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Abstract

This paper determines the optimal location of K connections in the plane, where a

connection links pairs of existing facilities. Both uncapacitated and capacitated versions of

the problem are considered. Discretization results for general polyhedral gauges and other

properties are established. Two heuristic algorithms are developed for each case using the

concept of a shortest path flow set coupled with a sequential location and allocation approach.

Computational results show that the algorithms are efficient and accurate.

Keywords: planar location; connection; capacity.
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Introduction

This paper considers a location problem in which flows between pairs of facilities must flow

through a connection. Examples of such connections include an input/output (I/O) station

of a department in a facility layout (Montreuil and Ratliff (1988)), a hub in hub-and-spoke

network (O’Kelly (1986)), and an international land border crossing between two countries

(Robenhymer and Estrada (1998)). We seek to locate a given number of connections and

allocate flows to them, with the goal of minimizing transportation cost. Both the cases of

capacitated and uncapacitated connections are considered.

Three of the co-authors have considered discrete versions of this problem. In a recent

paper, Huang, Batta, and Nagi (2003) discuss the discrete version when the capacity of

the connection is variable. In another paper, Huang, Batta, and Nagi (2002) consider the

discrete case while modeling the connections as M/G/1 queues. In these papers the potential

locations are from a discrete set but the problem is NP -hard. Therefore if a fine discretization

of the continuous version were to be treated, the above approaches would quickly become

inapplicable. Therefore, we use a direct approach in this paper to address the planar version

of the problem. This requires significant new analysis and computational procedures that

constitute the major contribution of this paper.

We note that the planar connection location problem is related to three well-studied

planar location problems: the planar K-median problem, the location-allocation problem

and the hub location problem. We now summarize each of these problems and will later

draw upon these to perform our analysis and solution methods. The planar K-median

problem (see, e.g., Plastria (1995) for a review ) seeks to locate a set of new facilities with

respect to a set of existing facilities in the plane so as to minimize costs. It turns out

that the optimal locations for new facilities only depend on their geographical relationship

with respect to each single existing facility, since the interactions between new facilities and

existing facilities are given. In our situation, the optimal locations for connections depend

on each pair of origin-destination facilities. We also have to assign each flow to a specific

connection. However, as we shall see in Section 2.2, when the assignments are given, our

problem reduces to the planar K-median problem.
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Another closely related problem is the location-allocation problem addressed in the papers

by Cooper (1963) and Cooper (1964): an overview of applications of location-allocation

problems is given in Hodgon, Rosing, and Shmulevitz (1993). Here the focus is to locate a

set of K new facilities in a plane and allocate a set of M existing facilities to the new facilities

in order to minimize total weighted distances. When we let each pair of origin and destination

facilities be the same facility, our problem reduces to the planar location-allocation problem.

The principal differences between these problems are:

• The connection location problem has interactions among the existing facilities.

• For M existing facilities and K new facilities or connections, the location-allocation

problem must assign M demands to new facilities. However, the connection location

problem must assign M(M − 1) pairs of flows to connections.

• The aggregation technique is a common approach to reduce the problem size in the

location-allocation problem: see Francis, Lowe, and Rayco (1996). This approach is

not suitable for the connection location problem because we cannot cluster flows using

proximity as a criterion.

Finally, the connection location problem can also be viewed as a one-stop hub location

problem, which is a special case of the planar hub location problem by O’Kelly (1986).

Discussions of the planar hub location problem can be found in Aykin (1988), O’Kelly

(1992) and Aykin and Brown (1992). However, the connection location problem assumes

that there are no interactions between connections. This restriction helps to establish some

discretization results and to develop more effective algorithms. Further, we propose both

uncapacitated and capacitated cases, which are not considered in the planar hub location

problem.

This paper is organized as follows: Section 1 provides some preliminaries. Section 2

considers the uncapacitated K-connection location problem and a mathematical formulation

of the problem is provided. Some properties and an algorithm for this case are developed

under the Manhattan distance. Section 3 discusses the capacitated K-connection location

problem and an algorithm under the Manhattan distance is proposed. Section 4 reports
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computational results. Finally, Section 5 provides a summary and gives directions for future

work.

