

Work-Station

Figure 2 CARD template for Traffic -Controller class

USER

System Boundary
---------- -------- r
I I
I I
I Creates Network

I SYSTEM
MANAGER Provides Order

I Information
I

I Gets Gets System

I 0
Statistics Parameters
I

I

’ SENSOR
TRAFFIC

CONTROLLER

I
Gets Status I

Gets Command Gets Gets I
Stam Command Gets stani I

1 Loads/ 1 I r I 1

I T Transfers Y
I

I I

L-__________________-_----!

Figure 3 Static information model of AGVS

model does not contain any dynamic information on
how data are processed, which is achieved by the
dynamic information model. Figure 3 illustrates the
static information model for the AGVS.

This mode1 shows the general interaction among
object classes in the AGVS. For instance, the
relationship between Work Station and (production)
Order is a many-to-many process, i.e. one Work
Station can process more than one order, and one
order can be processed by more than one Work
Station.

Dynamic functional model. This mode1 depicts the
temporal behaviour of the objects in the system.
Typically, the dynamic functional mode1 is imple-
mented with the help of State Transition Diagrams
(STD). Each object has several states during the
system execution which consume a finite amount of
time. A state transition is caused by an event which
occurs at a discrete point in time. The events can be
of the external or internal type. Figures 4 and 5 show
the STDs for the Traffic controller and the AGV. For
instance, an AGV will change its state from ‘AGV
Loading’ to ‘AGV Loaded’ by the event ‘Loading
done’; and it will proceed to an ‘AGV Moving’ state
by the event of ‘Moving to drop-off (load)‘.

Dynamic informational model. This mode1 depicts the
dynamic data flow between the objects. Data flow
diagrams are used to implement this model. The data
flow diagrams have the following main components

40 Production order-driven AGV control model: M Shah et al.

start
Simulation

Terminatio.\ I inIZ%Lon
Condition

\

Figure 4 State transition diagram for Traffic_Controller
class

which define the origin, conversion and destination of
data”:

(4

(b)

(c)

(4

Processes: to transform the input values to output
values.
Data flows: to connect the output of one object
to the input of another.
Data stores: the permanent store from which the
input values are read, i.e. databases.
Objects: which trigger different processes to start
converting the input values.

Figure 6 illustrates the data flow diagram for the
AGVS and the symbols used to represent the compo-
nents of the data flow. Note that all data flow
between processing function are attributes, such as
‘Order Number’, ‘Sensor Position’, etc. All attributes
are contained in the attributes of the object class
defined by the static function model.

Loading
done

Figure 5 State transition diagram for AGV class

Data Base Data Flow

Order Data
Base

I

Work Station
Data Base

I
Work Station Id. /

TkT
Data Base

Figure 6 Dynamic information model for AGVS

Conflict-free routing of AGVs. As discussed earlier, a
number of research efforts have focused on conflict-
free routing of AGVs. The purpose of this section is
to present a simple algorithm for conflict-free routing
to be incorporated into the AGVS for demonstrative
reasons. This simple algorithm can always be
replaced by more appropriate techniques with
relative ease due to its object-oriented
implementation.

This algorithm considers it AGVs in the system.
The concept of time window is applied to predict the
position of each AGV with reference to the AGV
under consideration. Consider the case where it is
required to generate a conflict-free path for the nth
vehicle. In the first step, depending on the origin and
destination positions, a static shortest path is gener-
ated using Dijkstra’s algorithm. Based on this static
path, a time window is generated which has the time
unit and corresponding sensor position as its
attributes.

Next, similar lists having lengths equal to the time
window list are generated for all the other n-l
vehicles. If a vehicle is at a stop (loading, unloading
or waiting) or comes to a stop during the time
window span, it is assumed to remain at the same
location, at least for the remaining time period.
Based on this assumption, after creating the time
window lists, each time window is compared with the
original one, and if a conflict is found, it is stored in a
conflict-set.

