Geometric Algorithms for Rapidly
Reconfigurable Mold Manufacturing of
Free-form Objects

Aditya Kelkar, Rakesh Nagi, Bahattin Koc *

Department of Industrial Engineering, 342 Bell Hall,
University at Buffalo (SUNY), Buffalo, NY 14260, USA

Abstract

This paper presents geometric algorithms for developing a re-configurable tooling
system for fabrication of freeform objects. The proposed method involves a mold
block, with n faces, in which the mold cavity is formed by moving a set of discrete
pins on each face of the block. The part surfaces are approximated in the mold
cavity using the pins from the suitable mold block faces. The geometric algorithms
detailed in this paper analyze the part and determine the face of mold block from
which the part model is approximated best. Further, the algorithms detect possible
interference between pins from different faces, and suitably alter the approximating
face to alleviate interferences. By moving these pins in and out of the mold block,
the shape of the mold cavity is reconfigured rapidly to suit the changes in part
geometry. Since the proposed method approximates free-form objects with discrete
pins, a surface-error calculation method is also developed to control the accuracy.
Computer implementation and examples are also presented in this paper.

Key words: Re-configurable molds, discrete molds, free-form objects, NURBS
surface discretization, error analysis.

PACS:

1 Introduction

In the past, production was ruled by economies of scale, and the best way to
earn profits was to fully utilize resources, and produce in large volumes. How-
ever, during recent years, a lot of attention has been paid to flexibility, and

* To whom correspondence should be addressed. Email address: bkoc@buffalo.edu

Preprint submitted to Elsevier Science 25 February 2004

adaptability of the manufacturing systems. The current market trend is mov-
ing towards mass customization, in which every product can be customized
by the customers to adjust to their needs. This has lead to the development
of “Agile Manufacturing Systems” [1], which enables a high degree of mass
customization to meet the uncertain and ever-changing demands of the cus-
tomers.

The manufacturing processes involved in such a dynamic manufacturing en-
vironment must handle a variable product design pattern. A large class of
industry such as injection molding, casting, stamping, and forging rely on the
long and costly precursor of design and fabrication of dies and molds. How-
ever, a mold made for a particular product design can be used only for that
design. Any design changes deliver the mold unsuitable for use, and a new
mold must be made. Hence, such processes may not prove suitable for mass-
customization. Layered manufacturing (LM) and similar technologies have
developed very fast in the last decade, and have shown the capability to pro-
duce complex geometries. However, those processes are limited by the choice
of materials and may not be feasible for mass-production. Hence, a process
capable of quickly adapting to design changes, and at the same time, requiring
less lead time, is much needed. In this paper, reconfigurable tooling system is
proposed for mass customization.

The proposed method uses a set of reconfigurable pin matrices to produce re-
configurable molds for 3-dimensional free-form parts. By adjusting the pins on
each mold face to approximate a given area of the part surface, a mold cavity
for the desired part is obtained. Figure 1(a) shows an example part, a gear
shift knob for a car. The original design is changed to meet user requirements
as in Figure 1(b). Using the proposed tooling system, the mold cavity can
be rapidly configured as shown in Figure 1(c) and 1(d) for the original and
the changed model respectively. A conventional mold would require a totally
new mold set, in order to incorporate the design changes. In the proposed
re-configurable system, by moving the suitable pins inside or out of the mold
cavity, the new shape of the knob can be easily configured in the mold cavity.

The proposed re-configurable tooling system can be used in several fabrication
processes such as injection molding, transfer molding, and thermoforming. Re-
configurable injection molds can be designed to incorporate sprue, and cooling
system. Ejection system will not be necessary in such a re-configurable system,
as the molded part can be easily removed by retracting the pins. For transfer
molding processes, the pins themselves can be used as rams to push the molten
material into the cavity. The system can also be configured for thermoforming
applications, where the mold can be formed using the pins.

This paper presents geometric algorithms to enable such rapidly re-configurable
tooling system. Section 2 presents a review of previous research on re-configurable

systems. Section 3 describes the proposed process. Section 4 details the geo-
metric algorithms for Re-configurable Mold Manufacturing. Section 5 presents
examples used for testing the algorithm, while Section 6 discusses further im-
provements to the proposed system. Section 7 concludes the paper.

2 Literature Review

Several researchers have studied re-configurable tooling systems in forming,
and part fixturing. Walczyk and Hardt [2, 3] developed discrete reconfigurable
dies for forming sheet metal. The system consists of small, individually posi-
tioned pins, mounted in two rectangular matrices. The die in this system is an
opposed die, which is formed by the pins on each of the matrices. These dis-
crete pins are positioned to approximate the continuous surface of the matched
dies with the help of numerical control. The pins may be either placed at in-
tervals in the matrix, or densely packed. In both cases, the pins are positioned
to approximate the desired shape of the die, and are then clamped with a
tool. These methods are limited to create a single surface geometry and can
be used only for formed parts with limited geometric complexity because of
the nature of the forming process.