1 Preliminaries

We let {Exi, i = 1, . . . , M} be the given set of existing facilities and M be the total number

of existing facilities. We shall denote the origin-destination flow between existing facilities

Exi and Exj by (Exi, Exj) and the flow amount from Exi to Exj by wij. For simplicity,

we assume that wii = 0 and that the connections allow bi-directional flow. Other variations

(e.g., unidirectional flows) can be analyzed in a similar manner. We want to locate a total of

K connections, X1, ..., XK , in the plane �2. Let d(Exi, Xk) be the distance function between

existing facility Exi and connection Xk, and wijk be the fraction of flow amount from Exi

to Exj , wij, by way of connection k ∈ {1, ..., K}.
We use the notation ZP (x) to denote the objective function of a certain problem, where

(P ) indicates the problem and bold x indicates the vector of decision variables.

2 Uncapacitated K-connection location problem

2.1 Formulation

The uncapacitated K-connection location problem can be formulated as follows:

(P1) min
x, w

ZP1(x, w) =
M∑

i=1

M∑

j=1

K∑

k=1

wijk(d(Exi, Xk) + d(Xk, Exj)), (1)

subject to
K∑

k=1

wijk = wij, ∀ i, j, (2)

wijk ≥ 0, ∀ i, j, k. (3)

where x = (X1, . . . , XK) ∈ �2K and w = (wijk)i,j∈{1,...,M},k∈{1,...,K} ∈ �M2K . The objective

function (1) minimizes the total transportation cost. Constraints (2) stipulate that the flows

are only transported through connections. Constraints (3) are non-negativity constraints.

The major difficulty in solving this problem is due to the form of the objective function,
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which is neither convex nor concave because we can find a Hessian matrix that is neither

positive nor negative semidefinite.

2.2 Relationship to the K-median Problem

We define a related K-median problem as follows: For given wijk, let w̄ik =
∑M

j=1 wijk +
∑M

j=1 wjik, which is the sum of inflow and outflow amounts at the existing facility Exi by

way of connection k. We refer to a special case of a planar multifacility location problem

where for the set of existing facilities Exi, i ∈ {1, ..., M}, the location of K connections,

{X1, ..., XK}, is sought with respect to accumulated demands w̄ik of existing facility Exi that

is served by connection Xk. Then the related K-median problem in the plane is formulated

as follows:

(RP1) min
x

ZRP1(x) =
M∑

i=1

K∑

k=1

w̄ikd(Exi, Xk). (4)

From the definition, if we know the optimal assignment variables w∗
ijk, the uncapacitated

K-connection location problem is equivalent to the related K-median problem. This result

is in the following theorem.

Theorem 1: With known optimal assignment variables w∗
ijk, (P1) is equivalent to (RP1).

Furthermore, (RP1) can be reduced to K independent 1-median problems.

Proof: The proof can be easily done by rewriting the objective function of (P1) and switching

the order of summations. Supposing that X∗
k , ∀ k and w∗

ijk, ∀ i, j, k, is an optimal solution of

the problem (P1), we can rewrite the objective function as follows:

ZP1(x∗, w∗) =
M∑

i=1

K∑

k=1

(
M∑

j=1

w∗
ijk)d(Exi, X

∗
k) +

M∑

j=1

K∑

k=1

(
M∑

i=1

w∗
ijk)d(X∗

k , Exj)

=
M∑

i=1

K∑

k=1

(
M∑

j=1

w∗
ijk)d(Exi, X

∗
k) +

M∑

i=1

K∑

k=1

(
M∑

j=1

w∗
jik)d(X∗

k , Exi)

=
M∑

i=1

K∑

k=1

w̄∗
ikd(Exi, X

∗
k).

Since (x∗, w∗) is optimal for the problem (P1), x∗ is optimal for the problem (RP1) with

w̄∗
ik =

∑M
j=1 w∗

ijk +
∑M

j=1 w∗
jik, i ∈ {1, . . . , M}, k ∈ {1, . . . , K}. Otherwise, we can find better
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connection locations, Xk, for the problem (P1).

