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Abstract

This paper considers the problem of placing a single rectangular generalized congested region (GCR)
of given area but unknown dimensions in the presence of other rectangular GCRs, where the edges of the
rectangles are parallel to the travel axes. GCRs are closed and bounded regions in � 2 in which facility
location is prohibited but travel through is allowed at an additional cost per unit distance. An interactive
model is considered in which there is interaction not only between the input/output (I/O) point of the
new GCR and the I/O points (of the existing GCRs) but between the existing I/O points themselves.
Two versions of the problem are considered when: (i) the I/O point of the new GCR is located on its
boundary but its exact location has to be determined, and (ii) the I/O point is located inside the new
GCR at its centroid. The feasible region is divided into cells obtained by drawing a grid. We analyze
the problem based on whether the new GCR’s placement intersects gridlines. When the new GCR does
not intersect gridlines, we prove that the optimal location can be drawn from a finite set of candidate
points. However when the new GCR intersects gridlines, we split the feasible region by Equal Travel
Time Partitions (ETTP ) such that the flows through gridlines can be uniquely classified as (i) travel
through, or (ii) left bypass, or (iii) right bypass. The solution methodologies for all cases are shown to
be polynomially bounded in the number of GCRs.

Keywords: Single Facility Location/Layout, Generalized Congested Regions, Rectilinear Distance Metric.

1 Introduction

Facility layout and facility location are critical components in the overall problem of facilities design. Tra-

ditionally however, these problems have mostly been studied independently. The facility layout problem

and the facility location problem have grown into different areas of interest even though they are closely

related. Facility layout and facility location both deal with the location of new facilities in a region where

there are existing facilities. In the facility location problem, facilities are typically modeled as infinitesimal.

However, in facility layout, new constraints determining the area requirements and locational restrictions
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have to be considered because the facilities have finite sizes. In essence, the facility layout problem can

be viewed as an area location/layout/placement problem. The relationships between the facilities appear

in the objective function in the form of (i) a unit cost of interaction between facilities, (ii) the amount of

interaction, and (iii) the (rectilinear) distance between facilities. The finite size facility placement problem,

introduced by Savas, Batta and Nagi [20] is the first attempt to bridge the gap between these two areas.

The authors’ consideration of “area” in a location problem brought their approach closer to layout theory.

Adapting the results of [20], Savas [19] proposes a non-traditional approach to the facility layout problem

in which all facilities are rectangular and pose restrictions to rectilinear travel.

Restricted location problems are a class of location problems in which the minimum travel distance be-

tween two points in �2 is increased by certain predescribed areas (closed and bounded regions in �2) which

prohibit facility location in their interior and potentially obstruct travel. Barriers prohibit travel through,

forbidden regions permit travel through at no extra cost and generalized congested regions (GCR) permit

travel through at a penalty. Examples of barriers are impassable areas on a shop floor like machines; of

forbidden regions are aisles on a shop floor; and of GCRs are assembly areas, finishing areas on a shop floor

through which travel is permitted but is penalized due to congestion slowdown. Restricted location problems

have been studied by Katz and Cooper [9], Aneja and Parlar [1], Larson and Li [11], Larson and Sadiq [12],

Batta, Ghose and Palekar [2], Nandikonda, Batta and Nagi [15], Dearing, Hamacher and Klamroth [7], Butt

and Cavalier [5, 4] and others. Most of these works determine the optimal location of an infinitesimal new

facility such that the (i) total weighted travel distance from the new facility to the existing facilities (min-

isum or median objective), or (ii) maximum weighted travel distance from the new facility to the existing

facilities (minimax or center objective) in the presence of restricted regions is minimized.

In contrast, the objective of the facility layout problem is to minimize the total weighted distance be-

tween entities, in which the weights reflect material flow volumes or adjacency priorities. The output of the

facility layout problem is a “block layout” which specifies the relative location of each department. Further

work can be performed to obtain the “detailed layout” which specifies exact locations of departments, aisles,

input-output points and the layout within each department. The facility layout problem is well studied in

literature and practice. Excellent books on facilities layout exist, for example, the textbook by Francis,

McGinnis and White [17]. In fact, this textbook also comprehensively covers facility location problems.

Meller and Gau [13] is a detailed survey in which emerging trends in the facility layout problem in the

decade of the nineties were studied. In the facility layout problem, the material handling between depart-

ment pairs is typically assumed to take place along rectilinear paths between the department centroids. This

centroid assumption often leads to inaccurate distance measurements. In an attempt to remove the limita-

tions of the centroid-to-centroid distance measure, Bozer and Meller [3] developed the expected distance
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measure (EDIST), defined as the expected distance between any two points in each department. In the

context of urban police patroling, Larson [10] had earlier proposed the “Expected modified center-of-mass”

strategy as a dispatch selection criterion. Castillo and Peters [6] and Norman, Smith and Arapoglu [16] have

also tried to address this issue. Montreuil [14] presented a Mixed Integer Programming formulation that

integrates the flow path design problem with the facility layout problem. A specialized case of Montreuil’s

model was developed by Heragu and Kusiak [8] where a department’s length, width and orientation are

specified a priori.

In this paper, we develop the preliminary results for a new approach to the facility layout problem. We

cast the facility layout problem as a facility location problem, in which GCRs pose restrictions to travel.

More specifically, we consider the problem of placing a new facility, which itself is a GCR, in the presence

of existing facilities that are treated as GCRs to travel. The area of the new GCR to be placed is known but

its exact dimensions are to be determined. It is reasonable to assume that area of the new GCR has been

calculated and recorded in an area requirement sheet [21]-(page 114), and is therefore given. Assembly

areas and finishing areas in a manufacturing facility could be considered to be GCRs through which travel is

permitted but is penalized due to congestion slowdown. Also the exact dimensions of such areas may vary

but their shapes can be approximated by rectangles.

As an example, let us consider a shop floor layout of a manufacturing facility, as illustrated in Fig-

ure 1. There are five existing departments (GCRs) whose areas and congestion factors (defined later) can be

obtained from Figure 1. A “General Store” area has to be placed in the layout to store raw materials, sub-

assemblies and finished products. This new department (of area 14 units) allows travel through its interior,

but it is twice as expensive as travel outside. The determination of optimal placement, dimension and I/O

point location of this new GCR is the problem considered.

In a way, this paper may be viewed as an extension of the work by Savas et al. [20] in which the

new facility is arbitrarily shaped but has a fixed contour. Also the restriction in [20] comes in the form of

barriers, as compared to GCRs in our work. As noted earlier, barriers and forbidden regions can be viewed

as special cases of GCRs. Hence the area location/layout problem in the presence of GCRs subsumes the

area location/layout problem in the presence of barriers and forbidden regions.

The remainder of this paper is organized as follows. In §2, we formally introduce and define the problem.

In §3, we describe a grid construction procedure and present some definitions and results essential for our

subsequent analysis. We classify the problem in §4 and present the solution methodology when the new

GCR placement does not intersect any gridline in §4.2. In §5, we discuss the solution methodology when

the new GCR intersects at least one gridline. The concept of “Equal Travel Time Partition” is introduced

in this section. Using the proposed methodology, an example problem illustrated in Figure 1 is solved in
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Figure 1: An example problem

§6. The complexity of the solution methodologies proposed in §4.2 and §5 is analyzed in §7. The paper is

concluded by a final section with a summary of contributions and directions of future research.

2 Problem Description

2.1 Problem Statement

There exists a finite number of rectangular generalized congested regions (GCRs) with edges parallel to

the travel axes in which location/placement is prohibited but travel is permitted at a possible extra cost. The

additional cost per unit distance is called the congestion factor of the GCR and is denoted by α, 0 ≤ α <∞.

Thus, if w is the cost of travel per unit distance between two points lying outside a GCR, then the cost of

travel between the same points when lying inside the region would be (1 + α)w. Each GCR has one

or multiple input/output (I/O) points through which it communicates with other GCRs. These points are

defined as existing facilities (EF). The EFs are located inside the GCRs or on their boundaries.

A new rectangular GCR with its edges parallel to the travel axes is to be placed in the presence of

existing GCRs. The congestion factor and area of the new GCR are known, but not its exact dimensions.

The new GCR communicates with the EFs of the existing GCRs through a single I/O point. We define this

single I/O point as a new facility (NF). We consider the following two versions of the problem:

• when the NF is located on the boundary of the new GCR but its exact location has to be determined.