Papazian et al. [4, 5] used the same principle of reconfigurable dies to build
a system for sheet stretch forming. It differs from the system in Hardt [2, 3]
in that it uses stretch forming rather than opposed die forming. This system
involves only a single matrix of pins, and a flexible rubber sheet. This system
is used to shape large sheets of metal for applications in the aerospace indus-
try. This method specifically addresses forming of large surfaces for aerospace
applications, and is not designed to fabricate three dimensional parts.

Crawford and Klesspies [6] present a method for producing large curved sur-
faces using a ”variable configuration vacuum forming mold”. The mold consists
of a number of discrete pins, and a flexible rubber sheet. The system is sim-
ilar to Hardt [2, 3], but uses a different method for deformation of the sheet.
Also, the system uses thermoplastic sheets rather than sheet metal. Again,
this process is limited to only formed parts (i.e. cannot produce three dimen-
sional free-form objects), and the interpolation sheet can cause waviness on
the formed surface as the authors state in their paper.

Walczyk et al. [7] use computer-controlled re-configurable fixturing devices
(RFDs) to fixture compliant parts. They use a matrix of pins fixed on a rigid
platen. Each pin can be individually moved. The authors have presented their
research on developing mechanisms for pin actuation using a combination of
gas springs and pneumatic clamps. This system can be configured for any
arbitrary part shape and can work as a universal fixturing device.

All the systems mentioned in the literature use a single re-configurable matrix
of pins to form sheet metal, or a thermoplastic sheet, or to fixture a compliant
part. These methods cannot be used to fabricate complex three dimensional
(3D) free-form objects. In this paper, geometric algorithms are presented to
enable 3D re-configurable tooling system for fabrication of 3D free-form ob-
jects.

3 Reconfigurable Mold Manufacturing (RMM)

The basic idea behind a reconfigurable tooling system is to be able to recon-
figure the tooling setup to incorporate geometric changes in the design of a
component to the tooling system [8]. With such a setup, it can be possible to
reflect any changes in the product design directly from the CAD system to
the customized part. In the proposed method, any change in the part design
can be easily incorporated in the process by rapidly readjusting the location
of the pins inside the mold block. By readjusting the suitable pins inside the
mold cavity, the new part surface can be easily replicated. This would oth-
erwise require a total change in the mold geometry, and a new mold would
be required to be fabricated. By controlling the depth through which the pins
are pushed into the mold block, the shape of the surface of the part can be
achieved. Thus, changing the design will simply mean changing the positions
of the pins inside the mold as shown in Figure 1. The surfaces of the mold
cavity are formed by approximation of the model surfaces using a set of dis-
creet pins. An example of a free-form surface, S(u,v) is shown in Figure 2(a).
The surface is approximated by a set of discrete pins by changing the height
of each pin as shown in Figure 2(b).

The set of pins in Figure 2(b) is part of a reconfigurable mold block in which
the mold cavity is formed. Each pin can be moved in and out of the mold
block using suitable screw-based or similar mechanisms. Figure 3 shows an
example of such system for controlling the position of the pins. By properly
positioning the pins inside the mold block, the geometry of the part model can
be approximated, and the mold cavity can be formed. The process generating
a design cavity in a reconfigurable tooling system is summarized as follows
(also shown in Figure 4): Given a free form object O with a set of parametric
surfaces S;(u, v) as shown in Figure 4(a).

(1) Determine the faces of the mold cavity from which each point of the
surface grid will be best approximated by pins and assign face attributes
to the surface points. Trace the contours of point sets on the surface grid
having same face attributes. Eliminate any interference between pins,
and the mold cavity. And re-assign interfering point sets to alternate
mold faces (shown in Figure 4(b)).

(2) As shown in Figure 4(c), the contours are projected onto the respective
faces of the mold block and the pins on the mold faces lying inside the
projected contours are determined. These pins which form the cavity are
called active pins.

(3) The exact location of the pins is calculated by projecting the active pins
onto the surface model as shown in Figure 4(d).

(4) Gaps are detected and extra pins are located to close the gaps between
pins as shown in Figure 4(e).

According to the geometry of the part, the algorithms presented in the fol-
lowing sections generate the mold cavity of a given design model. Possible in-
terferences between pins and the mold cavity are analyzed, and suitable point
sets are re-assigned to alternate mold faces to provide an interference-free part
cavity. The active pins which form the actual mold surfaces are determined,
and positioned inside the mold block to generate the mold cavity from the
CAD model of the part directly. The accuracy and finish of the molded part
depends on the resolution of the pin size. Smaller the resolution, better is the
fabricated part obtained. Since the presented method depends on surface ap-
proximation, a method of measuring the errors on the fabricated surfaces has
been developed to control the accuracy. In the following sections, details of
the geometric algorithms to generate the reconfigurable mold cavity directly
from free-form CAD models are presented.