If the conflict-set is non-null, the respective sensor
associations are removed for Dijkstra’s algorithm and
a path is recalculated. This process is repeated until a
feasible path is found. It is realized that the algorithm
will require separate queues, and a more sophisti-

Production order-driven A GV control model: M Shah et al. 41

cated logic in case of a very large number of vehicles
in a congested network. However, for this study, the
algorithm is found to generate conflict-free routines
for a moderate number of AGVs and medium-size
window list. A flow chart of the algorithm is as shown
in Figure 7.

MRP module

For planning the production tasks of multi-level
assemblies, although contemporary planning
techniques such as Just-In-Time (JIT) and Optimized
Production Technology (OPT) have gained some
popularity, the Materials Requirements Planning
(MRP) (and Manufacturing Resources Planning,
MRP II) philosophy is still employed by the majority
of manufacturing enterprises. MRP has been found
as an effective way to translate the requirements of a
Master Production Schedule (MPS) into a detailed
schedule of manufacturing parts and sub-assemblies.

MRP uses an explosion calculus procedure to
result in the time phased plan for all component
parts and raw materials required to produce all the
products in the MPS. This materials plan can there-
after be utilized for detailed capacity planning, and
finally shop-floor scheduling. Explosion calculus relies
heavily on Bills-Of-Materials (BOM, or product
structures), and refers to the set of rules by which
gross requirements at one level of the BOM is trans-
lated into a production plan at that level and the
requirements at lower levels. A BOM details the

I Generate. Static
Path for vehicle n I

REPEAT
Create dynamic path after

Figure 7 Conflict-free routing algorithm Due date for Sl:

assembly structure or the parent-child relationship of
components and end-items, the number of compo-
nents per assembly, and the lead-time required for
the production of each component. An accurate
estimate of a component lead time considers (or
should consider) the operation sequence (routing, or
process sheets) and for each operation accumulates
process time, setup time, queue time and material
handling duration. The material handling duration
estimates can be derived from the same process sheet
by estimating the time required to move the material
from one station to another.

The estimation of material handling duration and
the process duration can be done with a fair amount
of accuracy. However, the estimation of queue time
due to either unavailability of a machine or unavail-
ability of a vehicle introduces a degree of complexity
to this particular problem. Various approaches have
been proposed in the literature’“. As the main objec-
tive of this paper is to develop a control model that
integrates AGVSs and shop production orders,
sophisticated methods of estimating queue times are
beyond our research scope. Thus we did not include
such an estimation, and only assumed static travel
time.

The current work is based on the scheduling of
production orders by an MRP module and its
integration with an AGVS to dispatch the vehicles
accordingly. To illustrate the approach, consider an
example of a product having a Nevel structure as
shown in Figure 8. Product A (representing the final
assembly) is made up of three sub-assemblies (Sl, S2
and S3) which are in turn made of several parts (Pl
to P5) with different associations. Thus, product A is
at level 0, sub-assemblies are at level 1 and the parts
are at level 2. Each part and sub-assembly has a set
of operations to undergo at several work stations.

To schedule the operations of the parts and sub-as-
semblies, MRP’s backward scheduling logic is
applied. The procedure for backward calculation,
illustrated in Figure 8 is summarized below by taking
an example of sub-assembly Sl and its component
parts Pl and P2:

Symbols

Sub-assembly:
Parts:
Work stations:
Process times:

(assuming, one
operation per
process sheet)

Travel time:

Process route:

Due date for
vehicle dispatch:

Sl
Pl, P2

i, j, k, 1, m
Pl -PPl
P2 +PP2
Sl +SPl

t (start_work__station,
end_workkstation)
Pl -i-j-l
P2+i-k-l
Sl+l-m
Pl+al, bl
P2+a2, b2
Sl +dl
T2

42 Production order-driven AGV control model: M Shah et al.

T2 represents the time at which the sub-assembly
Sl is required for further assembly. Hence this is
the due date for Sl from which all other due dates
are back calculated using the above process route,
process time and travel time estimates.
Since it takes time t(1, m) to transfer Sl from
station ‘1’ to station ‘m’, the due date for vehicle
dispatch becomes dl, and is the time by which the
operation for Sl must complete. This also means
that parts Pl and P2 must be ready for assembly at
station ‘1’ by time [dl - SPl]. This further leads to
the due dates bl and b2 by similar logic.
Extending the same logic further and using the
process times and travel times for parts Pl and P2,
it is found that the first due date of part P2 falls
before that of part Pl (a2 <al). Hence, the
dispatch of part P2 is scheduled before that of part
Pl. In other words, Pl has a slack time compared
to P2. This scenario also leads to the latest start
time Tl by which the dispatch must start.