This version is entitled “boundary NF”.

• when the NF location is known a priori and is assumed to be at the centroid of the new GCR. This

version is entitled “centroid NF”.
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In both versions of the problem, there exist flows between:

• pairs of EFs of existing GCRs. This is termed as the EF-EF interaction.

• an existing EF and the NF of the new GCR. This is termed as the EF-NF interaction.

The planar area location/layout problem is to determine the exact dimensions (specified by the length)

of a new rectangular GCR and its optimal location (specified by the location of its NF and the location of its

top left corner) such that the new GCR does not overlap with existing GCRs and the sum of the EF-NF and

EF-EF interaction is minimized.

2.2 Definitions and Notations

We assume that each GCR is a rectangular region in �2, with finite area and a continuous closed boundary.

Due to the rectangular shape, a GCR can be characterized by two horizontal and two vertical lines, obtained

by passing tangential lines through each of its vertices. Let Gj (an open set) denote the set of points

(x, y) ∈ �2 contained strictly within GCR j. We also define Gj = Gj ∪ {boundary of GCR j}, a closed

set. We let G = ∪jGj and G = ∪jGj . Let B denote the set of points contained strictly within the new

GCR and let B = B ∪ {boundary of the new GCR}. The distinction between the inside and the boundary

of a GCR is necessary to permit travel without congestion slowdown on the boundary but not on the inside.

Hence the boundary of the new GCR can be written as B−B. We also let Z be a 2-dimensional rectangular

region representing the shop floor area.

We will now define the feasible region for the planar area location/layout problem. To this end, let

B(p) (an open set) denote the set of points that correspond to the new GCR when its “placement” is p. We

also define B(p) = B(p) ∪ {boundary of the new GCR}, a closed set. Let Ek(B), j = 1, 2, 3, 4 denote the

vertices of the new GCR, starting from the bottom left corner and labeling in the counter clockwise direction.

We now define the term “placement”. Since the new GCR is a finite-sized entity, the coordinates of (its I/O

point) NF alone cannot convey full information on its placement in �2. Hence we define p = [X,E4(B), l]

to be the location-dimension vector of the new GCR. Here X = (x, y) and E4(B) represent the location of

the NF of the new GCR and its top left corner respectively. When the NF is on the new GCR’s boundary,

X ∈ B − B. Whereas, when the NF of the new GCR is at its centroid, X ∈ B. l represents the length of

the new GCR and is measured along the x axis. Note that l x b = A, where A denotes the area of the new

GCR and is a known parameter and b is its width. It is appropriate to mention here that Savas et al. define

a location-orientation vector to specify the placement of their arbitrarily shaped finite-sized new facility.

Refer to [20] for further details. However, since in our problem, the new GCR is always oriented parallel

to the travel axes but its exact dimensions are unknown, we specify its placement by the location-dimension

vector. Note that when the NF of the new GCR is located at its centroid, determination of the optimal
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location of E4(B) and the optimal value of l suffice. However for the sake of uniformity in definition

in both versions of the problem (boundary NF and centroid NF), our location-dimension vector has three

components. The feasible region for new GCR placement is now defined as follows:

F = {[X,E4(B), l] : B(p) ∩G = ∅, B(p) ⊂ Z}.

There are two types of interactions in our problem. Firstly, there is interaction between EF i and NF

X, denoted by ui ≥ 0. Secondly, there is interaction between EF i to EF j, denoted by wij ≥ 0 (note: we

do not assume wij = wji). Both ui and wij can be measured in terms of the number of material handling

trips per unit time. The interaction between any pair of EFs takes place through a least cost path between

the EFs. It is pertinent to note here that the concept of least cost paths was introduced by Butt and Cavalier

[5]. Figure 1 of [5] depicts different scenarios of least cost paths between an origin and a destination in the

presence of a convex polygonal GCR. The least cost path between two EFs may pass through some GCRs

and may bypass some, depending on their congestion factors. Sarkar, Batta and Nagi [18] have proved

the correctness of Butt and Cavalier’s result that the least cost path(s) between two EFs in the presence of

rectangular GCRs coincides with segments of a grid that is obtained by drawing vertical and horizontal lines

through the vertices of each GCR and the EFs. The grid construction procedure is discussed in detail in

§3.1. Let dp(i, j) represent the length of such a feasible least cost path between two EFs i and j when the

placement of the new GCR is p. The subscript p signifies that the distance is a function of the placement.

Similarly, dp(i,X) represents the length of a feasible least cost path between EF i and the NF at X when

the facility placement is p.

Let D denote the set of all EFs. For a given facility placement p = [X,E4(B), l], the total weighted

travel distance between EFs and the NF (EF-NF interaction) is J(p) and correspondingly between all EFs

(EF-EF interaction) is K(p).

J(p) +K(p) =
∑
j∈D

uj dp(j,X) +
∑
i∈D

∑
j∈D

wij dp(i, j).

The planar area location/layout problem is to determine the exact dimensions of the new rectangular

GCR and its optimal placement p such that J(p∗) +K(p∗) ≤ J(p) +K(p), ∀p ∈ F .

For the boundary NF version of the problem, we have five continuous variables, the coordinates of

E4(B) and X, and l. For the centroid NF case, we have three continuous variables since the coordinates of

X are known once E4(B) and l are specified. For either situation, it turns out that the objective function is

non-convex and non-concave and hence the use of generalized gradient methods could lead to a local optimal

solution. We are able, however, to obtain a global optimal solution by the following line of attack. We divide

the feasible region associated with E4(B) into subregions where the objective function is concave and thus
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a finite set of candidate values for E4(B) and X are obtained. For each such candidate set of values of

E4(B) and X, we then optimize l. This allows us to conclude that the solution methodology is polynomial

in the number of existing GCRs.

3 Preliminaries

3.1 Grid Construction and Cell Formation

In order to develop our analysis, we first describe the grid construction procedure that helps to identify the

least cost path between two points in the presence of GCRs.
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Figure 2: Grid for rectangular GCRs

Figure 2 depicts an example with four rectangular GCRs. Each GCR has EFs located inside or on its

boundary. A grid is constructed by passing horizontal and vertical lines through the vertices of each GCR

and its EFs. The lines intersect the other GCRs and pass through until they terminate at rectangle Z . The

resulting set of lines are called node traversal lines by Larson and Sadiq [12]. For simplicity in presentation,

we shall refer to these lines as “gridlines” henceforth. This grid is an extension of the grid proposed by

[12] for solving the p-median problem in the presence of barriers: because the gridlines of [12] terminate

when they intersect barriers (as traveling through barriers is prohibited). We let H and V denote the set of

horizontal and vertical gridlines respectively. Let S = H ∪ V denote the set of all gridlines. The GCRs

along with S divide the feasible region F into a number of regions, called cells, as illustrated in Figure 2.

Each cell boundary is composed of solely gridlines or segments of GCR boundaries and gridlines. Since

the GCRs are rectangular and due to the way the grid is constructed, all cells generated are also rectangular

with their edges parallel to the travel axes. For a given cell C , let us consider the points (xmin, ymin),
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(xmin, ymax), (xmax, ymin), (xmax, ymax), where xmin, ymin, xmax, ymax are the respective bounds on the

x and y coordinates on any point in the cell. We shall henceforth refer to these points (or vertices) as the

cell corners of C and denote them as Ek(C), k = 1, 2, 3, 4 starting from the bottom left corner and labeling

them in the counter clockwise direction.

3.2 Some Results

For our future analysis, it is necessary to present a few definitions from Larson and Li [11] and some previous

results suitably adapted for our work:

1. A rectilinear path between two points in �2 is a path whose length is not made longer due to the

presence of GCRs. The path proceeds from one point to another in a sequence of connected steps

alternating between horizontal and vertical, with the step direction indicating the direction of travel.

For example, path 1 in Figure 2 is a rectilinear path between the EFs of GCRs G1 and G2.

2. A “stair-case” path between (xi, yi) and (xj , yj) is a rectilinear path having length |xi−xj |+|yi−yj|.
For example, paths 2 and 3 between the EFs of GCRs G1 and G4, as illustrated in Figure 2.

3. Two points are said to communicate if there exists at least one feasible stair-case path between them.

For example, EFs 1 and 2 and 1 and 4 in Figure 2 communicate. However EF pairs (2, 3), (2, 4),

(1, 3), (3, 6) and (2, 6) do not communicate. Hence they are referred to as “non-communicating”.

