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Abstract

In this paper we present an integrated distribution center site selection and space re-

quirement problem on a two-stage network in which products are shipped from plants to

distribution centers, where they are stored for an arbitrary period of time and then deliv-

ered to retailers. The objective of the problem is to minimize total inbound and outbound

transportation costs and total distribution center construction cost – which includes fixed

costs related to their locations and variable costs related to their space requirements for

given service levels. Each distribution center is modeled as an M/G/c queueing system, in

which each server represents a storage slot. We formulate this problem as a nonlinear mixed

integer program with a probabilistic constraint. Two cases are considered. For the contin-

uous unbounded size case, we find an approximate formula for the overflow probability and

restructure this model into a connection location problem. For the discrete size option case,

we reformulate the problem into a capacitated connection location problem with discrete

size options. Computational results and a comparison of the two cases are provided.
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Introduction

Consider a typical centralized two-stage distribution center (DC) system in which the dis-

tribution of products is carried out as follows: From production plants the products are

transported to a certain number of DCs and then delivered to geographically dispersed re-

tailers. Such a distribution network is depicted in Figure 1. The planning of the distribution

network involves decisions on: (i) the location and product routing for DCs; and (ii) the size

of each DC to satisfy a pre-determined service level, where the service level is measured by

the probability that an arriving product finds no storage slot available at a DC.
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Figure 1: Typical two-stage distribution system.

The DC location and product routing problem has received considerable attention. It

focuses on the determination of the number and locations of the DCs, as well as the product

flow assignments in order to minimize the transportation cost and the fixed location cost.

Reviews on the plant location problem can be found in Krarup and Pruzan (1983), Mir-
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chandani and Francis (1990) and Sridharan (1995). Recent related research can be found in

Nozick and Turnquist (2001) and Shen, Coullard, and Daskin (2003). In this class of prob-

lems, space requirements are not explicitly considered. Capacitated versions of the problem

have been analyzed, which implicitly try to account for space restrictions. Nevertheless, DC

capacities are an input to these models, whereas space requirements are an output for our

models.

The DC sizing problem has also received considerable attention. It seeks to find a DC

size which either allows a required service level to be attained or minimizes total costs. Un-

der the assumption of constant product demand, Cormier and Gunn (1996a) and Cormier

and Gunn (1996b) coordinated DC size and inventory policy. Sung and Han (1992) pre-

sented a problem of determining the optimal size of an AS/RS by analyzing some queueing

models. Multi-period DC leasing problems were investigated by White and Francis (1971),

Lowe, Francis, and Reinhardt (1979) and Rao and Rao (1998). Jucker, Carlson, and Kropp

(1982) considered a multi-location DC leasing problem under uncertain demand. Roll and

Rosenblatt (1983) and Rosenblatt and Roll (1988) developed simulation models to measure

the relationship among DC size, inventory policy, and other various parameters. We note,

however, that all of these models assume that locations have been selected.

Talavera (2002) presents a simulation study that demonstrates that the simultaneous

consideration of DC location/routing and size yields significantly better results than a se-

quential method. Motivated by this empirical finding, we develop an analytical approach to

this integrated decision making of DC location/routing and size. The problem is formulated

as a nonlinear mixed integer program with a probabilistic constraint. For the continuous

unbounded size case, we find an approximate formula for the overflow probability and re-
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structure this model into the connection location problem with a concave cost function –

which is solved by a column generation method. For discrete size option case, we reformulate

the problem into the capacitated connection location problem with discrete size options –

which can be solved by a Largrangian relaxation approach.

The rest of the paper is organized as follows. Section 1 presents a mathematical formu-

lation of the integrated DC site selection and space requirement problem. Section 2 details

the continuous unbounded size case. Some properties and a column generation approach

are established. Section 3 analyzes the discrete size option case. A Largrangian relaxation

heuristic approach is suggested for the problem. Section 4 reports computational results

and provides a comparison of the two cases. Section 5 contains a summary and suggests

directions for future work.

1 Formulation

Tables 1 and 2 summarize the parameters and decision variables for our model, respectively.

We assume that each product has a standard unit volume size and is produced by at least

one plant. Demand forecast from retailers gets transformed to a production schedule at the

plants. We assume that the flow of product out of a plant occurs in a Poisson manner, and

the processes at each plant are independent of each other. Thus the flow of products into

each DC is given by a Poisson random variable. Each DC is modeled by an M/G/c queue,

where c is expressed in terms of the number of storage slots required to store products at

a DC. In other words, a storage slot is a “server” of the queueing system. If an arriving

product finds that all storage slots are occupied at a DC, it has to be sent to a leased slot,
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which is much more expensive, until a slot is available at this DC. The DC size is measured

as the total number of storage spaces (each assumed to be of equal size). The amount of time

that a product stays in a DC (its service time) depends on when this product is shipped to

a retailer. We allow this service/storage time to follow a general distribution with a known

mean. Figure 2 depicts such a system. We assume that the total construction cost of DC

k is Fk + tkck. A regression analysis by Ashayeri, Gelders, and Wassenhove (1985) showed

that this assumption is very reasonable.