The orders are scheduled by their operation due
dates, and hence the vehicles are assigned accord-
ingly. A logical first choice in case of multiple
vehicles being available is to allocate the nearest
vehicle. A significant advantage of this strategy is that
the parts are dispatched in the order of their required

Tl
Do

I

Figure 8 Product structure and due-date calculation

4 4

/ \ 4

4

AGVS - e-

\
Read Order +

4

*

ORDER LIST

Figure 9 AGVS-MRP integration

completion time, and hence the overall final due date
is the ultimate driving force for scheduling and AGV
dispatching in the integrated control system.

Integration of MRP module and AGVS control

To integrate the MRP module with the AGVS and
thus make it a shop requirement driven system, the
order file acts as a common link. As shown in Figure
9, the MRP module, based on the BOM data file and
final due date, calculates and assigns the due dates
for the parts and accordingly places the part orders in
the order file.

The AGVS retrieves the first order from the order
file and correspondingly allocates the AGV. Further,
once an operation is performed, the part order is
updated in the order file according to the next opera-
tion due date.

It is realized that the material handling time
estimates should be arrived at by considering not only
the static distances between the work centres, but
expected distances for non-conflicting paths and,
more importantly, queue times due to waiting for an
AGV. This problem is similar to the one of deter-
mining accurate estimates for part lead-times, where
parts spend time in queues waiting for machines to
become available25. In the lack of a systematic
material handling time estimation procedure, we have
adopted the static travel time between work-centres
for demonstrative purposes. Possible improvements
of this simple strategy are offered later in the
discussion.

An industrial example

Another objective of the AGVS design is to demon-
strate the overall system performance based on alter-
native parameters and strategies. Since AGVS is a
shop support system, and its utility and performance
are related to improvements in the performance of
the system being served, operational parameters like
AGV selection, order selection and routing vary
according to the strategy chosen. The proposed
strategy for a typical manufacturing scenario is

Production order-driven AGV control model: M Shah et al. 43

exemplified in this section by considering an example
of a ‘real life manufactured product and the
coresponding shop-floor layout.

The integrated AGVS-MRP model was applied to
a situation observed in a manufacturing company
with some simplifications. Figure 10 represents the
layout of the manufacturing shop, and Table 2 iden-
tifies the significance/utility of each of the work-
stations. Table 3 represents the BOM data for the

69

61

0 2 70

0 4 Work Station

0 __) Sensor

Figure 10 The facility layout

Table 2 Workstation data

Work station ID Sensor ID Function

I I
2 I6
3 23
4 36
5 41
6 32
7 57

Entry/storage
Cover manufacturing
Housing manufacturing
Turning
Inspection
Assembly
Exit/finished goods storage

Table 3 Bill-of-material information

Compo- Compo- No. of Process Process duration
nent name nent ID operations route (at work station)

Housing I 2 1-3-5-h 30(3) lO(5)
Cover 7

1
2 I-2-5-h 20(2) IO(S)

Flywheel 2 I -4-5-h 40(4) IO(S)
Damper 4 1 h-*7 20(h)

Table 4 Static distance data

WSl ws2 ws3 ws4 ws5 WS6 ws7

Ws* **e 4 7 II IS I2 18
ws2 4 *** II 9 II IO I6
ws3 7 ,l **xi IO IS 9 I3
ws4 I I 9 IO X*9 5 - 7
ws5 IS II IS 5 -x * ,. I; 6
WS6 I2 IO 9 5 I() :**li 8
ws7 I8 I6 I3 7 6 8 *+*

product, a viscous torsional vibration damper, which
has a 24evel product structure. The final product is
made of three parts, a Housing, a Cover and a
Flywheel, with corresponding process routes and
times. Tubfe 4 represents the static (minimum)
distance between the various work centres which is
used in the back calculation of due dates.