On the other hand, if we know the optimal assignment variables w∗
ijk and let w̄ik =

∑M
j=1 w∗

ijk +
∑M

j=1 w∗
jik, by the same argument, all optimal solutions of the problem (RP1) are

optimal for the corresponding restricted problem (P1). Since we assume in this model that

there is no interaction between the connections, they can reduce to K independent 1-median

problems. Thus the result follows.

The following theorem allows us to search for the optimal solution of the uncapacitated

K-connection location problem within a specified region.

Theorem 2: Let d(·) be a distance function such that the set of optimal solutions of

every related 1-median problem with distance function d(·) lies within the convex hull of

all existing facilities. Then the set of optimal solutions of the uncapacitated K-connection

location problem has the same property, i.e., all optimal connection locations lie within the

convex hull of the existing facilities.

Proof: Let (x∗, w∗) be an optimal solution of the uncapacitated K-connection location

problem. Then x∗ = {X∗
1 , ..., X

∗
K} is also an optimal solution of the related K-median

problem (Theorem 1) and each X∗
k , ∀ k, is the optimal solution of the related 1-median

problem. We can conclude that each X∗
k , ∀ k, has to be located in the convex hull of the

existing facilities.

Lemma 1: Let d(·) be a distance function such that at least one optimal solution of ev-

ery related 1-median problem with distance function d(·) lies within the convex hull of all

existing facilities. Then at least one optimal solution of the uncapacitated K-connection

location problem has the same property, i.e., for at least one optimal connection location all

connection locations lie within the convex hull of the existing facilities.

Proof: Since the related K-median problem reduces to K independent related 1-median

problems with distance function d(·), there exists an optimal connection location X∗
k , ∀ k,

in the convex hull of the existing facilities for all k = 1, ..., K. Recalling that there is no

interaction between the connections, the result follows.

Since the connections are uncapacitated, if connection locations are fixed, the optimal

flow assignment can be obtained by assigning flows to the nearest connections. Thus, we

have the following corollary.
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Corollary 1: If connection locations are given, the uncapacitated K-connection location

problem reduces to a series of shortest path problems, one for each pair of existing facilities.

According to Corollary 1, we do not obtain any benefit by assigning a flow to more than

one connection. In order to have a theoretical lower bound to compare the results obtained

for a given problem instance by several different solution methods, we state the following

lemma.

Lemma 2: For a given uncapacitated K-connection location problem, a lower bound for

the optimal objective function value is

M∑

i=1

M∑

j=1

wijd(Exi, Exj).

Proof: The result follows from a relaxation in the number of connections such that each

flow is permitted to travel on its shortest path.

This means that if all flows are allowed to go along shortest paths, the resulting objective

function value is the smallest.

2.3 Discretization result for polyhedral gauges

For polyhedral gauges, the uncapacitated K-connection location problem can be reduced to

a discrete K-median problem with a finite dominating set. This result has the following

advantages:

• Efficient heuristic solutions for the discrete K-median problem can be found in, for

example, Daskin (1995) and Mirchandani and Francis (1990).

• The discrete K-median problem can be formulated as a linear integer problem, which

can be solved optimally for problems of a relatively small size by a standard solver like

CPLEX. This allows us to benchmark the heuristic algorithm described later.

• It helps us to search a good set of initial solutions in our solution approach.

A polyhedral gauge is defined by its unit ball, which is a convex polyhedron P in the

plane �2 containing the origin O = (0, 0). Then
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γ(X) := inf{λ > 0 : X ∈ λP}, ∀X ∈ �2.

is the corresponding polyhedral gauge defining a distance function by

d(X, Y ) := |γ(X) − γ(Y )|.

Let exp(P ) = {v1, . . . , vN} be the set of extreme points of P . Then Ward and Wendell

(1985) and Nickel (1995)) showed that

γ(X) := min{
N∑

l=1

λl : X =
N∑

l=1

λlvl and λl ≥ 0, ∀l = 1, · · · , N}.

The extreme points of P define fundamental directions as the half-lines starting at the

origin with direction vl. The difference between a polyhedral gauge and a norm is that the

symmetry assumption is dropped in the definition of a distance measure when the polyhedral

gauge is defined. An example of a polyhedral gauge with five fundamental vectors and an

example of the Manhattan norm are given in Figure 1.