4. Result 1 (Theorem 3.1 of Sarkar et al. [18]): At least one least cost path between two points in the

presence of rectangular GCRs (with edges parallel to the travel axes) will coincide with segments of

the grid obtained by following the procedure described in §3.1.

5. The least cost path between two communicating points would coincide with a stair-case path between

the points. For example, path 1 is the least cost path between EFs 1 and 2. However, the least cost

path between non-communicating EFs 2 and 3 will either enter GCRG3 (along path 4) or will bypass

it (along path 5 or 6). All the paths are as illustrated in Figure 2.

6. Among two rectilinear paths of equal length between two non-communicating points in the presence

of GCRs, the path with lesser cumulative travel inside GCRs is the path of lesser cost. For example,

though the lengths of the rectilinear paths 7 and 8 between the EFs 2 and 4 are equal, path 8 costs less

as it does not enter G4. Paths 7 and 8 are depicted in Figure 2.

7. The following results of Butt and Cavalier [5] (who considered convex polygonal GCRs) have been

proved to be correct for rectangular GCRs by [18] (Lemma 3.1 and Theorem 3.1) The correctness of

the results for convex polygonal GCR(s) is still an open problem.
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(a) Result 2 (Theorem 1 of [5]): The optimal 1-median in a cell must coincide with a cell corner.

(b) Result 3 (Theorem 2 of [5]): There is at least one optimal solution to the rectilinear p-median

problem where each new facility location coincides with a cell corner of the grid obtained by passing

horizontal and vertical lines through the vertices of the GCRs and the EFs.

We end this section with the following lemma. The corresponding result for barriers has been proved by

Larson and Sadiq (Lemma 3 of [12]).

Lemma 3.2.1. A feasible rectilinear least cost path from an EF outside a cell C to an infinitesimal point

located inside the cell passes through a cell corner Ek(C), k = 1, 2, 3, 4 of C .

Proof: Let us consider a cellC as illustrated in Figure 3. LetE1(C) = (xmin, ymin),E2(C) = (xmin, ymax),

E3(C) = (xmax, ymax) and E4(C) = (xmin, ymax) be its corners. Let the area outside cell C be partitioned

into areas E (east), W (west), N (north), S (south), NE, NW , SE and SW .
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Figure 3: Proof of Lemma 3.2.1

Let the least cost path from a point X1 inside cell C to an EF X2 ∈ NE be as illustrated in Figure 3.

The path be altered without penalty to pass through the cell corner E3(C). Similar arguments hold for any

X2 ∈ NW,SE,SW .

Since any X2 ∈ E,W,N, S will generate its own gridline thereby partitioning cell C into sub-cells, the

lemma follows. �
The result proved in Lemma 3.2.1 is central to our solution methodology, especially for the case when

the new GCR placement does not intersect gridlines.

4 Determining Candidates for Optimal Placement of the new GCR

4.1 Problem Classification

In our problem, the area of the new GCR is a known parameter. If the area of the new GCR exceeds the area

of a cell C , then the new GCR cannot be fully contained in the cell. Hence it will intersect gridlines thereby
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interrupting the flows between EF pairs. However if the area of the new GCR is less than the area of a cell,

then it can be fully contained in the cell. In this scenario, the EF-EF interaction will remain unaffected. This

observation motivates us to study the problem for two cases, when:

1. the new GCR does not intersect any gridline (in §4.2), and

2. the new GCR intersects at least one gridline in S (in §5).

4.2 Solution Methodology: The new GCR placement does not intersect any gridline

For a feasible placement p, the area occupied by the interior of the new GCR may not interfere with any

gridline, i.e., for all gridlines st ∈ S, st ∩B = ∅. This also implies that the area occupied by the new GCR

is a subset of a cell C , i.e., B ⊆ C .

Since we consider two versions of the area location/layout problem, we first provide the solution method-

ology for the problem when the new GCR’s placement (specified by the location of its top left corner), NF

location (on its boundary) and its exact dimensions are unknown.

4.2.1 Boundary NF Problem

We analyze this version of the problem with the aid of the following lemma.

Lemma 4.2.1. When B ⊆ C , the NF X of the new GCR coincides with Ek(C), k = 1, 2, 3, 4.

Proof: Since B ⊆ C , the new GCR can be fully contained in cell C . In such a case, the new GCR intersects

no gridlines. Hence the EF-EF interaction K(p) will remain unchanged due to placement of the new GCR.

Due to Lemma 3.2.1, the EF-NF interaction J(p) is the minimum of four linear functions and is therefore

concave. Since K(p) remains unchanged, J(p) +K(p) is concave in cell C .

The lemma follows. �
Due to Lemma 4.2.1, it is necessary to evaluate J(p) =

∑
j∈D

uj dp(j,X) for X = Ek(C), k = 1, 2, 3, 4

and locate X at the cell corner that minimizes J(p). The new GCR can have any dimensions l and b that

satisfies the given area requirement. Note that the optimal NF location would coincide with the optimal

1-median location of an infinitesimal facility in cell C due to result 2 mentioned earlier in §3.2.

4.2.2 Centroid NF Problem

In this version of the problem, the location of the new GCR’s NF is known a priori to be at its centroid. We

now state and prove the following lemma that analyzes this case of the problem.

Lemma 4.2.2. When B ⊆ C , the optimal placement of the new GCR is such that one of its corners Ek(B)

coincides with a corner Ek(C), k = 1, 2, 3, 4, of cell C .
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Proof: When the new GCR does not intersect gridlines, the EF-EF interaction remains unaffected. Consider

a new GCR of given dimension. Suppose we move the new GCR such that it remains fully contained in cell

C . The path traced by the new GCR’s centroid is a rectangle R. Due to Lemma 3.2.1, the least cost path from

an EF i ∈ D to the NF X ∈ R ⊆ C is the minimum of four linear functions (each function evaluates the

sum of the weighted rectilinear distances from the EFs to the NF through cell corners Ek(C), k = 1, 2, 3, 4

and is therefore concave. Hence the optimal NF location must be a corner of rectangle R.

Since the path traced by the NF X, such that the new GCR does not intersect the gridlines defining the

cell, is the rectangle R, the lemma follows. �
Due to Lemma 3.2.1, the EFs i ∈ D can be partitioned into sets Dk, k = 1, 2, 3, 4. i ∈ Dk indicates that

the least cost path from an EF i to X passes through corner Ek(C) of cell C .

To determine the optimal dimensions of the new GCR, let us consider a situation, as illustrated in

Figure 4, when a corner of the new GCR coincides with corner E1(C) of cell C . We know J(p) =∑
i∈D

ui dp(i,X), where dp(i,X) = dp(i, Ek(C)) + dp(Ek(C),X). We drop the subscript p from fur-

ther discussion. One of the possible values of d(Ek(C),X) is as follows. The least cost path from cell

corners Ek(C) to the centroid NF X is illustrated in Figure 4 by dotted lines.

d(Ek(C),X) =




l
2 + b

2(1 + α) if k = 1
(xmax − l

2) + b
2 (1 + α) if k = 2

(ymax − b) + (xmax − l
2) + b

2(1 + α) if k = 3
(ymax − b) + l

2 + b
2(1 + α) if k = 4
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Figure 4: Optimal dimensions of new GCR

Hence

J(p) =
∑
i∈D

ui (d(i, Ek(C)) + d(Ek(C),X)) =
∑
i∈D

uid(i, Ek(C)) +
∑
i∈D

uid(Ek(C),X)

= ψ +
∑
i∈D

uid(Ek(C),X) (1)

where ψ =
∑
i∈D

uid(i, Ek(C)) is a constant. Hence J(p) can be rewritten as follows:

J(p) = ψ +
∑
i∈D1

ui1d(E1(C),X) +
∑
i∈D2

ui2d(E2(C),X) +
∑
i∈D3

ui3d(E3(C),X) +
∑
i∈D4

ui4d(E4(C),X) (2)
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where uik is the weight of material flow from EF i to NF X that passes through cell corner Ek(C) of cell

C . Substituting d(Ek(C),X) from above in (2), we rewrite J(p) as follows:

J(p) = ψ +
∑
i∈D1

ui1[
l

2
+
b

2
(1 + α)] +

∑
i∈D2

ui2[(xmax − l

2
) +

b

2
(1 + α)]