AGVS control strategies

As mentioned earlier, the orders are processed in the
sequence of their completion requirements, and
hence the driving force for AGV dispatching is the
order completion time. In the short run, however,
this strategy may lead to the increase in tardiness of a
particular job. However, as local optimality is not the
objective, an overall reduction in the tardiness of all
the jobs is expected in the long run. This is a signifi-
cant potential benefit.

It is recognized that the performance of the system
would strongly depend upon the system parameters
like bill of material structure, product mix, order
arrival times, order due dates, shop layout and the
number of vehicles. Thus, the strategy to sort the part
orders only on the basis of the most pessimistic time
is too simplistic to produce consistently good
performance for all shop conditions. Alternative
strategies could (i) assign priorities by studying the
effect of a new part arrival in the system on the
existing parts being served, or (ii) sort orders by their
most pessimistic dispatch times and by their arrival
times so as to reduce the tardiness in the short term
(at the expense of possibly higher tardiness in the
long run).

The complexity involved in the determination of
the possible logic for such a scheduling and
dispatching renders it outside the scope of this work.
Instead, we keep our focus on integrated control and
study the effects of vehicle selection strategy and
anticipatory dispatching on the overall system
performance for the adopted order dispatching
policy. The vehicle selection strategy involves deter-
mining the dynamic distance of each available vehicle
(i.e. the shortest distance considering the obstacles in
the path) and the subsequent selection of the nearest
vehicle. The anticipatory dispatching strategy assumes
that information related to the location of the
immediate next order arrival is available, and there-
fore dispatches the assigned vehicle before the order
arrives. This means that the AGV, once available,

44 Production order-driven AGV control model: M Shah et al.

receives information about the location of the next
ariving order, proceeds to the destination and waits
for the processing to complete. The combination of
the above two strategies gave rise to the following
three models:

The base model (dedicated vehicle & non-anticipatory).
The base model consisted of a dedicated vehicle
selection rule. In the case of multiple vehicle avail-
ability, a dedicated vehicle was always assigned
irrespective of its distance from the order location.
the model was non-anticipatory in nature, meaning
that once the vehicle became available, it would wait
at its current location for the arrival of the next order
to start moving.

For simulation purposes, it is imperative that all
the objects be stored or acted upon at different stages
of the program by the same framework. Hence, the
concept of a virtual class was used to refer to all the
relevant objects together. A virtual base class ROOT
is defined with common data member ‘object-type’
and a common member function ‘event-handler’.
Other objects like AGV, Traffic_Controller, Sensor,
WorkkSt, Partorder, etc., are derived from this class.
The main purpose of this declaration is to achieve
dynamic binding and a commonality in event
handling.

Model 1 (nearest vehicle d non-anticipatory). This
model employed the distance criteria to dispatch the
nearest vehicle from the order location. The distance
was determined based on the existing layout
configuration and location of other vehicles, hence
the model was dynamic in nature. The vehicle
dispatch strategy was non-anticipatory.

The container classes of Borland C++ were used
while developing the program. The availability of
such class libraries made it possible to directly use the
data structures like Queue, Sorted Array, Array for
objects and Sets without concerning the development
of their underlying mechanisms. Some common
functions available for such container classes also
made it easy to perform operations on the entire
structure. It should be noted that the availability and
use of such classes is in accordance with the object-
oriented philosophy of ‘reusability’.

Model 2 (nearest vehicle 6; anticipatory dispatch). This
model included both dynamic distance selection
criteria as well as anticipatory dispatching on the
basis of the availability of the next order information.

Simulation framework

The three models gave rise to three different sets
of computer codes. They correspond to three sets of
order files that have 6, 12 and 18 orders, respectively.
The following section provides a comparison of the
system performance using these three strategies, and
comments on the simulation results obtained.

To implement the order processing strategy and
demonstrate system performance, a discrete event
simulation framework was developed. This frame-
work consisted of two main classes: TEvent: the event
class, and Calendar: the manager of events. The class
TEvent has three main data members:

(a) EventTime: the time of occurrence of the event.
(b) EventObject: the active object to be acted upon

with the event.
(c) EventType: the type of event for the object.