A strength of our modeling approach is its simplicity in data requirements. All we need

is the mean storage time at each DC (which can be derived from inventory turn data) and

the mean rate of production at each plant (which can be derived from production planning

data).

Table 1: Model Parameters

Symbol Meaning

I = {i : i = 1, 2, · · · , n} set of plants

J = {j : j = 1, 2, · · · , m} set of retailers

K = {k : k = 1, 2, · · · , K} set of candidate sites for DCs

1/µk mean storage time of a product at DC k

tk unit space construction and operational cost at DC k

Fk fixed cost if a DC is located at candidate site k

fij mean demand for products from plant i at retailer j

uik unit shipping cost from plant i to DC k

vkj unit shipping cost from DC k to retailer j

βk threshold overflow probability at DC k

Due to the demand and supply processes the inventory level fluctuates. We estimate

the storage space requirement such that the storage space suffices for at least a fraction

0 < 1 − β < 1 of the time. In other words, the probability that an arriving product finds
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Table 2: Decision Variables

Symbol Meaning

xijk fraction of demand for products from plant i at retailer j shipped via DC k

yk 1 if a DC is located at candidate site k, and 0 otherwise

ck space requirement for DC k for given threshold overflow probability βk

no storage slot available at a DC is less than a pre-determined level β, which is the overflow

probability of an M/G/c queue.

M: Poisson arrival process from plants G:  general storage time distribution

c: number of storage slots

( M/G/c )DC
1 2 3

c

.  .
 .  . . . .

 .  . .  . .  .
 .  .Storage slot

Retailer

PP Plant

R RR

Figure 2: DC as an M/G/c queueing system

Using notation ZP (x) to denote the objective function of a problem (P ) with a vector

of decision variables x and NAk to the fact that an arriving product finds no storage slot

available at DC k, we arrive at the following formulation:

(P ) min
x, y, c

ZP (x, y, c) =
∑

i,j

∑

k

fij(uik + vkj)xijk +
∑

k

(Fk + tkck)yk (1)

subject to
∑

k

xijk = 1, ∀ i, j, (2)
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xijk ≤ yk, ∀ i, j, k, (3)

Pr(NAk) ≤ βk, ∀ k, (4)

xijk ≥ 0, yk ∈ {0, 1}, ck ≥ 0, ∀ i, j, k. (5)

The objective function (1) minimizes the total inbound and outbound shipping costs and

total DC construction cost. Constraint (2) stipulates that the product demands can only be

shipped via DCs. Constraint (3) states that the product demand can only ship via the DC

selected. Constraint (4) is a probabilistic capacity constraint, which forces the the overflow

probability at a DC k to be less than or equal to βk. Constraint (5) represents the integrality

and non-negativity constraints.

A major difficulty is that a direct algebraic formula of overflow probability in an M/G/c

queue system is not available. We therefore proceed by using a suitable approximation to

this probability.

2 Continuous size case

Here we assume that the size variable ck is continuous and unbounded for all k. First, we

develop an approximate formula for ck for the pre-determined βk. Using the approximation,

we reformulate the problem as a set covering problem and solve it by a column generation

algorithm.

2.1 An approximate formula for the required DC size

Here, we develop an approximate formula using a result from Parikh (1977). Consider an

M/G/c queueing system. Let λ and µ be, respectively, the system arrival and service rate,
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with load ρ = λ/µ. Let Pr(ρ, c) be the overflow probability for the M/G/c queueing system,

which refers to the probability that all servers in the system are busy. According to the

definition of the space requirement at a DC, for the pre-determined β, the required number

of servers, c, is a value that satisfies:

Pr(ρ, c) ≤ β, and Pr(ρ, c− 1) > β.

From Parikh (1977), empirically observed lower and upper bounds for c, given β, are as

follows:

cN ≤ c ≤ cM , (6)

where cM is the required number of servers for an M/M/c queueing system for the given β,

and

cN ≈ ρ + qβρ1/2 + 0.5. (7)

Here, qβ is the (β)th percentile of the standard normal distribution, i.e., Pr(Z ≥ qβ) = β

and Z ∼ N(0, 1).

Empirical results for different sets of parameters from Parikh (1977) demonstrate that

the bounds are very tight. In fact, with β ≤ 0.10, cM − cN almost always equals to 1 if we

round up cN to an integer. Expression (7) has also been used to approximate cM by Kolesar

and Green (1998). They provide details on the insights of this approximation. We select cN

(as opposed to cM) as the approximate formula of c for a pre-determined β value due to its

relative ease in mathematical analysis.