4 Geometric Algorithms for Reconfigurable Mold Manufacturing

The presented methods use a boundary representation of an object O. In this
paper, NURBS parametric representation of the surfaces S;(u,v) are used to
have better coverage of different surfaces as [9]:

‘n f:Ni,p(U)Nj,q(U)Qijwz‘j
S(u,v) = == : (1)
YD Nip(u)Njg(v)w

i=0 j=0

where ;; denotes the control point net for surface S(u,v) and w;; denotes
the weights of the control points. p and ¢ are the degrees, and n and m are
the orders of the surface along the parameters u and v. In order to determine
what portion of the object should be assigned to each faces of the mold block,
a set of points Ps on the parametric surfaces S;(u,v) are sampled. Any point
P, on a surface S(u,v) is best approximated from the mold block face F; that

gives the least angle between block face normal vector Ny, and surface normal

at point Ps, N, . The normal vector N, of a surface point F; is calculated as
follows [9]:

— _ou ov
au < o

where 0S5/0u and 0S/0v are the first derivatives at a point P; on a surface
S(u,v).

Each mold face F} is referenced by its face number j (j =1,2,...,n). Super-
script indices are used to represent the attribute in this paper. Points approxi-
mated from a particular face F; are given that face number j as a classification
attribute. This yields k point sets, ng of face attribute j (superscript j refers
to the attribute of point sets). To determine the contours of the region for the
point sets ng with the same face attribute j, a boundary tracing algorithm
has been used (also shown in Figure 5). Instead of tracing the boundaries in
Euclidean space, which would be computationally expensive, the boundary
tracing is performed in parametric space, where only u — v values need to be
traced. After the boundaries of the regions are obtained, they are projected
onto the respective mold block faces. This algorithm yields the contour of
point sets that are to be approximated from a particular mold face. These
contours are then project onto the respective mold faces. The pins lying inside
these contours are the active pins A’ as shown in Figure 5, which actually
form the mold cavity when suitably positioned inside the mold block j.

4.1 Interference detection and elimination

In the previous section, a set of points is assigned to a particular mold face,
from which that set is best approximated, i.e. the face that will give the least
errors in the mold surface. However, this does not take into consideration the
accessibility of that point set from the assigned face. This can lead to two
types of interferences:

e Cavity - pin intersection: If a pin approximating a surface point on the
part surface passes through the mold cavity of the part, then the cavity-pin
intersection occurs.

e Pin-pin Interference: This happens when pins from one face intersect pins
from another face. There can be two types of such interferences:

- Local interference: At the interfaces between two adjacent curves, bound-
ary pins for the two sets from the respective faces may intersect each other.
This is called local Interference.

- Global Interference: If the non-boundary pins for two sets intersect each

other, then the intersection is called as global interference.

Interface checking process is not feasible at the face assignment stage itself,
as each pin would have to be checked with a number of pins in order to
detect interference. However, using the point set approach instead simplifies
the problem, as the intersection of point sets can yield possible interferences
with less computation.

4.1.1 Cavity-pin intersection detection and elimination

The cavity-pin interference detection and removal is formulated as an acces-
sibility problem. If a point set is not accessible from a particular mold face,
then it would lead to the pins passing through the mold cavity. Hence, such
intersection must be detected and eliminated. To determine if a surface point

P] _is visible or can be accessed from a viewing direction Ny, (normal vector
of a mold face j), silhouette curves are used. A silhouette curve is defined as
a curve of points on the surface, at which the surface normals are at a right

angle with the viewing direction vector as:

— —

N,, - Ny,= 0, (3)

where Ny denotes the viewing direction vector.

For a particular mold face j with normal vector]\7}]., the silhouette curves C’gm
(m=1,2,...) for the part when viewed from mold face j are determined. Let
there be t sets of surface points assigned to mold face j. (best approximated
from face j). Figure 6(a) shows the point sets PJ, PJ ., PJ assigned to
face 7. A point set or a curve is said to lie below another point set or curve, if
the former lies closer to the face of approximation than the latter. Similarly, a
point set or curve is said to lie above another point set or curve, if the latter
lies closer to the face of approximation than the former. Thus as shown in
Figure 6(a), point set PJ, | lies above silhouette curve C7 ., while point set

J i i J
Pi.,, lies below silhouette curve C7 .

Viewing from the given direction Ny, of a mold face, if a set PJ (k € t) lies
below a silhouette curve which means visible from face j, and projection of
the point set is completely inside the silhouette curve, then it is completely
visible or completely accessible from the face j . Hence, this set of points can
be approximated by pins from the face j. As shown in Figure 6(b), silhouette
curve CJ s visible from face j while silhouettes C7 through C7 are
not. Point set ngH lies completely inside the silhouette curve Cgm+ . and

below it. Hence, the point set ngH is completely accessible from the face j.