+
∑
i∈D3

ui3[(ymax − b) + (xmax − l

2
) +

b

2
(1 + α)] +

∑
i∈D4

ui4[(ymax − b) +
l

2
+
b

2
(1 + α)]. (3)

The area of the new GCR is A = lxb where l and b are shown in Figure 4. Substituting b = A
l in (3),

we have

J(p) = ψ +
∑
i∈D1

ui1[
l

2
+
A

2l
(1 + α)] +

∑
i∈D2

ui2[(xmax − l

2
) +

A

2l
(1 + α)]

+
∑
i∈D3

ui3[(ymax − A

l
) + (xmax − l

2
) +

A

2l
(1 + α)] +

∑
i∈D4

ui4[(ymax − A

l
) +

l

2
+
A

2l
(1 + α)]. (4)

Differentiating J(p) as in (4) with respect to l and equating it to zero, we get the value of l that minimizes

J(p) as follows:

l∗ =

√√√√√√√√
A(1 + α)(

∑
i∈D1

ui1 +
∑
i∈D2

ui2) −A(1 − α)(
∑
i∈D3

ui3 +
∑
i∈D4

ui4)

∑
i∈D1

ui1 −
∑
i∈D2

ui2 −
∑
i∈D3

ui3 +
∑
i∈D4

ui4
(5)

where A, α, uik’s are all known constants.

Since l∗ is the root of a quadratic equation, it can be real or imaginary. Moreover, even if l∗ is real,

it may not lie in the domain of l, i.e., l∗ /∈ [lmin, lmax], where lmin and lmax can be determined from cell

dimensions and the area of the new GCR. Hence we analyze the function J(p) further. Note that J(p), as

given by (4), is a function of l, of the form ψ1l + ψ2

l + ψ3, where ψ1, ψ2 and ψ3 are constants in terms of

A, α, uik’s which are all known parameters. This is true for any value of d(Ek(C),X). We now consider

the following cases.

1. ψ1 > 0, ψ2 > 0: in this case, J(p) is convex. Hence we can differentiate J(p) with respect to l and

set it to zero to obtain a unique minima l∗ for l. The following cases are now possible:

(a) l∗ is real. We now consider the following sub-cases:

i. l∗ ∈ [lmin, lmax]: J(p) is minimized by l = l∗.

12



ii. l∗ /∈ [lmin, lmax]: J(p) is minimized by either l = lmin or l = lmax.

(b) l∗ is imaginary: J(p) is minimized by either l = lmin or l = lmax.

2. ψ1 < 0, ψ2 < 0: in this case, J(p) is concave. Hence J(p) can be minimized by either l = lmin or

l = lmax.

3. ψ1 < 0, ψ2 > 0: in this case, J(p) is a decreasing function in l. Hence J(p) can be minimized by

l = lmax.

4. ψ1 > 0, ψ2 < 0: in this case, J(p) is an increasing function in l. Hence J(p) can be minimized by

l = lmin.

The previous analysis encompasses all possible cases. Since the area of the new GCR is known, b can

now be calculated. This value of l is derived based on the assumed value of d(Ek(C),X) earlier. Different

values of d(Ek(C),X) are possible depending on the least cost path that an EF i takes to travel from a

cell corner Ek(C) to the NF X of the new GCR. This would depend on the congestion factor of the new

GCR. However similar calculations can be done for different values of d(Ek(C),X) and the value of l that

minimizes J(p) can be determined for all such values.

5 The new GCR placement intersects at least one gridline

5.1 Preliminaries

When the area of the new GCR exceeds the area of a cell, the new GCR cannot be contained fully in the cell.

Hence it will intersect gridlines possibly disrupting the flows between EFs as the new GCR may interfere

with the least cost path between EFs. We assume that the flow rates between EFs are not impacted due to

insertion of the new GCR. Such an assumption is reasonable when redistribution of flows is prohibited due

to capacity restrictions on machines and/or material handling devices. The interaction between EF pairs

is represented by weights (wij) associated with each EF pair. Higher interaction between two EFs tends

to affect (i) the optimal placement of the new GCR, causing the placement to avoid interrupting the flow

(gridline) between highly interacting EF pairs, and, (ii) the optimal dimension of the new GCR such that

the new GCR’s edge cuts off the flow (gridline) between two highly interacting EFs minimally, if at all it

does so. Another consequence of the new GCR intersecting gridlines is that the least cost path between two

EFs may have to travel inside the new GCR or bypass it, increasing the cost of the path in either case. Hence

it is critical to specify/identify the gridlines which the new GCR intersects for a particular placement p.
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5.1.1 Set Q(l)

To this end, consider an initial feasible placement of the new GCR pini = [X,E4(B)ini, l] of the new GCR,

such that:

• the new GCR interferes with at least one gridline, i.e., given pini ∈ F , there exists q (q ≥ 1) gridline

segments s1, s2, . . . , sq ∈ S such that st ∩B �= ∅, ∀t ∈ {1, 2, . . . , q}, and

• no edge of the new GCR coincides with a gridline.

Now, let Q(l) denote the set of placements of the new GCR such that when E4(B) ∈ Q(l), the new

GCR will always intersect the same gridlines s1, s2, . . . , sq, for a particular length l of the new GCR. More

precisely, for a particular l, set Q(l) denotes the set of locations of E4(B) such that the new GCR will not

intersect any gridline other than s1, s2, . . . , sq, i.e., Q(l) = {(xE4(B), yE4(B)) : E4(B) ∈ Q(l)}. Hence

Q(l) represents the area in which E4(B) can be located and can be constructed by moving the new GCR

(having a particular length l) in all directions from the initial location E4(B)ini such that the new GCR

intersects gridlines s1, s2, . . . , sq. The idea is illustrated in Figure 5 in which the new GCR having length l

intersects vertical gridlines v1, v2, v3, v4 and horizontal gridlines h1, h2, h3. The set Q(l) obtained for this

length l of the new GCR is illustrated by the dotted rectangle. The boundary of any such set Q(l) originating

from E4(B)ini will consist of segments comprising locations of E4(B) such that the boundary of the new

GCR coincides with some gridline.

lll

New GCR

l

E  (B)

(0,0)

5
v

4
v

3
v

2
v

1
v

0
v

Set 

4
h

l

3
E  (B)

4

l
5

2
E  (B)

1
E  (B)

Q (l)

4

3

2

1

b

b

b

b

4321

3

�
�
�
�

��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

h

2
h

1
h

0
h

Figure 5: Construction of set Q(l)

v
2

v
1

v
0

v

Set 

4
h

3
h

2
h

1

3

E  (B)
4 3

2
E  (B)

1
E  (B)

Q (l)

Existing GCR

infeasible placement of new GCR

E  (B)

5
v

4
v

h

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

0
h

Figure 6: Proof of Lemma 5.1.1

We borrow this idea of set Q(l) from Savas, Batta and Nagi [20] who introduced the concept of set Qs

when dealing with the problem of cutting gridlines. However their definition of set Q is different compared

to the definition in this problem. Since they considered the placement of an arbitrarily shaped new facility

with a fixed contour and known NF location on the contour, Savas et al. defined set Q as the set of feasible

placements of the NF of the new facility such that the new facility intersects the same set of gridlines. We

cannot do so, as the NF location itself is an unknown in our problem. Before progressing further, we state
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and prove some properties of Q(l) through the following lemmas which shall aid in our analysis of the

problem.

Lemma 5.1.1. Set Q(l)’s are rectangular with their edges parallel to the travel axes.

Proof: Consider the example illustrated in Figure 5 in which the new GCR intersects vertical gridlines

v1, v2, v3, v4 and horizontal gridlines h1, h2, h3. From its initial position given by E4(B)ini, the edge

E4(B)E3(B) of the new GCR can be moved parallel to the vertical travel axis in the +y direction until

E4(B)E3(B) coincides with horizontal gridline h0 (or untilE1(B)E2(B) coincides with horizontal gridline

h3). Conversely the edge E4(B)E3(B) can be moved parallel to the vertical travel axis in the −y direction

until E4(B)E3(B) coincides with horizontal gridline h1 (or until E1(B)E2(B) coincides with horizontal

gridline h4). Analogous arguments can be made for edges E1(B)E2(B), E2(B)E3(B) and E1(B)E4(B)

of the new GCR. Note that for edges E2(B)E3(B) and E1(B)E4(B), the movement of the new GCR is

parallel to the horizontal travel axis in the +x and −x directions.