In our model, let λk and ρk be, respectively, the mean arrival rate and the load of DC k.

It follows that:

λk =
∑

i,j

fijxijk, ∀ k ∈ K,
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and

ρk =
∑

i,j

fij

µk

xijk, ∀ k ∈ K.

Therefore, from (7),

ck ≈
∑

i,j

fij

µk

xijk + qβk

√√√√∑

i,j

fij

µk

xijk + 0.5. (8)

It is easy to see that ck is a concave function of assignment variable x. Therefore, (8) gives a

concave shape to the total DC cost to accommodate economies of scale in the construction

of DCs, which allows some insightful analysis to be carried out.

2.2 An approximate formulation

We can use the expression for ck in equation (8) in the objective function and apply the

inequality in constraint (4) to obtain:

ZP (x, y, c) =
∑

i,j

∑

k

fij(uik + vkj +
tk
µk

)xijk +
∑

k

(Fk + 0.5tk)yk +
∑

k

tkqβk

√√√√∑

i,j

fij

µk

xijk.

Note that when we substitute ck into the objective function, we will no longer need the

probabilistic capacity constraint (4) according to the definition of c from Section 2.1. We let

αijk = fij(uik + vkj + tk
µk

), γk =
tkqβk√

µk
, F

′
k = Fk + 0.5tk and Qk(x) =

√∑
i,j fijxijk. Then, the

approximate formulation of the original problem is as follows:

(P1) min
x, y

ZP1(x, y) =
∑

i,j

∑

k

αijkxijk +
∑

k

F
′
kyk +

∑

k

γkQk(x) (9)

subject to
∑

k

xijk = 1, ∀ i, j, (10)

xijk ≤ yk, ∀ i, j, k, (11)

xijk ≥ 0, yk ∈ {0, 1}, ∀ i, j, k. (12)
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2.3 Properties

In this subsection we develop a key property for our model. This property enables the

development of an efficient solution method.

Property 1. There exists an optimal solution of the problem (P1) for which each demand

for product from plant i at retailer j is allocated to a single DC, i.e., xijk = 0 or 1,∀ i, j, k.

Proof: See Appendix.

By Property 1, to solve the problem, we can divide the whole demand flow set {(i, j) :

∀ i ∈ I, j ∈ J} into different subsets and find the best partition of the demand flow set. This

can be formulated as the set covering problem.

2.4 Set covering model and column generation approach

We now reformulate our problem as a set covering problem. Since an optimal solution to

the problem (P1) consists of a partition of demand flow (i, j) into nonempty subsets, we

can find the partition from all nonempty subsets of the demand flow set by solving the set

covering problem. Let S be the collection of all nonempty subsets of the demand flow set,

i.e., S = {W1,W2, · · · ,Ws, · · ·}. Let aijs be a constant that is equal to 1 if demand flow (i, j)

is included in subset Ws and 0 otherwise, and cs,k be the related cost if Ws is assigned to

candidate DC k. Then,

cs,k = F
′
k +

∑

i,j

aijsαijk + γk

√∑

i,j

fijaijs.

We define cs to be the lowest cost of having one DC serve the demand flow set Ws, i.e.,

cs = minkcs,k.

Let decision variable zs = 1 if the demand flow set Ws is selected to be served by a
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DC and 0 otherwise. The problem (P1) can be reformulated into a set covering problem as

follows:

(SC) min
z

ZSC(z) =
∑

Ws∈S
cszs (13)

subject to
∑

Ws∈S
zs ≤ K, (14)

∑

Ws∈S
aijszs ≥ 1, ∀ i, j, (15)

zs ∈ {0, 1}, ∀Ws ∈ S. (16)

Constraint (14) ensures that the total number of the selected demand flow sets is less than

the total number of the candidate DC sites. Constraint (15) guarantees that each demand

flow belongs to at least one selected demand flow set. Constraint (16) is the integrality

constraint. For this set covering problem, we obtain the following property:

Property 2. There is no optimal solution for the problem (SC) such that Ws and Ws′ are

assigned to the same DC, where Ws and Ws′ are any two demand flow sets.

Proof: See Appendix for details.

This property guarantees that only one demand flow set will be assigned to a selected

DC in the optimal solution.

The number of columns involved in this formulation is exponential. Neither the set

covering problem nor its linear programming relaxation can be solved by a method that

first generates all feasible columns explicitly. We therefore resort to a column generation

approach.