If a set ng lies completely inside a silhouette curve visible from face j, but

above it when viewed along direction Ny, then that set is completely obscured
by the part surface lying below the silhouette curve, and is not visible from
the mold face j. Hence, if this set of points is approximated by pins from face
7, the pins will intersect the part surface lying below the silhouette curve, and
would have to pass through the mold cavity to result in cavity-pin interference.
Therefore this set cannot be approximated from the face j. In Figure 6(c), the
point set ngﬂ is assigned to face 7, and it lies completely inside the silhouette

curve CY

.] .
St which is visible from face j. However, point set Pi.,, lies above
curve CY

7 ..4» and is obscured by the part surface below silhouette curve C’ngr e
While PJ , lies below the silhouette curve C7 .
the silhouette curve CJ . itself is obscured by the part surface below it.
Therefore, ngﬂ is not visible from the face j, and is not accessible from it.
This set cannot be approximated from face j, and must be re-assigned to an

alternate face.

and completely inside it,

If a set ng lies partially inside the silhouette curve and above it when viewed

along Ny, then the part inside the silhouette curve cannot be accessed from
the mold face j. The part lying outside the curve can be accessed from the
face j, provided it is not obscured by another part of the surface. In Figure
6(d), silhouettes C? and Cngr are visible from the mold face j. Point set
Py, is partially inside silhouette curve C7 ., but completely inside CJ . The
part of set PJ inside the silhouette curve CJ is not visible from mold face
J, and hence is not accessible from it. However, the part of P completely
inside silhouette curve CJ , but not lying inside the silhouette curve CJ
is visible from the face j. This part of the set ng can thus be accessed from
the mold face j. Therefore, the point set PJ yields two different point sets,
one accessible from the face j, and one not accessible from face j. When pin-
cavity interference is found, the interfering point set is reassigned to another
mold face by checking the second best candidate face. Interference checking
and elimination continues until there’s no interference and all the point set
are assigned to their corresponding mold face. Due to the complex geometries
of parts, it is possible that some of the point sets cannot be assigned to any

mold face j without interferences.

4

Details of cavity-pin intersection determination and elimination are given in
Algorithm 1. In Algorithm 1, the intersection of two point sets or a point set
and a curve is interpreted as the intersection of their projected boundaries
on a mold face (shown with the symbol N in the algorithm. For instance, the
intersection of a point set and a silhouette curve means the intersection of the
boundary curve of the point set, and the silhouette curve projected on a mold
face.

Algorithm 1: Detection and elimination of cavity-pin intersection
INPUT: Free-form object O with set of surfaces S;(u,v). Point sets P/
(k=1,...,t) assigned to mold face j.

OUTPUT: Set A; of point sets accessible from mold face j, Set I; of point
sets inaccessible from mold face j.

START
Initialize A; = {} & I, = {}
For viewing vector Ny,, determine silhouette curves Cgm (m =1,..., number of
silhouettes) using Equation (3).
VP
Ve

Calculate P N CY ;

If (P/ NCI # NULL)
If(P; NCJ =PI and P lies below CJ and CJ is visible from face j)
Then A; «— A; UP!;
/**Add P, to set A; of point sets accessible from face j.**/
If(P; NCJ =PI and P] lies above CJ and CJ is visible from face j)
Then Ij — Ij Upgk,
/**Add P, to set I; of point sets inaccessible from face j.**/
If(P; NCJ D P! and P lies above C] and P! lies below any C})
/**Point set partially visible from face j **/
Then A; — A; U (P! — P! NCY);

Ij — ;U (P, NCL);
Find face i (¢ # j) for set I; such that angle between Np, and]\7} is minimum;
Reassign the set face attribute of I; to ¢;
END

4.1.2 Global pin-pin interference

The pin-pin interference occurs when two pins from different mold faces in-
tersect (or collide) each other. The surface point sets P/ will not cause any
pin-pin interference when the point sets can be swept to infinity along their
respective mold face normals without intersecting swept volume of any other
point set. Since a point set with the same face attribute will not have any pin-
pin interference problem, pin-pin interference will involve checking each point
set with a face attribute j, with all other points sets having a different face
attribute ¢ (i # j). Consider a point set PJ, (k = 1,...,t) for which possible
pin-pin interference needs to be checked. Let j be the mold face from which
point set P/, will be approximated. If the set PJ can be swept to infinity along
the outward normal of the mold face 57 without intersecting any other point set
Pi (i # j) with a different face attribute, then the set P/ does not cause any

pin-pin interference. However, if the sweeping of the point set ng contains any
other point set, then the point set P/ causes interference. Instead of sweeping
the points, only the boundaries of the point sets are swept to check the inter-
ference. Figure 7 shows an example part which is divided into 11 point sets
and assigned to each individual mold faces j. The sets are named according to
the face attribute of the points. Arrow and plus and minus signs determines
the direction of the swept. As shown in Figure 7, all the point sets except
point set z; can be swept to infinity without intersecting any other point set.
Set z, interferes with sets z1, v, x7, y{. Hence, point set z, must be re-
assigned to other mold faces to eliminate possible pin-pin interference. When
pin-pin interference is found, the interfering point set is reassigned to another
mold face by checking the second best candidate face. Interference checking
and elimination continues until there’s no interference and all the point set are
assigned to their corresponding mold face. Details of the pin-pin interference

detection are given in Algorithm 2. In Algorithm 2, sweep(P?