System implementation and results

Implementation issues

The object-oriented models and order assignment
methodology developed were implemented using
Borland C++ as the programming language on the
IBM/OS/2 platform. In the following, we discuss the
software implementation approach and highlight the
important features of the program structure and
development.

As the EventObject can be of any one of the
objects involved, it is type cast as the ROOT which is
the virtual parent object. The events are organized
into an array sorted by their EventTime, and are
identified by the EventType. The array is a private
data member of the Calendar class, and the primary
responsibility of the calendar object is to schedule the
event and retrieve the first event in the array.

The entire C++ code was divided into three main
modules, namely a class declarations module, a
member function declaration module and the main
program. These three modules were developed in
three different files under a common directory, so as
to keep the complications at minimum and at the
same time make changes and additions easier.

The simulation is initiated by reading an order
from a file, which is further decomposed into several
part orders. Each part order has several types of
processing to be done. After each process, it is
updated in the part order array for further transport-
ation. Each object which is acted upon during an
event retrieval has an event-handler member
function that performs the intended task and also
schedules other events as required.

The header file contains the definition for all the The simulation is run till an event termed as ‘END
objects defined in Table I, as well as the objects of SIMULATION’ is encountered, which is the
the MRP module. In addition to these system objects, prescribed time to end the simulation. After the
two more objects for simulation (Calendar and
TEvent) were declared. All the type casting for the

termination of the simulation, an output report
showing the statistics of the system is printed to an

container classes of Borland C++ was also defined output file. Figure II shows the logic flow of this
in this file. simulation framework.

Production order-driven AGV control model: M Shah et al. 45

Program description. The following describes the
sequence of events in the program, its input data file
structure and its output file specifications. The
program was developed with industrious effort in
enforcing the data and logic independency required
of such systems. Hence, the first steps of the main
program included retrieval of data from various data
files. This modularity is necessary to facilitate future
changes or additions. Table 5 reviews the data files
used for input and output.

i ;?-triri;? Event from j ,

t

Update the Simulation Clock

I

L J Sho;ita’

Figure 11 Flowchart for the simulation framework

Table 5 Data files used for input/output

In the main program, first the initialization of the
system parameter takes place in which various data
input files are read, and accordingly the objects of
various classes are created. The pointers of various
objects like Traffic_controller, Sensorlist, AGVlist,
MRP and WSList are initialized for message passing
and referencing. Next, orders from the order data file
are read and the MRP module decomposes the
orders into corresponding part orders in creating an
order list. The system simulation then starts and
proceeds to execute the various events in sequence.
The simulation terminates when the END SIMULA-
TION event is encountered and the system statistics
are written to an output file.

Simulation results

As mentioned earlier, the code developed for each
model was subjected to the three order sets
containing 6, 12 and 18 orders. The simulation
provided the statistics related to the overall system
performance in the following format:

Overall system statistics
(a) Number of orders received
(b) Number of orders processed
(c) Number of tardy orders
(d) Maximum tardiness (Units)
(e) Minimum tardiness (Units)
(f) Average tardiness (Units)

Order statistics
(a) Order number
(b) Order arrival time
(c) Order due time
(d) Order completion time
(e) Tardiness

AC V statistics

(a>
(b)
(cl
(4
I;;
Cd
(h)

The travel statistics for the AGV number
Unloaded travel time (Units)
Loaded travel time (Units)
Unassigned wait time (Units)
Assigned wait time (Units)
Loading time (Units)
Unloading time (Units)
Total number of part orders processed

Name of
object

Container
class

Used in
class Purpose

TEvent BI SArrayAsVector(TEvent) Calendar Used to store the events in an array sorted according to
the event time

Integer

partorder

partorder

Sensor

Work _St

AGV

BI QueueAsVector(int)

BI SArrayAsVector (partorder)

BL tArrayAsVector(partorder)

BI ArrayAsVector(Sensor)

BI ArrayAsVector(Work-St)

BI ArrayAsVector(AGV)