However, if gridlines h3 and v4 are generated due to an existing GCR, as illustrated in Figure 6, the new

GCR cannot intersect (can only touch) gridlines h3 and v4 without rendering the placement of the new GCR

infeasible.

If the new GCR intersects different gridlines, similar arguments hold. The lemma follows. �
Let us denote the corners of set Q(l) asEk(Q(l)), k = 1, 2, 3, 4, starting from the bottom left corner and

labeling in the counter clockwise direction. An immediate consequence of Lemma 5.1.1 is that Ek(Q(l))

can be expressed as functions of l, the length of the new GCR, as shown in Table 1 for the example illustrated

in Figure 5. Here l1, l2, l3, l4, l5, b4 are lengths and widths of cells as illustrated in Figure 5 and are constants.

Table 1: x, y coordinates of set Q(l) corners as functions of l
Ek(Q(l)) x-coordinate y-coordinate
k = 1 (l1 + l2 + l3 + l4) − l A

l

k = 2 (l1 + l2 + l3 + l4 + l5) − l A
l

k = 3 (l1 + l2 + l3 + l4 + l5) − l A
l + b4

k = 4 (l1 + l2 + l3 + l4) − l A
l + b4

Lemma 5.1.2. When the new GCR intersects vertical gridlines h1, . . . , hm ∈ H and horizontal gridlines

h1, . . . , hn ∈ V , Q(l) ⊆ C , where C is a cell bounded by the gridlines h0, h1, v0 and v1.

Proof: From its initial position given by E4(B)ini, the edge E4(B)E3(B) of the new GCR can be moved

parallel to the vertical travel axis in the +y direction until E4(B)E3(B) coincides with horizontal gridline

h0 (or until E1(B)E2(B) coincides with horizontal gridline hn). Conversely the edge E4(B)E3(B) can be

moved parallel to the vertical travel axis in the −y direction until E4(B)E3(B) coincides with horizontal

gridline h1 (or until E1(B)E2(B) coincides with horizontal gridline hn+1). Analogous arguments can
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be made for edges E1(B)E2(B), E2(B)E3(B) and E1(B)E4(B) of the new GCR. Note that for edges

E2(B)E3(B) and E1(B)E4(B), the movement of the new GCR is parallel to the horizontal travel axis in

the +x and −x directions.

The lemma follows. �

Lemma 5.1.3. Q(l)a ∩ Q(l)a′ = ∅

Proof: Let sets Q(l)a and Q(l)a′ result due to the new GCR intersecting gridlines st ∈ Sa ⊆ S and st ∈
Sa′ ⊆ S respectively. The lemma follows due to Lemma 5.1.2 and the fact that Sa �= Sa′ ∀Sa, Sa′ ∈ S. �

We conclude this discussion by observing that the overall feasible region F for new GCR placement is

composed of:

1. cells whose areas exceed or equal the area of the new GCR, and

2. a number of regions Q(l). The number of set Q(l)’s depends on the number of existing GCRs and

their relative proximity.

5.2 Partitioning Set Q(l)

Unlike barriers, one may wish to pass through or bypass GCRs depending on (i) the congestion factor of

the GCR, (ii) the dimension of the GCR, i.e., the distance traveled inside the GCR, and (iii) the distance

traveled to bypass the GCR. In our problem, when the new GCR intersects gridlines, the flows may choose

to (i) pass through, or (ii) left bypass, or (iii) right bypass the new GCR. Here “left bypass” and “right

bypass” signify flows that bypass a GCR along its left or right edge respectively. We illustrate the concept

of “left bypass” and “right bypass” conventions in Figure 7.

0

h
0

v
0

h
0

New GCR

−x                     +x

+y

−y

Direction Key

E  (B) E  (B)

E  (B)E  (B)
4

v

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
�� ���

���
���
���
���

���
���
���
���
���

1 2

3

Figure 7: Left and right bypass conventions

• A flow along the vertical gridline v0 in the +y direction that bypasses the GCR (i) along edge

E2(B)E3(B) is a “right bypass”, and (ii) along edge E1(B)E4(B) is a “left bypass”.
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• A flow along the vertical gridline v0 in the −y direction that bypasses the GCR (i) along edge

E3(B)E2(B) is a “left bypass”, and (ii) along edge E4(B)E1(B) is a “right bypass”.

• A flow along the horizontal gridline h0 in the +x direction that bypasses the GCR (i) along edge

E4(B)E3(B) is a “left bypass”, and (ii) along edge E1(B)E2(B) is a “right bypass”.

• A flow along the horizontal gridline h0 in the −x direction that bypasses the GCR (i) along edge

E3(B)E4(B) is a “right bypass”, and (ii) along edge E2(B)E1(B) is a “left bypass”.

Given the previous motivation, it is critical to uniquely classify flows that are intercepted by the place-

ment of the new GCR as (i) pass through, or (ii) left bypass, or (iii) right bypass. However this classifi-

cation is complicated by the fact that as the new GCR’s placement p ∈ Q(l) changes, the classification of

flows may not necessarily remain the same. Hence it is important to determine the range of movement of the

new GCR in a set Q(l) such that the classification of a flow along an intercepted gridline remains unaltered,

when the new GCR’s movement is bounded by the range. This can be achieved by partitioning a set Q(l)

by Equal Travel Time Partitions (ETTP ), as described in §5.3.

5.3 Equal Travel Time Partitions

With the previous background, we introduce the concept of Equal Travel Time Partitions (ETTP ). The

concept of ETTP is analogous to the concept of Equal Travel Time Lines (ETTL) introduced by Batta,

Ghose and Palekar [2]. ETTLs help to uniquely assign EFs to cell corners when determining the shortest

path from an EF to an infinitesimal point in a cell in the presence of impenetrable barriers to travel. The

idea of ETTLs is explained briefly with the aid of Figure 8 in which an ETTL E1E2 is generated in the

rectangular cell ABCD due to EF 1. E1E2 splits the cell into sub-cells C1 and C2. The distance of any

point on E1E2 to EF 1 bypassing the barrier through cell corners A or D is equal. However the shortest path

from EF 1 to any point in sub-cell C1 (but not on E1E2) passes through cell corner A, i.e., EF 1 is uniquely

assigned to A. Whereas, for any point in sub-cell C2 (but not on E1E2), EF 1 is uniquely assigned to cell

corner D.

With the previous background, we now establish a methodology to construct ETTP s for a particu-

lar length l of the new GCR. For the sake of illustration, let us redraw the example depicted in Figure 5

as Figure 9. In Figure 9, consider a feasible placement p ∈ Q(l) of the new GCR, in which the edge

E4(B)E3(B) of the new GCR coincides with the edge E1(Q(l))E2(Q(l)) of set Q(l), such that the co-

ordinate of E4(B) is (x′, y′). Let us consider a unit of flow between two EFs along the vertical gridline

v1 in the +y direction. If the flow passes through the GCR, then the distance traversed between the points

y1 and y2 is (Al )(1 + α). Whereas, if the flow left bypasses the GCR along the path y1E1(B)E4(B)y2,
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the distance traversed is 2(l1 − x′) + A
l . The time required to travel through or bypass would be equal if

(Al )(1+α) = 2(l1−x′)+A
l , i.e., if x′ = l1−Aα

2l , which is a function of l. Note thatA, l1 and α are constants.

This value of x′ will remain unaltered for any feasible placement p ∈ Q(l) even if the y′ changes. Hence an

ETTP is generated at x′ = l1 − Aα
2l . The ETTP is a vertical line at x′ = l1 − Aα

2l whose end points have

y-coordinates equal to the y-coordinates of E1(Q(l)) (or E2(Q(l))) and E4(Q(l)) (or E3(Q(l))), again

functions of l, as established earlier in §5.1.1. The ETTP is “feasible” if x′ lies between the x-coordinates

ofE1(Q(l)) andE2(Q(l)), i.e., (l1+l2+l3+l4)−l ≤ l1− Aα
2l ≤ (l1+l2+l3+l4+l5)−l. The bounds on x′

are obtained from Table 1. The significance of this ETTP is as follows: for a feasible placement p ∈ Q(l),

if the corner E4(B) of the new GCR lies on the ETTP , the least cost path between a pair of EFs may pass

through or left bypass the new GCR. Considering the right bypass of a unit flow through v0, another ETTP

can be generated at x′′ = Aα
2l + l1 − l. The bounds on x′′ are same as the bounds on x′. ETTP s for other

vertical and horizontal gridlines can be similarly obtained. However the ETTP s generated by horizontal

gridlines will partition set Q(l) horizontally. Hence any gridline st ∈ S can generate at most two ETTP s

in a set Q(l). It is pertinent to mention here that there are typically not as many ETTP s formed as may be

portrayed by the previous analysis for a set Q(l).