Sk

Ny,) signifies

the swept volume obtained when set ng is swept along direction Ny,. Also,
size(P!) signifies the number of points included in point set P? . Intersection
(N) of two point sets means the same as in Algorithm 1.

Algorithm 2: Pin-Pin Interference

INPUT: Free-form object O with set of surfaces S;(u, v). Point sets P/, as-
signed to face j.

OUTPUT: Point sets ng (k=1,...,t) without pin-pin interference.

START
VP
Sweep ng to infinity along]\7}]. to get sweep(ng,
VP, (i 7 J):
Calculate sweep(P;]\7}),
If (sweep(P?

ij);

1o Ny,) N sweep(P;,, Ny,) # NULL)
If (size(P],) > size(P;,))

Then
Find face m (m # i) s.t. angle between Np, and Ny, is minimum;

Reassign the face attribute of 738:, to face m;
Else

Find face m (m # j) s.t. angle between]\71;8 and Ny, is minimum;
Reassign the face attribute of PJ to face m;
END

10

4.1.3 Algorithm for finding active pins

Algorithms 1 and 2 determine possible interferences, and eliminate them. As
mentioned in Section 4, the initial steps to find the point sets are to calculate
the surface grid, finding the best face of approximation for the points on the
surface grid, and then tracing the boundaries of the point sets, with different
face attributes. Algorithm 3 details the procedure to find active pins. Algo-
rithms 1 and 2 are used in this algorithm to eliminate possible interferences.

Algorithm 3: Finding active pins
INPUT: Free-form object O with set of surfaces S;(u,v) (i =0,...,s); Mold
block with faces Fj (j = 1,...,n) with pins R} on face F}; normal vectors Ny,

for each face Fj; parametric interval Au and Awv.
OUTPUT: Active pins A? on each face j.

START

Initialize i« = 0, 57 = 0;

VS;:
Sample points Ps on each surface S;, using Equation (1),
and a user-defined parametric interval Au, and Awv;

Calculate surface normal Np, at every point Ps using Equation (2);
VP,
VE;:
Find face j € Min{N,, - Ny, };
Set face attribute of point P, to j;
Determine point sets ng, such that all points P, € ng have same face attribute j;
VP
Project boundary of point sets ng on face j to obtain projected boundary Bi;
Determine pins that lie inside the boundary Bi to obtain active pins AJ:
Determine and reassign cavity-pin interference using Algorithm 1

Determine and reassign pin-pin interference using Algorithm 2.
END

4.2 Determining the positions of the active pins inside the mold block

After all the active pins A7 have been determined, and possible interferences
have been eliminated, their positions inside the mold block must be set to
obtain the geometry of the part model in the mold cavity. This means that
the distance through which the pin must be moved inside, or out of the mold
block must be determined. Any pin RIJD' on face j can be defined by a point at
the center of the top surface, i.e. the surface that forms the mold cavity. The
problem is thus to determine an intersection of a line perpendicular to face F}
at a point P;, with a parametric surface S(u,v). The intersection is calculated

11

in terms of parameters (u*, v*) of the point of intersection on the surface. To
determine the parameters, the Jacobian Inversion method [10, 11] is used.
Using the Newton Iteration, the parameters of the point are approximated
until a convergence value is reached. The parameter values u* and v* at the
final stage give the intersection point between the line and the surface S(u, v).
The Jacobian Inversion enables evaluation of the parameters of the pin point
Rg; on a surface S(u,v), given two of its Cartesian coordinates. Let the pin
R} be on the face lying on the X —Y plane. Thus its z and y coordinates are
known and a parametric z-value on the surface needs to be calculated. The
method estimates the parameter values for the pin from an initial guess point
P?(u®,v°). The following equations have been used for the evaluation [10]:

Ty (u®, 0%)0u + z,(u’, v°)0v = z* — x(u’,v°),

yu(u®, 0%)0u + 4, (u®, 0%)0v = y* — y(u®,v°), (4)

where z, and x, denote partial derivatives of x component of surface S with
respect to u and v respectively. Similarly, y, and y, denote partial derivatives
of y component of surface S with respect to u and v respectively. du and
ov denote small changes in v and v. u® and v° denote the parameter values
of the initial guess point P?. The projected distance on the face F; between
calculated point and the actual point is calculated using the distance formula:

(P2, ALY = /(0 —) + (ya — y°)*. (5)

where z, and y, are the z- and y-values of center points of active pin A7.
Algorithm 4 details the calculations to obtain the positions of the pins.

Algorithm 4: Determining position of active pins in the mold cavity
INPUT: Parametric surface S(u,v); Active pins A% on block face Fj; conver-
gence value for numerical solution conuv.

OUTPUT: z-values of each active pin A/ inside the mold cavity.