Traffic controller

MRP

MRP

Traffic controller

TraffLcontroller

Traffic _controller

Used to store the node numbers of the route for AGV
dispatch

Used to store the part orders in a sorted array

Used to store the permanent list of the components
having BOM information

Used to store the permanent list of sensors

Used to store the permanent list of the work stations

Used to store the permanent list of the AGVs

46 Production order-dtiven AGV control model: M Shah et al.

Table 6 The model statistics

No. of
orders

6
12
18

Dedicated (base model)

Total No. of
tardiness tardy orders

293 6
1207 12
2179 18

Nearest vehicle (model 1)

Total No. of
tardiness tardy orders

227 6
1257 12
1903 18

Anticipatory (model 2)

Total No. of
tardiness tardy orders

42 2
274 7
658 10

Table 6 shows the relative performance, and Figure
12 shows the comparative total tardiness of the three
models. The following inference is drawn by analysing
the graph.

The base model with dedicated vehicle selection
and non-anticipatory dispatching shows the worst
performance as expected. The vehicle dispatching
logic of the other two models is designed to improve
the baseline performance. From the figure, it can be
seen that the situation marginally improves with the
dynamically nearest vehicle selection strategy in
model 1 when the number of orders increases. This
slight improvement is attributed to the saving of
vehicle travel time by selecting the nearest vehicles
instead of dedicated ones. Given the small size of
AGVS network, thus less difference in vehicle
locations, the improvement was not significant, just as
expected. However, model 2 with the anticipatory
strategy (AGVs move to expected order locations in
advance) shows remarkable improvements mainly due
to the reduction in the wait time for the order pick
up. It can also be seen that the total tardiness
increases proportionally with the increase of orders.
This is true for all three models.

2500

2000

; 1500
.E
P
e
c

Z
;; 1000
c

500

0

Relative Performance

-BaseModel

i

- Model 1

- Model 2

0 5 10 15 20

Number of Orders

Figure 12 Relative performance of AGVS models

Discussions

The model developed in this research has touched
upon some of the essential yet very important aspects
of an AGVS like vehicle selection, dynamic path
generation, vehicle dispatching, order scheduling and
the integration of the MRP with the AGVS.
However, the real challenges faced by a typical real
world system are numerous and much too compli-
cated to be addressed in a single framework such as
this. Nonetheless, the advantage of using the object-
oriented methodology to model a system effectively
has been demonstrated in this work. Given the flexi-
bility of the framework, the present model can be
improved and embellished in numerous ways to
handle the real world challenges, some of which are
listed below:

The current model uses a simulation framework to
simulate the real world events and to capture the
interaction between the various objects. To make
the model applicable to a real system, it is neces-
sary to replace the simulation framework with the
relevant software/hardware interface to allow the
transfer of data between the system and the
physical objects. A desirable feature of the object-
oriented implementation is the structured function
definition in the object CARD templates. The real
system signal, digital or analogue, may be included
to replace the input/output handling functions in
CARD. Of course, the memory location of the
signals in a memory-mapped I/O interface must be
specified.
The present model rests on many underlying
assumptions. The constant velocity of the vehicles,
no external obstacles in the path, no machine
break-downs, exact timings for travel and order
processing, etc., are just some of these assump-
tions. However, the real system needs to address
these issues with thoroughness to account for each
normal and abnormal activity that could take place.
One possible approach is to enhance the functions
of sensors in the network so that exact vehicle
movement can be monitored closely.
The present model has a dynamic path generation
algorithm which is capable of handling only a few
normal conditions. For a real system, the algorithm
needs to be improved and tested for each possible
condition. In addition, an error-handling routine
may also be necessary.

Production order-driven AGV control model: A4 Shah et al. 47

Eventually, the AGVS model needs to be run not
by a primitive MRP module but by a more complex
module based on the MRP II closed-loop frame-
work, which incorporates the needs of shop
capacity planning and other realistic constraints
and performs the scheduling accordingly.