The feasible ETTP s partition a set Q(l) along both vertical and horizontal directions. Hence a rect-

angular Q(l) is partitioned into smaller rectangles. Let us denote these smaller rectangles as RQ(l). The

boundary of a RQ(l) consists of either (i) ETTP s, or (ii) ETTP s and edges of Q(l), or (iii) edges of

Q(l). Note that RQ(l) ⊆ Q(l). Since the ETTP s can be expressed as functions of l, the coordinates of

the corners of RQ(l) can also be expressed as functions of l. The significance of RQ(l) is as follows: as

the placement p ∈ RQ(l) ⊆ Q(l) changes, the classification of flows along the gridlines (for which Q(l) is

formed) as (i) pass through, or (ii) left bypass, or (iii) right bypass does not change. We now demonstrate

the the concavity of the objective function when the facility placement is in RQ(l). This will provide clues

for determining candidate locations for optimal facility placement. We adapt the following lemma from
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Savas et al. [20] for our purposes:

Lemma 5.3.1. For a given l, a candidate optimal solution of E4(B) lies at a corner of the set RQ(l).

Proof: Assume the contrary, i.e., there is a solution E4(B)∗ which is strictly in the interior of set RQ(l). Let

X∗ be the NF placement associated with this solution. From Theorem 2 of Savas et al., for the given l and

X∗ values, we know that J(p) +K(p) (now a function of just E4(B)) is concave over the set RQ(l). This

implies that one of the corners of set RQ(l) is at least as good as the solution E4(B)∗ even when the same

X∗ is used. The solution could only improve if we choose to optimize X once the corner was selected.

The lemma follows. �
We note that Lemma 5.3.1 is possible to prove because the set RQ(l) is not a function of X. If it was a

function of X, then we would need to establish concavity over (E4(B),X) space. We also note that when

the NF (of the new GCR) is located at its centroid, i.e., X ∈ B, fixing l automatically fixes the location of

X ∈ B. Hence Lemma 5.3.1 subsumes the corresponding lemma for the centroid NF problem.

Due to Lemma 5.3.1, a candidate optimal for E4(B) will coincide with a corner of RQ(l). Let us denote

the corners of RQ(l) as Ek(RQ(l)), k = 1, 2, 3, 4, starting from the bottom left corner and labeling them in

the counter clockwise direction.

The previous background applies for both the boundary NF and centroid NF problems. Before proceed-

ing further, we outline the steps of our solution methodology as follows:

1. Identify candidate points for optimal location of E4(B). This is achieved by Lemma 5.3.1.

2. Identify candidate points for optimal location of the NF X. Note that this step is essential for the

boundary NF version of the problem (as described later in §5.4.1). However it is redundant for the

centroid NF version of the problem.

3. For each candidate location of E4(B) and for each candidate NF location, determine the optimal

length of the new GCR (as described later in §5.4.2). For the centroid NF problem, we determine the

optimal length of the new GCR for each candidate location of E4(B). The NF location automatically

becomes fixed.

We now focus on the boundary NF problem and first determine the candidates for optimal location of

the NFX on the boundary of the new GCR. This will aid in determining the optimal length of the new GCR.

5.4 Boundary NF Problem

5.4.1 Candidate NF Locations

We have established that the corners Ek(RQ(l)) of RQ(l) are candidates for optimal placement of the new

GCR. We now state and prove the following lemma which identifies the candidate points for optimal location
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of the NFX of the new GCR. Wang, Bhadury and Nagi [22] have proved an analogous result in the presence

of impenetrable barriers to travel. Refer to Lemma 1 of [22].

Lemma 5.4.1. The candidate points for optimal NF location are:

• corners Ek(B), k = 1, 2, 3, 4, of the new GCR, and

• points of intersection of gridlines with edges of the new GCR.

Proof: For the sake of illustration, let us consider a placement of the new GCR such that it intersects

gridlines v0, v1, h0, h1, as illustrated in Figure 10.
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Figure 10: Optimal NF location

Lines 1, 2, 3, 4 are the traversal lines generated by the new GCR. The NF X must lie on any edge of the

new GCR. Let X lie on E2(B)E3(B). For any EF above line 4, the least cost path to X ∈ E2(B)E3(B)

must pass through cornerE3(B). Similarly, for any EF below line 2, the least cost path toX ∈ E2(B)E3(B)

must pass through corner E2(B). For any EF in regions P and Q, the least cost path to X ∈ E2(B)E3(B)

must pass through E2(B) or E3(B) or points a or b. Clearly the EF-NF interaction can be minimized by

locating the NF at E2(B), E3(B) (points defined by the first bullet), a or b (points defined by the second

bullet). For other edges similar arguments hold. The lemma follows. �
The candidate points for optimal NF location in the case illustrated in Figure 10 are shown by black

dots. Note that the coordinates of the candidate points for optimal NF location can be expressed in terms of

l. We now proceed to determine the optimal dimension (i.e., the length l) of the new GCR.

5.4.2 Optimal Dimension

Let the new GCR of length l intersect vertical gridlines v1, v2, . . . , vz1 ∈ V and horizontal gridlines

h1, h2, . . . , hz2 ∈ H . The labeling of vertical and horizontal gridlines is in increasing and decreasing

order of their x and y coordinate values respectively, i.e., xvm > xvm′ , ∀m > m′ and xvm �= xvm′ and
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similarly yhn > yhn′ , ∀n < n′ and yhn �= yhn′ . Since the GCR intersects vertical gridlines v1, v2, . . . , vz1 ,

l > (xvz1
−xv1). Similarly, since it intersects horizontal gridlines h1, h2, . . . , hz2 , Al > (yh1 −yhz2

). Hence

l is bounded by (xvz1
− xv1) < l < A

(yh1
−yhz2

) . Note that we have a strict inequality condition due to our

assumption that the new GCR’s edge should not coincide with a gridline.

The corners of set Q(l) and RQ(l) can be represented as functions of l. Consider the NF X = (x, y) to

be located at E4(B). Let E4(B) coincide with a corner Ek(RQ(l)) of RQ(l) ⊆ Q(l). As mentioned earlier,

in this placement, the classification of flows through the intercepted gridlines is unique as either (i) travel

through, or (ii) left bypass, or (iii) right bypass. Hence the EF-EF interaction K(p) can be expressed as a

function of l, as dp(i, j) are functions of l, ∀i, j ∈ D. Since X is located at a point whose coordinates are

functions of l, the EF-NF interaction J(p) can also be expressed as a function of l. Hence J(p) +K(p) is a

function of l. We now determine the value of l that minimizes J(p) +K(p).

Note that the length l of the new GCR is measured along the horizontal travel axis, whereas the width
A
l is measured along the vertical travel direction. The least cost path between two EFs dp(i, j) (or between

an EF and a corner Ek(RQ(l)), i.e., dp(i,X)) consists of vertical and horizontal segments. The horizontal

segment can be expressed in terms of l, whereas the vertical segment can be expressed in terms ofAl . Hence

the objective function J(p)+K(p) is of the form λ1l+ λ2
l +λ3, where λ1, λ2 and λ3 are constants in terms

of A, α, ui, wij and the coordinates of the existing EFs. The following cases are possible:

1. λ1 > 0, λ2 > 0: J(p) +K(p) is convex. Hence we can differentiate J(p) +K(p) with respect to l

and set it to zero to obtain a unique minima l∗ for l. However if l∗ violates the bound (xvz1
− xv1) <

l < A
(yh1

−yhz2
) , J(p) + K(p) can be minimized by either l∗ = (xvz1

− xv1) or l∗ = A
(yh1

−yhz2
) .

It is appropriate to mention here that l∗ is the root of a quadratic equation, alike the case described

earlier in §4.2.2. Hence it can be imaginary. In that case, J(p) + K(p) can be minimized by either

l∗ = (xvz1
− xv1) or l∗ = A

(yh1
−yhz2

) .