START
Initialize P?2(u® v°) as initial guess point;
VAI:
Evaluate z°, y° using Equation (1);
Calculate d(P?, A7) using Equation (5);
While(d(P?, AJ) < conv)
Solve Equation(4) for ju and dv;
u* = u® + ou;
v* =0° 4 dv;
evaluate z*, y* using u* and v* in Equation (1);

12

Calculate d(P*, A7) using P in Equation (5);
Ug = U,

Vg = V¥

Evaluate z* using u, and v, in Equation (1);

EndWhile END

4.8 Closing the gaps in the mold

The method presented in the preceding sections projects points lying inside
a contour on the mold face onto the surface model. This point is taken as
a point on the top face of its corresponding pin, to generate the pin. Two
adjacent points on the surface may be approximated from two different mold
faces. Due to this, gaps may be introduced in the mold. To close the gaps,
extra pins are used. The contours on each face are expanded on all sides
to create overlaps between the point sets on the surface model. These extra
pins are then positioned inside the mold block to close the gaps without any
interference. Consider a surface S(u,v), partitioned into m point sets, ng,
(k=1,...,m). Then, the Algorithm 3 ensures that each point on the surface
S(u,v) is assigned a face attribute, and hence is contained in some set ng.

P, UPLU---UP] =5

PLNPLO--NP, =0 (6)

The sets ng when projected onto the faces F; and expanded to yield the ex-
panded boundary. Then, these expanded point sets are projected onto surface

S to yield sets PI¥,
PrUPFU---UPIFCS

PPN NP £ 0)

Thus we can say that the set ng ﬂPﬁ: (a # b) is being approximated by pins
from two faces. This region is the overlap region between the two sets, and
hence is the region where the pins will interfere. By removing this interference,
we can ensure that the mold does not have any gaps, as well as no pins interfere
with each other. Thus, inducing the overlaps can eliminate gaps in the mold.
Figure 8 shows the process of closing the gaps.

13

4.4 Estimation of errors between the actual surface and the mold surface

Since the above algorithms approximate the parametric surfaces with discrete
surfaces, there will be an error introduced on the mold surface. To control
the accuracy of the fabricated parts, the surface errors need to be calculated.
Similar error calculation methods [12, 13, 14] have been used in layered manu-
facturing to calculate layer thickness for adaptive slicing. Using the same prin-
ciple, a method has been developed to estimate errors in the reconfigurable
molds. For a given width w of the pins and using the methods presented in
previous sections, the height difference h between the pins can be calculated as
shown in Figure 9. The method uses the corners of the pins for calculations.
The curve between the two points is approximated as a circle with radius
equal to radius of curvature of surface along plane containing the normal at
any point P, as shown in Figure 9. There are two possible cases that may
be found, concave surfaces, and convex surfaces. Figure 9 shows pins approx-
imating a concave surface. There may be a case where the pins approximate
a convex surface. Formulae for both cases have been derived as follows:

Case (i): Concave surface

Error €concave = R+ \/R2 — h? — 2Rh sin(«) (8)

Case (i1): Convex surface

Error €coppes = —R * \/R2 — h? + 2Rh sin(a) 9)

Where R is the radius of curvature measured at point Ps, h is the height
difference between the active pins A7 and A7, 41 and w is the width of the
pins. By calculating the surface errors, the accuracy of the fabricated part
can be controlled. To achieve accurate parts, smaller pins should be used. But
smaller the size of pins, higher is the number of pins required. Positioning a
large number of pins can be time-consuming. Hence, a compromise must be
reached between the number of pins, and desired accuracy.

5 Implementation and Examples

The developed algorithms have been implemented in C using OpenGL for vi-
sualization. The OpenNURBS toolkit is used to generate the output in stan-
dard .3dm file format to view and modify in Rhinoceros 3D NURBS modeling
tool. The initial NURBS based models are also generated using Rhinoceros
3D software. The surface information is stored in a text file, and is used in the

14

implementation to generate the NURBS model. In these examples, the mold
block is taken to be a cube, with 6 sides.

A sphere with a radius of 7.0 units is used as the first example. The actual
NURBS model of the example part is shown in Figure 10(a). Discrete pins
with square cross sections (size of 0.5 units) are used for generating the mold
cavity. After determining the active pins, the cavity of the example part is
configured as shown in Figure 10(b). Only five sides of the mold have been
shown for clarity. The errors are calculated using the method presented in
Section 4.4 and maximum errors are found to be 0.007756 units. To increase
the accuracy, smaller pins can be used.

Figure 11(a) shows the NURBS model of Example part II, a vase. is taken
as another example. The vase is 26.5 units in height, and maximum diameter
is 12.5 units. The mold generated for a square pin size of 0.5 units in cross-
section is shown in Figure 11(b). Maximum error obtained with 0.5 units pin
size was 0.150749 units. Figure 11(c) shows the vase obtained from the mold
in Figure 11(b). Figures 11(d) and 11(e) show the mold and vase generated,
for a pin cross section of 0.3 units. The maximum error for a pin size of 0.3
units was 0.095188 units. As shown in Figure 11, smaller the resolution better
is the finish obtained from the mold, as observed from the errors obtained in
each model.