In addition to the above system development
issues, vehicle dispatch strategy can also be improved.
The simplistic strategy of using shortest static travel
times as the estimates of transportation duration can
be made more realistic by relaxing it using the
following approaches:

The MRP module in the present model performs a designed to be data independent. The system can be
very important function of incorporating the BOM utilized for different scenarios by modifying the data
structure and disaggregating an order into several files for system components like AGV, sensor
part orders according to the due date considera- connectivity, work station location, bill of material
tions. It also utilizes a very basic dispatching matrix and order sequencing. The MRP module was
strategy in terms of back-calculation. However, as proposed for a general case, and was implemented
noted earlier, this simplistic strategy may not be for a specific case observed in a manufacturing
useful for many cases. The MRP module needs a company. The main task of the MRP module was to
significant improvement in terms of generality in break down the final order into several part orders
storing and using the BOM structures for several and sequence them according to the individual due
parts, scheduling parts in an effective order and dates. The code developed on the basis of the above
considering alternative strategies for relaxation of model was then further modified to incorporate the
back-calculation in case of any abnormal events. various strategies of vehicle selection and vehicle
The present model does not allow the vehicle path dispatching. The three strategies were then subjected
to be changed once it has been dispatched. to the three order sets containing 6, 12 and 18 orders
However, the inclusion of such a strategy is a must with varying due dates and arrival times, and the
in order to account for sudden obstacles or break- statistics were collected. The results obtained corrob-
downs. In this way, the control becomes truly orated the inherent advantages and disadvantages of
dynamic. the individual strategies.

The concept of object-orientation was kept at the
heart of the system development. It was realized
during the stages of development that the model
building was the most important phase which, once
accomplished, led to a relatively easy coding. The
inherently appealing concept of object-based develop-
ment made the additions and modifications quite
easy. The features of Borland C++ like virtual class
and container class libraries helped to avoid the
coding at a basic level, and thus made the tasks of
dynamic binding and event handling quite simple.
Thus, more effort could be applied for the actual
system development.

apply a uniform relaxation factor to the material
handling duration estimates (e.g. a factor of 1.5);
replace the shortest duration by an average of the
shortest and the longest non-repetitive path;
use different relaxation factors according to the
shop loading conditions, etc.

Summary and conclusions

A software model for an AGVS was developed in this
research. Salient features like dynamic path genera-
tion, AGV allocation and dispatch, order processing,
etc. were incorporated in the model. In addition, the
integration of the AGVS control to a production
order system was established. The static and dynamic
functional and informational models were adapted to
receive orders from the MRP module and accord-
ingly dispatch the AGVs. The aim of this strategy is
to minimize the overall due dates for the orders. The
MRP module was utilized as a demonstrative
approach, and hence a very basic back-calculation
strategy with shortest material handling duration was
used.

To understand the system operation, a small scale
discrete event simulation framework was developed,
and the different objects in the model were
conformed to pass the messages and retrieve the
events as dictated by the simulation framework. The
entire system was developed in C++ and was

In conclusion, it was found that the system design
and development using the object-oriented technique
was realistic in representing real system components
and behaviour. It offers a flexible modelling and
software implementation tool for the control of
complex systems such as FMSs. The unique effort to
integrate the AGVS; with the MRP module has suffi-
ciently demonstrated the all important issue of
integrated FMS control. The poptential application of
this framework in the development of FMS control
systems appears to be promising.

References
Sethi, A K and Suresh, P S ‘Flexibility in manufacturing: a
survey’, International Journal of Flexible Manufacturing Systems
Vol 2 (1990) pp 289-328
Talavage, J and Hahnam, R G Flexible Manufacturing Systems
in Practice: Applications, Design and Simulation Marcel-Dekker,
New York (1988)
Han, M-H, Yoon, K N and Hogg, G L ‘Real-time tool control
and job dispatching in flexible%anufacturing systems’, Inter-
national Journal of Production Research. Vol 27 No 8 (1989)
pp 3257-3267 ’

\ I

O’Grady, P J and Menon, U ‘Loading a flexible manufacturing
system’, International Journal of Production Research, Vol 25 No
7 (1987) pp 1053-1068
Stecke, K E and Kim, I ‘A study of FMS part type selection
approaches for short-term production planning’, fnternational
Journal of Flexible Manufacturing Systems, Vol 1 (1988) pp 7-29
Davis, W J ‘Real-time optimization in the automated research
facility’, in J White and I W Pence (eds), Progress in Material
Handling I,ogistics (1989)