1

2

4

5
1

2

3

4

(b)(a). A Polyhedral gauge with five fundamental vectors. . The Manhattan Norm.

v

v

v v

v

v

v

v
3

d

Figure 1: An example of a polyhedral gauge with five fundamental vectors and an example
of a Manhattan norm

Durier and Michelot (1985) derived a discretization result for the unrestricted 1-median

problem with polyhedral gauges. Rooting the fundamental directions as construction lines

at each existing facility Exi, ∀ i, a grid tesselation G of the plane is defined as follows:

Let X + vl := {X + λvl : λ ∈ �}. Then the grid G is given by

G := ∪M
i=1 ∪N

k=1 (Exi + vk).
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Using this grid, the result of Durier and Michelot (1985) can be used to derive a similar

property for the uncapacitated K-connection location problem with polyhedral gauges:

Lemma 3: The set of all optimal locations of the 1-median problem with polyhedral gauges

consists of complete cells of the grid, lines connecting two adjacent grid points of a cell, and

single grid points.

Here, the set of cells of G is defined as the set of all polyhedra in �2 induced by G, the

nonempty interior of which is not intersected by a line segment in G. A grid point is then

an extreme point of a cell (which is equivalent to saying that it is an intersection point of

grid lines), and a facet of the grid is a facet of a cell.

Theorem 3: The set of optimal locations of each connection Xk, ∀ k = {1, ..., K}, of the

uncapacitated K-connection location problem with polyhedral gauges can be partitioned

into subsets that are either complete cells of G, facets of G, or grid points of G.

Proof: Let X∗
k and w∗

ijk, ∀ i, j, k, with objective function value ZP1(x∗, w∗) be an optimal

solution of the problem (P1) with polyhedral gauges. Following Theorem 1 there exist K

independent 1-median problems with objective function ZRP1
k (·) such that X∗

k , ∀ k, is an

optimal solution with respect to ZRP1
k (·) and

ZP1(x∗, w∗) =
K∑

k=1

ZRP1
k (X∗

k).

For each k ∈ {1, ..., K} the set of optimal locations of the related 1-median problem consists

of complete cells of the grid, lines connecting two adjacent grid points of a cell, and single grid

points. Since all these optimal locations have the same objective function value ZRP1
k (X∗

k),

they are also optimal locations for the uncapacitated K-connection location problem with

polyhedral gauges.

The following discretization result is now an immediate consequence of the above theorem

and Lemma 1.

Corollary 2: There exists at least one optimal solution of the uncapacitated K-connection

location problem with polyhedral gauges for which each connection point is located on a grid

point of G ∩ conv{Exi : i ∈ {1, ..., M}}.
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This corollary turns the continuous uncapacitated K-connection location problem into a

discrete version of the uncapacitated K-connection location problem whose finite dominating

set contains those grid points of G that are located within the convex hull of the existing

facilities. For a given polyhedral gauge γ with N fundamental directions, this candidate set

is at most of size O(M2N2), where M is the total number of existing facilities. Selecting K

locations out of O(M2N2) candidates is a hard combinatorial problem. Thus the need for a

heuristic solution procedure for the planar case becomes apparent.

2.4 Heuristic algorithm under the Manhattan distance

The method of sequential location and allocation (SLA) is used here to develop our heuristic

algorithm. Usually, this approach terminates with a local minimum and there could be a

large number of local minima even for moderate sized cases: see Eilon, Watson-Gandy, and

Christofides (1971) and Brandeau and Chiu (1993). The efficiency of the solution depends

mainly on the selection of initial locations. If the proper initial locations are selected, the

solution could be very good, even optimal. In the following, we try to find a good set of

initial locations for the connections based on the structure of the uncapacitated K-connection

location problem. For simplicity, we develop the heuristic algorithm under the Manhattan

distance, which is a special case of polyhedral gauges. The idea of the algorithm can be

extended to the general polyhedral gauge case.

To facilitate the development of the heuristic algorithm under the Manhattan distance for

(P1), the grid construction for the Manhattan distance is as follows: Consider the smallest

rectangle (bounding rectangle) that encloses all existing facilities and connections and whose

sides are parallel to the x and y axes. Within this bounding rectangle, the grid is formed

by lines parallel to the x and y axes through all existing facility nodes. A grid point is an

intersection point of any two lines.