2. λ1 < 0, λ2 < 0: J(p) + K(p) is concave. Hence J(p) + K(p) can be minimized by either l∗ =

(xvz1
− xv1) or l∗ = A

(yh1
−yhz2

) .

3. λ1 > 0, λ2 < 0: J(p) +K(p) is a decreasing function in l, minimized by l∗ = A
(yh1

−yhz2
) .

4. λ1 < 0, λ2 > 0: J(p) +K(p) is an increasing function in l, minimized by l∗ = (xvz1
− xv1).

Note that the optimal length l∗ obtained from above is for a particular candidate location Ẽ4(B) of

E4(B) and for a particular candidate location X̃ of X. More precisely, l∗ minimizes J(p) + K(p) for

a candidate placement p = [X̃, Ẽ4(B), l]. Repeating the same procedure for each candidate location of

E4(B) and for each candidate NF location will yield a local minima for a Q(l). Repeating the procedure

for all set Q(l)s results in the global minima.
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5.5 Centroid NF Problem

The only difference in this version is the centroid location of the NF, whose coordinates can again be ex-

pressed in terms of l. Also while expressing the EF-NF interaction as a function of l, the least cost path

from an EF to a NF can be split up as the least cost path from an EF to a corner Ek(B) of the GCR and then

from the corner to X, i.e., dp(i,X) = dp(i, Ek(B)) + dp(Ek(B),X). Ek(B) and X are both functions of

l. Hence in this case too, J(p) can be expressed as a function of l. Since K(p) can also be expressed as a

function of l, a similar procedure, as described in §5.4.2, also applies in this version of the problem.

6 Numerical Example

We now elucidate our solution methodology with the aid of the example, depicted in Figure 1. The existing

GCRs, their congestion factors, EF locations, uis and wijs can be obtained from Figure 1. Recall that the

area of the new GCR, A = 14 units, and its congestion factor, α = 1. We assume that the new GCR’s I/O

point X is located on its boundary. A similar analysis can be performed for the centroid NF problem.

Following the grid construction procedure of §3.1, we draw 7 horizontal gridlines (numbered h0 through

h6 in Figure 11) and 4 vertical gridlines (numbered v0 through v3 in Figure 11). As a result, ten rectangular

cells are generated. Note that the new GCR can be fully contained in cell C1 and C2, as shown in Figure 11.

Following the solution methodology in §4.2.1, we determine the optimal location of X and the correspond-

ing J(p) +K(p) value. These results are reported in Table 2. Note that in these two cases, the new GCR

can have any length l, such that l ≤ 4 and l × b = 14.

Table 2: Results when new GCR is fully contained in cells
Case # Cell X location J(p) +K(p) Remark
A C1 (3, 7) 347.10 Optimal
B C2 (7, 7) 347.25

When the new GCR intersects gridline(s), ten Q(l) sets are formed for this example. For each such

Q(l), we identify the gridline(s) intersected and determine the (local) optimal location of the top-left corner

(E4(B)) of the new GCR, its I/O point (X) and length l, and the corresponding objective function value.

The optimal placements of the new GCR, obtained by comparing all J(p) +K(p) values from Table 2

and Table 3, are illustrated in Figures 11, 12 and 13.

There are some general observations that can be made regarding our numerical example:

1. There are six alternative optimal solutions. In each of these, the EF-EF interaction is not affected by

the placement of the new GCR.

2. The sweep algorithm (page 194 of Francis et al. [17]) is frequently used to solve the rectilinear min-

isum location problem to locate an infinitesimal new facility. The optimal location (for this example)
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Figure 11: Optimal solution (cases A, 2, 6)
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Figure 12: Optimal solution (case 5)

obtained from the sweep algorithm is (3, 5.5), which is sub-optimum. The reason for sub-optimality

is that the sweep algorithm does not recognize the fact that travel through GCR G3 is costly.

3. The optimal placements obtained for this problem will not change if the congestion factor of the new

GCR is changed. This is because none of the EF-EF flows or EF-NF flows pass through the new GCR.

4. None of the Q(l)s formed in this example are partitioned by ETTP s.

If the example is changed in a manner that EF-EF interaction is affected by placement of the new GCR,

several of the alternate optimal solutions are no longer optimum. Consider a modified version (illustrated in

Figure 14) of the previous example, in which the locations of EF1, EF2 and EF4 have been changed. Also

w23 = w35 = 1 for this example.

Previous optimal solutions obtained from cases 2, 5, 6, 8 and 9 would no longer be optimal; because

EF1-EF4, EF2-EF3 and EF3-EF5 flows are now disrupted. However, the solution obtained from case A

(illustrated in Figure 11) would remain attractive, since the new GCR is fully contained in cell C1, and

hence does not disrupt any EF-EF flows.

7 Solution Complexity

Our solution methodology to the area location/layout problem is based on evaluating the EF-NF interaction

J(p) at the cell corners in §4.2.1 and §4.2.2. In §5.4 and §5.5, our analysis is based on the construction of
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Table 3: Results when new GCR intersects gridline(s)
Case # Q(l) Gridlines E4(B) X l J(p) +K(p) Remark

intersected
1 Q1(l) h5 (3, 14) (3, 10.5) 4 361.100
2 Q2(l) v1 (1.71, 9.65) (3, 7) 5.29 347.100 Optimal
3 Q3(l) v1 (0, 4) (7, 4) 7 351.100
4 Q4(l) v2 (3, 11) (3, 7.5) 4 349.100
5 Q5(l) v2 (3, 4) (3, 4) 7 347.100 Optimal
6 Q6(l) v1, v2 (3, 10.5) (3, 7) or (3, 4) 4 347.100 Optimal
7 Q7(l) v1, v2 (0, 4) (7, 4) 7 353.100
8 Q8(l) h2, h3, h4 (1.44, 11) (3, 7) or (3, 4) 1.56 347.100 Optimal
9 Q9(l) h3, h4 (0, 8.67) (3, 4) 3 347.100 Optimal
10 Q10(l) h1 (3, 4) (7, 4) 4 350.100
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Figure 13: Optimal solution (cases 8, 9)
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Figure 14: Modified Example

ETTP s for set Q(l)s. The solution methodologies of §5.4 and §5.5 are outlined in the following steps more

precisely:

1. Construct set Q(l)s.

2. Construct ETTP s for each set Q(l) and partition Q(l) into rectangles RQ(l).

3. Uniquely classify flows in each RQ(l) as (i) flow through, or (ii) left bypass, or (iii) right bypass.

4. Identify potential candidate locations of E4(B) as functions of l.

5. Identify potential candidate locations for X (in the boundary NF problem), again as functions of l.

6. For each candidate location Ẽ4(B) of E4(B) and each candidate location X̃ of the NF X, formulate

J(p) +K(p) (in §5.4 and §5.5) in terms of l, where p = [X̃, Ẽ4(B), l].
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7. Differentiate J(p) +K(p) with respect to l and set it to zero.

8. Obtain the optimal dimension of the new GCR for a particular RQ(l).

9. Repeat steps 2 to 8 for each set Q(l).

Hence the number of cell corners, number of Q(l)s, number of RQ(l)s and number of candidate locations

of E4(B) and X are the factors that govern the complexity of the solution procedure.

Let us consider N existing GCRs. Let β, a constant, be an upper bound on the number of EFs of each

GCR. N GCRs generate at most N(β + 2) horizontal gridlines and N(β + 2) vertical gridlines, i.e, O(N)

gridlines. Hence the maximal number of cell corners generated is O(N2).

When the new GCR intersects gridlines, the number of set Q(l)s formed depends on the number of

gridlines the GCR intersects. It is pertinent to note here that the set Q(l)s are defined when the new GCR

intersects successive horizontal and/or vertical gridlines. The new GCR can intersect N(β + 2) vertical

gridlines in O(N2) ways because intersecting: (i) one at a time is N(β + 2) ways, (ii) two at a time is

N(β + 2) − 1 ways because of the successive intersection requirement, and so on. Similarly, N(β + 2)

horizontal gridlines can be intersected in O(N2) ways, and the maximal number of set Q(l)s is thus O(N4).