48 Production order-dtiven AGV control model: M Shah et al.

7 Jones, A and Mclean, C ‘A proposed hierarchical control
model for automated manufacturing systems’, Journal of
Manufacturing Systems, Vol 5 No 1 (1986) pp 15-25

8 Tirpak, T M, Deligiannis, S J and Davis, W J ‘Real-time
scheduling in flexible manufacturing’, Manufacturing Review,
Vol5 No 3 (1992) pp 193-212

9 Simpson, J A, Hocken, R J and Albus, J S ‘The automated
manufacturing research facility of the national bureau of stan-
dards’, Journal of Manufacturing Systems, Vol 1 No 1 (1982)
pp 17-31

10 Jones, A T and Saleh, A ‘A multi-level/multi-layer architecture
for intelligent shopfloor control’, International Journal of
Computer Integrated Manufacturing, Vol 5 No 1 (1990)
pp 15-25

11 Egbelu, P J and Tanchoco, M A ‘Potentials for bi-directional
guide path for automated guided vehicle based systems’, Inter-
national Journal of Production Research, Vol 24 No 5 (1986)
pp 1075-1097

12 Tanchoco, J M A and Sinriech, D ‘OSL - Optimal Single-
Loop guide paths for AGVS’, International Journal of Produc-
tion Research, Vol30 No 3 (1992) pp 665-681

13 Maxwell, W C and Muckstadt, J A ‘Design of AGVS’, IIE
Transactions, Vol 14 No. 2 (1982) pp 114-124

14 Tanchoco, J M A, Egbelu, P J and ‘Igghaboni, F ‘Determina-
tion of the total number of vehicles in an AGV-based material
transport system’, Material Flow, Vol4 (1987) pp 33-51

15 Egbelu, P J ‘The use of non-simulation approaches in
estimating vehicle requirements in an automated guided
vehicle based transportation system’, Material Flow, Vol 4
(1987) pp 17-32

16 Egbelu, P J and Tanchoco, M A ‘Characterization of
automated guided vehicle dispatching rules’, International
Journal of Production Research, Vol22 No 3 (1984) pp 359-374

17 Dijkstra, E W ‘A note on two problems in connexion with
graphs’, Numerische mathematik Vol 1 (1959) pp 269-271

18 Broadbent, A J, Besant, C B, Premi, S K and Walker, S P ‘Free
ranging AGV systems: promises, problems and pathways’, Proc
2nd International Conference on Automated Materials Handling,
IFS Publishers, UK (1985) ~~221-237. (Reprinted in
Automated Guided Vehicle Systems, R H Hollier (ed), IFS Ltd,
UK, 1987.)

19 Huang, J, Palekar, U S and Kapoor, S G ‘A labeling algorithm
for the navigation of automated guided vehicles’, ASME Trans-
actions, Journal of Engineering for Industry, Vol 115 (1993)
pp 315-321

20 Kim, C W and Tanchoco, J M A ‘Conflict free shortest time
bi-directional AGV routing’, International Journal of Production
Research. Vol29 No 12 (1991) on 2377-2391

21 Koff, G A ‘Automatic ’ guide4 ‘vehicle svstems: applications,
cont;ols and planning’, Miterial Flow, Vol 2 (1987) pi 3-16

22 Booth. G Object-Oriented Desim. Beniamin-Cummings (19911
23 Rumbiugh, j, Blaha, M, Preieilani,‘W, Eddy, F and-L&ens&,

W Object-Oriented Modeling and Design, Prentice-Hall, Engle-
wood Cliffs, NJ (1991)

24 Changchien, S-W, Lin, L and Sun, D ‘A dynamic control model
of flexible manufacturing cells using the information processing
object hierarchy’, Journal of Factoty Automation and Integrated
Manufacturing (forthcoming)

25 Melnyk, S A and Piper, C J ‘Leadtime errors in MRP: the
lot-sizing effect’, International Journal of Production Research,
Vol23 No 2 (1985) pp 253-264