In order to select K relatively efficient initial connection locations, we define the shortest

path flow set for each grid point as follows. Let (i, j) refer to a pair of existing facilities Exi

and Exj with coordinates (xi, yi) and (xj , yj), respectively, and s refer to any grid point with

location coordinates (xs, ys), then the shortest path flow set Ps is given by:

Ps := {(i, j) : xi ≤ xs, yi ≥ ys, xj ≥ xs, yj ≤ ys} ∪ {(i, j) : xi ≤ xs, yi ≤ ys, xj ≥ xs, yj ≥ ys}
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∪{(i, j) : xi ≥ xs, yi ≥ ys, xj ≤ xs, yj ≤ ys} ∪ {(i, j) : xi ≥ xs, yi ≤ ys, xj ≤ xs, yj ≥ ys}.

Under the Manhattan distance, if we select s as a connection location, then for all (i, j) ∈ Ps

the shortest path from Exi to Exj passes through s. Figure 2 provides examples of sets Ps.

Ex

Ex

Ex

PEx 1

Ex

{(1, 2),  (2, 1), (1, 3), (3, 1), 
(1, 4), (4, 1), (2, 3), (3, 2)}

ExP
2

=
(

{(2, 1), (2, 1), (2, 3), (3, 2), 
2, 4), (4, 2)}

1

3

4

2

=

Figure 2: An illustration of the shortest path flow set

Let ws =
∑

(i,j)∈Ps
wij . Then ws is the total flow amount by way of s with the shortest

distance. Intuitively, the larger ws is, the more important the grid point s is. Thus, the

basic idea for this heuristic algorithm is to use the order of ws to find an initial location

solution. Then according to Corollary 1 we can allocate flows to the connection locations.

Finally, by Theorem 1, solving K independent 1-median problems gives the relocation of the

connections. This cycle of allocating and relocating is repeated until no further improvement

can be made.

We define F to be the set of all pairs (i, j) and F u to be the set of (i, j) that are currently

not assigned to any connection. The heuristic algorithm is as follows:

• Step 1 (Location). Initialize S = {s : s is a grid point} and F u := F . Calculate

ws =
∑

(i,j)∈Ps∩F u wij, ∀s ∈ S. Pick the grid point s with the largest ws value as

a candidate connection location and assign all (i, j) ∈ Ps ∩ F u to this connection.

Update F u := F u \ Ps and S := S \ {s}, and repeat the procedure until we have

picked K connection locations or F u is empty. If F u is empty, then stop; the solution

is optimal due to Lemma 2. Otherwise, go to step 2.

• Step 2 (Allocation). For the selected K candidate connections, assign the flows by

solving the corresponding shortest path problems (see Corollary 1) and obtain the wijk
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values.

• Step 3 (Relocation). Using the wijk found in step 2, solve the related 1-median prob-

lems to relocate the connection locations (Theorem 1) and obtain K new candidate

connection locations. If no further improvement can be made in the value of objective

function, stop; otherwise, go to Step 2.

The computational performance of the algorithm is presented in Section 4.

3 Capacitated K-connection location problem

In this section we take capacities of the connections into account. The capacity of a connec-

tion is defined as the maximum unit time rate at which flows can be expected to traverse the

connection. We note that the capacitated planar location-allocation problem is seldom con-

sidered in the open literature. One exception is the paper by Cooper (1972) which discusses

such a problem on the plane in a transportation-location context. However, this paper only

considers problems of a relatively small size. In the following, we build some properties and

develop an algorithm which is able to solve very large problems efficiently and accurately.

3.1 Formulation

Let the capacities of the connections be c1, c2, ..., cK , respectively. The capacitated K-

connection location problem can be formulated as follows:

(P2) min
x, w

ZP2(x, w) =
M∑

i=1

M∑

j=1

K∑

k=1

wijk(d(Exi, Xk) + d(Xk, Exj)) (5)

subject to
K∑

k=1

wijk = wij, ∀ i, j, (6)

M∑

i=1

M∑

j=1

wijk ≤ ck, ∀ k, (7)

wijk ≥ 0, ∀ i, j, k. (8)

Constraint (7) is a capacity constraint. This mathematical formulation is a continuous pro-

gramming problem with neither convex nor concave objective function and linear constraints.