In practice, the number of set Q(l)s that need to be actually analyzed may be significantly lesser. This is

because multiple least cost paths may exist between pairs of EFs. This is especially true for communicating

EF pairs between which multiple staircase paths exist. The new GCR placement may intersect one staircase

path between two communicating EFs but the flow may bypass the GCR along another staircase path. Hence

a set Q(l) that does not intersect all such paths at the same time should be excluded from analysis. If the

new GCR placement intersects N′ vertical gridlines, the maximum number of ETTP s generated for a set

Q(l) is 2N ′, since each gridline can generate at most two ETTP s. Similarly if the new GCR placement

intersects N ′′ horizontal gridlines, the maximum number ofETTP s generated for a set Q(l) is 2N′′. Hence

a set Q(l) can be partitioned into (2N′+1)(2N ′′+1) rectangles RQ(l)s , i.e., the maximal number of RQ(l)s

is O(N6).

Let us now determine the number of candidate locations of E4(B) and X. Since a Q(l) can have at most

2N ′ vertical partitions and 2N′′ horizontal partitions, maximal number of candidate locations of E4(B) is

also O(N6). Since the new GCR intersects N′ vertical gridlines, the number of potential NF locations due

to intersection of gridlines with the new GCR is 2N′. Similarly, for horizontal gridlines, the number of

potential NF locations is 2N′′. In addition, the vertices of the new GCR are also potential NF locations.

Hence, maximal number of potential NF locations is (2N′ + 2N ′′ + 4), i.e., O(N) for each candidate

location of E4(B). So O(N7) potential candidate NF locations have to be evaluated in the worst case.

Summarizing, the complexity of steps 1, 2, 4 and 5, mentioned earlier in this section is O(N4), O(N6),

O(N6) and O(N7) respectively. We conclude that the number of cell corners, set Q(l)s, rectangles RQ(l)s
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and candidate locations of E4(B) and X are all polynomially bounded in the number of GCRs.

8 Conclusions and Future Research

This work addresses the problem of placing a rectangular GCR of given area but unknown dimension in the

plane in the presence of other rectangular GCRs. Hence the problem is named as the “area location/layout

problem”. The existing GCRs are served by multiple EFs located in their interior or on their boundary. The

new GCR however has one NF. We study two versions of the problem: (i) when the NF (of the new GCR) is

located on its boundary but the location is to be decided, and (ii) when the NF location is known a priori but

is assumed to be inside the new GCR at its centroid. Two types of interactions are considered: (i) between

an EF and the NF of the new GCR, and (ii) between pairs of EFs. The objective is to determine the optimal

location of the new GCR, its dimensions (specified by its length) and NF location of the new GCR thereby

minimizing the sum of these two interactions.

The feasible region is partitioned into cells by constructing a grid. When the new GCR placement does

not intersect gridlines, i.e., the area of a cell exceeds the area of the new GCR, we show that the optimal

location of the new GCR can be drawn from the finite set of cell corners. When the new GCR intersects

gridlines, EF-EF flows are intercepted. Hence we identify the gridlines that are cut off by the new GCR

and introduce the concept of Equal Travel Time Partition to partition the feasible region into areas where

the EF-EF flows can be uniquely classified as (i) right bypass, or (ii) left bypass, or (iii) travel through.

Partitioning the flows as above helps in accurate calculation of distances between pairs of EFs. We express

our objective function in terms of a single variable, the length l of the new GCR and obtain a unique minima

for l to minimize our objective function.

For both versions of the problem, our solution methodologies are shown to be polynomially bounded

in the number of existing GCRs. Note that since barriers (do not allow travel through, i.e., α = ∞) and

forbidden regions (allow travel through without penalty, i.e., α = 0) are special cases of GCRs, the solution

methodologies presented for the area location/layout problem would apply in the presence barriers and

forbidden regions as well.

The approach in this paper may be extended to study more general location/layout problems. For a

single GCR, we need to study the multiple NF case. Firstly, we may study the case in which the number

of NFs is known a priori. Secondly, with fixed costs for opening NFs and variable costs for using them,

the problem to determine the optimal number of NFs to be opened can be studied. This is similar to the

traditional location-allocation problem, with the addition of spatial considerations. There are also other

issues relevant to the shapes of GCRs to be located. An immediate extension would be to consider the area

location/layout problem in the presence of convex polygonal GCRs.

26



Acknowledgement

This work was supported by the National Science Foundation, via grant DMI− 0300370. This support

is gratefully acknowledged. The authors also wish to acknowledge the help of two anonymous referees,

whose comments significantly improved the paper’s exposition.

References

[1] Y.P. Aneja and M. Parlar. Algorithms for weber facility location in the presence of forbidden regions

and/or barriers to travel. Transportation Science, 28(1):70–76, 1994.

[2] R. Batta, A. Ghose, and U. Palekar. Locating facilities on the manhattan metric with arbitrarily shaped

barriers and convex forbidden regions. Transportation Science, 23(1):26–36, 1989.

[3] Y.A. Bozer and R.D. Meller. A reexamination of the distance-based facility layout problem. IIE

Transactions, 29(7):549–560, 1997.

[4] S.E. Butt and T.M. Cavalier. An efficient algorithm for facility location in the presence of forbidden

regions. European Journal of Operational Research, 90:56–70, 1996.

[5] S.E. Butt and T.M. Cavalier. Facility location in the presence of congested regions with the rectilinear

distance metric. Socio-Economic Planning Sciences, 31(2):103–113, 1997.

[6] I. Castillo and B.A. Peters. An extended distance-based facility layout problem. International Journal

of Production Research, 41(11):2451–2479, 2003.

[7] P. M. Dearing, H. W. Hamacher, and K. Klamroth. Dominating sets for rectilinear center location

problems with polyhedral barriers. Naval Research Logistics, 49(7):647–665, October 2002.

[8] S. S. Heragu and A. Kusiak. Efficient models for the facility layout problem. European Journal of

Operations Research, 53:1–13, 1991.

[9] I.N. Katz and L. Cooper. Facility location in the presence of forbidden regions, I : formulation and

the case of euclidean distance with one forbidden circle. European Journal of Operational Research,

6:166–173, 1981.

[10] R. Larson. Urban Police Patrol Analysis. The MIT Press, Cambridge, Mass., 1972.

[11] R.C. Larson and V.O.K. Li. Finding minimum rectilinear distance paths in the presence of barriers.

Networks, 11:285–304, 1981.

[12] R.C. Larson and G. Sadiq. Facility locations with the manhattan metric in the presence of barriers to

travel. Operations Research, 31(4):652–669, January 1983.

[13] R.M. Meller and K.-Y. Gau. The facility layout problem: Recent trends and emerging perspectives.

Journal of Manufacturing Systems, 15(5):351–366, 1996.

27



[14] B. Montreuil. A modeling framework for integrating layout design and flow network design. In

Proceedings of the Material Handling Research Colloquium, Hebron, KY, USA, pages 43–58, 1990.

[15] P. Nandikonda, R. Batta, and R. Nagi. The weighted 1-center problem with arbitrary shaped barriers.

Accepted to Annals of Operations Research, 123:157–172, 2003.

[16] B.A. Norman, A.E. Smith, and R.A. Arapoglu. Integrated facilities design using a contour distance

measure. IIE Transactions, 33(4):337–344, 2001.

[17] L. F. McGinnis R. L. Francis and J. A. White. Facility Layout and Location: An Analytical Approach.

Prentice Hall, Englewood Cliffs, NJ, 1992.

[18] A. Sarkar, R. Batta, and R. Nagi. Commentary on ‘facility location in the presence of

congested regions with the rectilinear distance metric’. accepted to Socio-Economic Plan-

ning Sciences, (corrected proof available online at http://authors.elsevier.com/trackpaper.html or

http://www.eng.buffalo.edu/∼nagi/papers/crpaper.pdf), 2003.

[19] S. Savas. A Spatial Modeling Perspective to Problems in Facilities Design. PhD thesis, University at

Buffalo, September 2000.

[20] S. Savas, R. Batta, and R. Nagi. Finite-size facility placement in the presence of barriers to rectilinear

travel. Operations Research, 50(6):1018–1031, 2002.

[21] J.A. Tompkins, J.A. White, Y.A. Bozer, and J.M.A Tanchoco. Facilities Planning, 3rd ed. John Wiley

and Sons, Inc., NY, 2003.

[22] S. Wang, J. Bhadury, and R. Nagi. Supply facility and input/output point locations in the presence

of barriers. Computer and Operations Research: special issue on Location Science, 29(6):685–699,

2002.

28