To illustrate the interference removal algorithms, a human head model is taken
as an example. The bounding box of the head is 15 by 11 by 17 units. Figure
12 shows the steps that were required in generating the mold for the model.
Figure 12(a) shows the model divided into the initial point sets. Twelve point
sets were derived from the model at this stage, based on the methodology
described in Section 4. Each of the point sets is assigned to a mold face, as
shown in the Figure 12(a). After the silhouette curve analysis, as described
in Algorithm 1, it was found out that point sets 4 and 5 are not visible from
the mold face with the direction in z+, and hence, cannot be approximated
from that face. Hence, point sets 4 and 5 were re-assigned to face with the
direction in 27 of the mold block (second best candidate). This resulted in the
number of point sets being reduced to 10, as shown in Figure 12(b). Figure
12(c) shows the boundaries of the point sets being swept along the normal of
their assigned mold face. Using Algorithm 2, interference between point set 9
and point sets 2,3,6 and 8 is detected. The decision at this point would be to
decide if set 9 is to be re-assigned to an alternative mold face, or to re-assign
the interfering point sets to alternate faces. This decision is based on the size
of each point set. If set 9 is re-assigned to other faces, then effectively, a large
number of points would be approximated from an alternate mold face, rather
than the first choice face. This would lead to an increase in the average error
in the model. On the other hand, if point sets 2,3,6 and 8 were assigned to
an alternate face, i.e. face with the direction in 2™, then a lesser number of

15

point would be re-assigned, and hence, the average error will not increase as
much as in the first case. Hence, in this implementation, the decision was made
based on average error, and the point sets 2,3,6,8 were assigned to mold face
with the direction in x+. Figure 12(d) shows the final assignment. Based on
these point sets, the mold for the head was generated. Figure 13(a) shows the
NURBS model of Example part III. The model generate from the mold cavity
is shown in Figure 13(b). Figure 13(c) shows a cut section of the mold with a
pin size of 0.3 units.

To show the accuracy of the surface error calculation method presented in
Section 4.5, a free-form surface S(u, v) is designed as shown in Figure 14(a). To
show the error distribution, a surface curve Cs(u*, v) are calculated as shown
Fiigure 14(b) Using pins sizes 0.4 and 0.8 units, the surface is approximated
as shown in Figure 14(c) and 14(d) respectively. The error analysis results are
shown in Figure 14(e) and 14(f) for grid sizes 0.4 and 0.8 units. As shown in the
Figure 14(e) and 14(f), the error depends on the absolute value of curvature
of the surface. As the absolute value of curvature increases, the error in the
mold surface increases. The maximum error using a grid size of 0.4 units was
obtained as 0.100179 units. The least error was 0.000096 units, in the region
where the surface was almost flat. With a grid size of 0.8 units, the maximum
error obtained was 0.147232 units, while the least error 0.000195 units.

To test the feasibility of the mechanism of reconfigurable tooling system, we
have developed a prototype mechanism as shown in Figure 15. The prototype
system includes a set of reconfigurable pins, a CNC controller, a positioning
mechanism for locating the pins as shown in Figure 15.

6 Discussion

As presented in the earlier sections, the proposed reconfigurable mold manu-
facturing process consists of positioning each active pin on each of the mold
faces in its desired position to approximate the shape of the part to be molded.
As seen from the analysis of surface errors, smaller the pins, better is the ac-
curacy of the produced mold. Also, by using pins with inclined top surfaces
to approximate the surface better, the accuracy of the mold can be further
improved.

A better approximation would be if the top surfaces of the pins are oriented
along a plane normal to the surface normal of the center point of the pin.
The four corner of the pin’s top surface would then be found out by using
Coplanarity condition. In other words, the four corner points and the center
point should lie on the same plane, and the plane should be perpendicular
to the normal vector at the center point. The center point of the pin, R, is

16

known completely, and the point lies on the surface S;(u,v). The aim is to
find the top surface 7T}, of the pin R, such that the normal vector of this plane

T, is parallel to the normal vector N, at the point P,. This means that the
four corner points need to be calculated such that they are coplanar. The

coplanarity condition states that the dot product of the vector NN; between

the two coplanar points P, (¢t = 1,2,3,4) and P;(u,v), and the normal P
should be perpendicular to each other, i.e.:

5. N;=0. (10)

For a pin R; lying on X — Y plane, since the size of the pin R; is known, the
X and Y coordinates of the four corners can be easily found out as:

T, = xj(u,v) £ w/2,

Yp, = yj(u,v) £w/2, (11)

where w is the width of the pin.

Using Equations (10) and (11), the Z coordinate of the corner point P; can
be found. Thus, four coplanar point defining the top surface 7} of the pin ®;
can be found out. Figure 16(a) shows a surface, approximated using pins with
flat top surfaces, while Figure 16(b) shows the same surface approximation
using inclined top surfaces. As can be seen from the Figure 16, the inclined
surfaces give a better approximation of the surface. To be able to use pins
with inclined top surfaces, a new mechanism system needs to be designed to
pick and place pins with pre-cut top surfaces in varying degrees. This system
would be much more complex to control.