We now develop some properties and an algorithm for the problem.
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3.2 General properties

Since the objective function of the capacitated K-connection location problem is the same

as that of the uncapacitated K-connection location problem, they share some similar char-

acteristics. On the other hand, some properties are not valid in the capacitated model.

3.2.1 Properties related to the uncapacitated case

Both the capacitated and uncapacitated versions share the same objective function and

hence Theorem 1 is still true in the capacitated case. We therefore obtain the following

discretization result:

Theorem 4: There exists at least one optimal solution of the capacitated K-connection

location problem with polyhedral gauges for which each connection point is located on a

grid point of G ∩ conv{Exi : i ∈ {1, ..., M}}.
Since the feasible set of the uncapacitated model contains that of the capacitated case

and they have the same objective function we obtain Theorem 5.

Theorem 5: The optimal objective function value of the problem (P1) is a lower bound of

that of the problem (P2).

The following corollary is an immediate consequence of Lemma 2 and Theorem 5.

Corollary 3: For a given capacitated K-connection location problem, a lower bound for

the optimal objective function value is

M∑

i=1

M∑

j=1

wijd(Exi, Exj).

3.2.2 Other properties

In Corollary 1, we prove that if connection locations are given, the uncapacitated K-

connection location problem reduces to a shortest path problem for each pair of existing

facilities. This is not true in the capacitated model because of the capacity restriction on

the connections. The following example (see Figure 3) shows that.

Suppose that there are two flows, A−B (2 units) and C−D (4 units), in the system. We

have to locate two connections. The capacities for the connections are 1 unit and 5 units,

respectively. Thus, the optimal locations are as follows: One connection (1 unit) is located
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(0, 0)A

C (0, 1) D(1, 1)

(1, 0)B

Figure 3: Example

on the line AB and the other (5 units) is located on the line CD. But one unit of flow A−B

does not go through the nearest connection. However, we have the following theorem:

Theorem 6: Given the locations of the connections, the capacitated K-connection location

problem reduces to a transportation problem.

Proof: If the locations, Xk, are given, then all possible travel costs in the objective function

are a set of constant costs. Let dijk = d(Exi, Xk) + d(Xk, Exj)), then the problem (P2)

becomes:

min
w

Z(w) =
M∑

i=1

M∑

j=1

K∑

k=1

dijkwijk (9)

subject to
K∑

k=1

wijk = wij, ∀ i, j, (10)

M∑

i=1

M∑

j=1

wijk ≤ ck, ∀ k, (11)

wijk ≥ 0, ∀ i, j, k. (12)

If we treat each origin-destination pair (i, j) as a demand source and each connection as

a supply, then the above formulation is a usual form of the transportation problem.

3.3 Heuristic algorithm

For simplicity, we develop heuristic algorithms under the Manhattan distance. The heuristic

algorithm for the capacitated case is similar to that for the uncapacitated problem. We use
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the method of sequential location and allocation (SLA) and the same grid structure described

in Section 2.4. Since we have the discretization result (Theorem 4), the shortest path flow

set algorithm for the uncapacitated case can be used here. In the capacitated case, however,

we may not be able to assign all (i, j) ∈ Ps to a single connection as we did in Section 2.4

because of the capacity limit. Therefore, minor modifications are needed for the capacitated

case.

For any flow (i, j) with the location coordinates (xi, yi) and (xj, yj), respectively, we

define Aij = |xi − xj | · |yi − yj|,where Aij is the area of a rectangle that has two diagonally

opposite vertices (xi, yi) and (xj , yj). We denote the rectangle as Rij . If a connection is

located within this rectangle, the travel distance between the existing facilities Exi and Exj

by way of the connection is the shortest one. On the other hand, ∀(i, j) ∈ Ps, Rij contains

s. In general, if Aij is bigger, there could be more grid points within Rij, and (i, j) could

belong to more shortest path flow sets. Now, for any two flows (i, j) ∈ Ps and (k, l) ∈ Ps, if

Aij ≤ Akl, then there are more opportunities for flow (k, l) to go through the shortest route.

Therefore, when we are not able to assign all (i, j) ∈ Ps to a single connection as we did in

Section 2.4, we assign the flows (i, j) with smaller Aij first.

Let C = {c1, c2, · · · , cK}. Also, we define F to be the set of all pairs (i, j) and F u to be

the set of (i, j) that are not assigned to any connection. Thus, the heuristic algorithm is as

follows:

• Step 1 (Location). Initialize S = {s : s is a grid point} and F u := F . Calculate

ws =
∑

(i,j)∈Ps∩F u wij, ∀s ∈ S. Pick the grid point s with the largest ws as a candidate

connection location and the largest capacity in C, say cb. If ws ≤ cb, assign all (i, j) ∈
Ps∩F u to the selected candidate connection s, update F u := F u\Ps, C := C \{cb} and

S := S \ {s}. If ws > cb, assign as many as possible flows till the capacity constraint is

reached in the order of smallest Aij first (ties broken arbitrarily), ∀(i, j) ∈ Ps ∩ F u. If

the last flow assigned is partially assigned, then change it to the remaining unassigned

amount. Let P
′
s be the set of the fully assigned flows, update F u := F u \ P

′
s, C :=

C \ {cb} and S := S \ {s}. Repeat the procedure until we have picked K connection

locations or F u is empty. If F u is empty, then stop; the solution is optimal for the

problem (since the value of the objective function equals to the lower bound, see
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Corollary 3). Otherwise, go to step 2.

• Step 2 (Allocation). For the selected K connection locations, assign all the flows by

solving the related transportation problem (Theorem 6) and obtain the wijk values.

• Step 3 (Relocation). Using the wijk found in Step 2, solve the related 1-median prob-

lems to relocate the connection locations (Theorem 1). If no further improvement can

be made in the value of the objective function, stop; otherwise, go to Step 2.

The computational performance of this algorithm is presented in the next section.

4 Computational experience

In this section, we test the performance of the algorithms for both the uncapacitated and the

capacitated models. The efficiency of the algorithms is tested by solving randomly generated

problems of different sizes. Then, for small problems, we assess the accuracy of the heuristic

solutions with the optimal solutions or linear relaxation lower bound, which can be found by

solving discrete uncapacitated median problems (for the uncapacitated case) or capacitated

median problems (for the capacitated case) using CPLEX 7.5 on a Dell X86 Pentium 3 with

256MB RAM. The algorithms were coded in C++.

4.1 Data generation

First, we generated each existing facility’s location, which was given by its x and y coordi-

nates. These coordinate values were randomly selected from U(0, 1000), where U denotes a

uniform distribution. For each pair of origin-destination facilities, the amount of flow was

randomly drawn from U(5, 30). The parameter values for test problems are summarized in

Table 1.

For small-sized problems, the accuracy of the algorithms is assessed by heuristic gap,

which is defined by (heuristic solution value - lower bound)/lower bound * 100. For larger

problems, the CPU time is used to evaluate the efficiency of our algorithms. The stopping

rule is that the improvement of the objective value is less than 0.0001.
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Table 1: Parameter values for test problems

parameter small medium large

1 number of facilities 10-30 55-65 70-80

2 number of connections 5-15 30-40 45-55

4 number of non-zero flows 45-435 1485-2080 2415-3160

4.2 Uncapacitated K-connection location problem

According to Corollary 2, the planar problem can be discretized and the resulting problem

can be transformed into a discrete uncapacitated median problem. The optimal solutions or

linear relaxation lower bounds for small problems are found by using the CPLEX solver.

Table 2 shows the computational result for small problems. All these randomly generated

problems can be solved within one second. The average heuristic gap is 0.99%. Table 3

shows the computational result for medium and large problems. We failed to obtain linear

relaxation lower bounds because of insufficient computer memory to load the problem. But

the CPU times demonstrate the efficiency of the algorithm.