Another application of the presented algorithms is for tool path generation in
3-axis machining. Since the pins from each of the faces can be moved only along
the normal of that particular face, and movement along any other direction is
not possible, this is analogous to 3-axis machining in which the tool movement
is restricted only along the 3 coordinate axes. By decomposing the surface into
regions accessible from each of the 3 coordinate directions, the machinability
of the surface can be analyzed as presented in earlier sections.

Using pins from 2 different faces to approximate a surface is analogous to
using a change in setup during machining. If a part surface is not completely
accessible in one particular setup, then, with a change in setup, the inaccessible
region can be made accessible. All surfaces accessible from one direction can
be machined in one setup. Thus, the regions of the surface can be machined
one by one, using a different setup for each machining direction.

17

The complexity of the parts that can be manufactured using the presented
process depends on the accessibility of the designed part with a set of pins.
Very complex parts with internal features may not be suitable for the proposed
process due to accessibility issues.

7 Conclusions

This paper presents geometric algorithms for rapidly reconfigurable mold man-
ufacturing of free-form objects. The process presents a unique method of pro-
ducing highly customized products. By reconfiguring the pins of the mold,
the mold cavity can be rapidly changed to accommodate geometric changes
in design. This can certainly prove time-saving for products that have a high
rate of design change. To generate a 3D cavity directly from the CAD model
of the designed part, geometric algorithms has been presented in this paper.
By Analyzing the part surfaces to be approximated, required active pins from
the suitable mold block faces have been calculated to from the mold cav-
ity. Possible interferences problems have been detected and eliminated using
the developed algorithms. Since the methodology is based on surface approx-
imation, an error estimation method for measuring the accuracy between the
actual model and the generated mold has been presented. The developed geo-
metric algorithm enables rapidly reconfigurable tooling technology which can
greatly reduce lead time to These processes can prove to be useful for mass
customization of products. It is expected that the algorithms will find a wide
range of applications in reconfigurable fixturing and forming processes, as well
as in 3-axis machining.

References

[1] Sanchez, L.M. and Nagi, R., “A review of agile manufacturing systems,”
International Journal of Production Research, 2001, 39, 3561-3600.

[2] Walczyk, D.F. and Hardt, D.E., “A Comparison of Rapid Fabrication Methods
for Sheet Metal Forming Dies,” ASME Journal of Manufacturing Science and
Engineering, 1999, 121(1), 214-224.

[3] Walczyk, D.F. and Hardt, D.E., “Design and Analysis of Reconfigurable
Discrete Dies for Sheet Metal Forming,” Journal of Manufacturing Systems,
1998, 17(6), 436-454.

[4] Nardiello, J., Christ, R., and Papazian, J.M., Block Set Form Die Assembly,
USA Patent 6,053,026, April 2000.

18

[] Papazian, J.M., Anagnostou, E.L., Christ, R.J., Hoitsma, D., Orivile P,
Schwarz, R.C., Spitzer, K., and Barkley, C., “Tooling for Rapid Sheet metal
parts production,” 6th Joint FAA/DoD/NASA conference on Aging Aircraft,
September 2002.

[6] Klesspies, H.S. and Crawford, R.H., “Vacuum Forming of compound curved
surfaces with a variable geometry mold,” Journal of Manufacturing Systems,
17(5), 327-337.

[7] Walczyk, D.F. and Longtin, R.S., “Fixturing of compliant parts using a
matrix of reconfigurable parts,” ASME Journal of Manufacturing Science and
Engineering, 2000, 122(4), 766-772.

[8] Kelkar, A., Koc, B., and Nagi, R., “Rapidly Re-configurable Mold
Manufacturing,” 2003 ASME Design and Manufacturing Conference, Chicago,
Illinois, September 2 - 6, 2003

[9] Piegl, L. and Tiller, W., The NURBS Book, Springer Verlag, Germany, 1995.

[10] Choi, B.K. and Jerard, R., Sculptured Surface Machining - Theory and
Applications, Kluwer Academic Publishers, Dordrecht, Netherlands, 1998.

[11] Faux, ID. and Pratt, M.J., Computational Geometry for Design and
Manufacture, Chichester, England: Horwood; New York: Halsted Press, 1981.

[12] Kulkarni, P. and Dutta, D., “An Accurate Slicing Procedure for Layered
Manufacturing,” Computer Aided Design, 1996, 28(9), 683-697.

[13] Koc, B. and Lee, Y.S., “Adaptive ruled layers approximation of STL models
and multi-axis machining applications for rapid prototyping,” Journal of
Manufacturing Systems, 2002, 21(3), 153-166.

[14] Koc, B., Ma, Y., and Lee, Y.S., “Smoothing STL files by Max-Fit biarc curves
for rapid prototyping,” Rapid Prototyping Journal, 2000, 6(3), 86-204.

[15] Pavlidis, T., Algorithms for Graphics and Image Processing, Computer Science
Press, Rockville, Maryland, 1982.

[16] Rourke, J., Computational Geometry in C, Cambridge University Press, 1998.

19