Table 2: Computational results for the uncapacitated case (small size)

Facility Connection Flow Heuristic Lower Gap (%) Optimal
# # # Obj. value CPU (s) Bound Value
10 5 45 114449 0.01 113761 0.60 113893
10 5 45 106173 0.01 104579 1.52 104859
10 5 45 102071 0.01 100823 1.24 101757
10 5 45 118733 0.01 115869 2.47 116481
20 10 190 455900 0.08 452100 0.84
20 10 190 471442 0.08 469618 0.39
20 10 190 468621 0.08 466511 0.45
20 10 190 490026 0.08 478878 2.33
30 15 435 1058624 0.27 1051594 0.67
30 15 435 997987 0.27 993295 0.47
30 15 435 1084293 0.27 1079285 0.46
30 15 435 947359 0.27 942765 0.49

Average 0.99
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Table 3: Computational results for the uncapacitated case (medium and large size)

Facility Connection Flow Heuristic
# # # Obj. value CPU (s)
55 30 1485 3615871 2.473
60 35 1770 3783055 2.984
65 40 2080 4957825 5.679
70 45 2415 5538463 6.69
75 50 2775 6279571 8.903
80 55 3160 7743327 13.299

4.3 Capacitated K-connection location problem

For the capacitated case, the dicretization result is still available by Theorem 4. We assume

that all capacities are equal in order to decrease the number of integer variables in the

discretized problem The capacity is set to 1.5
∑M

i=1

∑M
j=1 wij/K, which is 1.5 times the average

flow per connection.

Table 4 shows the computational result for small problems. As in the uncapacitated

model, all randomly generated problems can be solved within one second. The average

heuristic gap is 1.70. The optimal solutions or linear relaxation lower bounds for small

problems are found by CPLEX (the value with * is the best objective value obtained after

one hour CPU time). Table 5 shows the computational result for medium and large problems.

We failed to obtain a linear relaxation lower bound because of insufficient computer memory.

However, the relatively low CPU times demonstrate the efficiency of the algorithm.

5 Conclusions and future work

In this work we have studied a K-connection location problem that may be encountered

during the development of plant layout, urban planning, or the design of telecommunication

and distribution networks. Both uncapacitated and capacitated models were investigated

and the mathematical formulations were developed. For both models, we established dis-

cretization results for general polyhedral gauges as well as other relevant properties. This

discretization leads to an NP -hard problem (NB: we are unaware of the NP -hardness of the
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Table 4: Computational results for the capacitated case (small size)

Facility Connection Flow Heuristic Lower Gap (%) Optimal
# # # Obj. value CPU (s) Bound Value
10 5 45 109818 0.01 105978 3.62 106188
10 5 45 89791 0.02 87197 2.97 87531∗

10 5 45 94553 0.01 93685 0.93 93811
10 5 45 116505 0.01 113365 2.77 113461
20 10 190 467582 0.07 462080 1.12
20 10 190 422553 0.06 418079 1.07
20 10 190 452155 0.07 440847 2.57
20 10 190 451348 0.08 443668 1.73
30 15 435 947773 0.31 940287 0.80
30 15 435 1124328 0.35 1111252 1.18
30 15 435 1046923 0.30 1040269 0.64
30 15 435 996091 0.40 986365 0.99

Average 1.70

Table 5: Computational results for the capacitated case (medium and large size)

Facility Connection Flow Heuristic
# # # Obj. value CPU (s)
55 30 1485 3670076 6.029
60 35 1770 4301842 6.92
65 40 2080 4768813 7.521
70 45 2415 5676977 15.022
75 50 2775 6459764 21.111
80 55 3160 7308221 35.441

original continuous problem). Heuristic algorithms based on the shortest path flow set were

proposed. The computational performances of the algorithms were studied by comparision

of heuristic results and exact solutions or linear relaxation lower bounds for small randomly

generated problems. For large problems, the algorithms were assessed in terms of their CPU

time. Computational results showed that they were efficient and accurate (whenever it has

been possible to verify).

There are several directions for further research. First, barriers, where not only place-

ment but also trespassing of regions is forbidden, could be considered. The corresponding
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connection location models are mathematically challenging. A different algorithm should

be developed since the shortest path set is not suitable in this case. Second, connections

located in an arbitrary shaped region can be investigated. Connections restricted to be on

a curve would appear to be an important special case. Third, the factors of spatial size and

specific site of connection in the capacitated case could be considered. Finally, the number

of connections can be also a decision variable and the installation cost of connections could

be considered. The goal here would be to minimize the sum of transportation cost and

installation cost.
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