Let (S̄C) be the linear programming relaxation of (SC) and (S̄CS′ ) be the master prob-

lem of (S̄C) in which a subset S ′ of S is available. Thus, the master problem (S̄CS′ ) is as
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follows:

(S̄CS′ ) min
z

Z S̄CS′ (z) =
∑

Ws∈S′
cszs (17)

subject to
∑

Ws∈S′
zs ≤ K, (18)

∑

Ws∈S′
aijszs ≥ 1, ∀ i, j, (19)

0 ≤ zs ≤ 1 ∀Ws ∈ S ′ . (20)

The primary issue is the design of the pricing algorithm. We know that a solution to a

minimization problem is optimal if the reduced cost of each variable is nonnegative. To test

whether the current solution is optimal, we determine if there exists a Ws ∈ S with negative

reduced cost, which leads to the pricing problem (SCPk
) for each candidate DC site k.

(SCPk
) min (F

′
k − η) +

∑

i,j

(αijk − πij)xijk + γk

√∑

i,j

fijxijk (21)

subject to xijk ∈ {0, 1} ∀ i, j, (22)

where η and πij are corresponding optimal dual costs associated with (18) and (19). The

objective function of (SCPk
) is a concave function of x. Coincidently, the pricing problem is

very similar to the one in Shen, Coullard, and Daskin (2003). They developed an effective

approach to solve such a pricing problem. We follow their idea to solve the problem (SCPk
).

For given DC site k, (F
′
k−η) is a constant. We essentially need to solve the following pricing

problem:

(Pk) min
x

ZPk(x) =
∑

i,j

(αijk − πij)xijk + γk

√∑

i,j

fijxijk (23)

subject to xijk ∈ {0, 1} ∀ i, j. (24)

12



Let x∗ be an optimal solution to the problem (Pk) and the minimum reduced-cost set

Ws = {(i, j) : x∗ijk = 1}, and G∗
k = (F

′
k − η) + ZPk(x∗). If G∗

k ≥ 0, then we can conclude

that there is no set Ws assigning to DC k with negative reduced cost. If ∀k, G∗
k ≥ 0, we can

conclude that there is no set Ws ∈ S with negative reduced cost.

Now, let

αi1j1k − πi1j1

fi1j1

≤ αi2j2k − πi2j2

fi2j2

≤ · · · ≤ αihjhk − πihjh

fihjh

.

Then, the following Theorem is an immediate consequence from Shen, Coullard, and Daskin

(2003).

Theorem There is an optimal solution x∗ijk to the problem (Pk) in which the following

properties hold:

1. If αijk ≥ πij, then x∗ijk = 0,∀ i, j.

2. If x∗itjtk = 1, for some t ∈ {1, 2, · · · , h}, then x∗iljlk
= 1, for all l ∈ {1, 2, · · · , t− 1}.

By the Theorem, we can develop an algorithm to solve the pricing problems in polyno-

mial time. In fact, we can solve the problem (Pk) by enumeration, i.e., by generating all

solutions with the properties and selecting the one with the lowest objective function value.

The computational complexity for sorting is O(mnlog(mn)), m and n are the number of

retailers and plants, respectively. There are total mn such solutions for the pricing problem.

Therefore, the computational complexity for the pricing problem is O((mn)2log(mn)).
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3 Discrete size case

For simplicity in presentation, we assume that there are an equal number of size options for

each DC (this can be achieved by using an infinite cost when fewer options are provided).

Suppose that we have total L pre-selected size options for each DC k, denoted by ckl, l =

1, 2, · · · , L. The corresponding DC total construction cost is Fkl = Fk + tkckl. For a size

option ckl, the probability of needing more than ckl units of space at DC k is an increasing

function of arrival rate. Therefore, for a given threshold overflow probability βk, if the arrival

rate is less than a threshold value, the probabilistic constraint (4) will be satisfied. Let λkl

be this threshold arrival rate. From Section 2.1, we know that the arrival rate in DC k can

be written as λk =
∑

i,j fijxijk. Thus, the constraint (4) is equivalent to the following if the

DC k size option is ckl:

∑

i,j

fijxijk ≤ λkl.

In order to reformulate the problem (P ) into a mixed integer linear program, we introduce

a DC size selection variable, ykl. Let ykl = 1 if a DC is located at candidate site k with size

option l, and 0 otherwise. The original problem (P ) can then be formulated as a capacitated

connection location problem with discrete size options as follows:

(P2) min
x, y

ZP2(x, y) =
∑

i,j

∑

k

fij(uik + vkj)xijk +
∑

k

∑

l

Fklykl (25)

subject to
∑

k

xijk = 1, ∀ i, j, (26)

∑

i,j

fijxijk ≤ ∑

l

λklykl, ∀ k, (27)

∑

l

ykl ≤ 1, ∀k, (28)

xijk ≥ 0, ykl ∈ {0, 1}, ∀ i, j, k, l. (29)
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The objective function (25) minimizes the total cost, which is the sum of the DC con-

struction costs and the shipping cost. Constraint (26) stipulates that the product demands

only shipping via DCs. Constraint (27) is a size capacity constraint. Constraint (28) assures

that only one size option is selected for each DC. Constraints (29) are the non-negativity

and integrality constraints.

Therefore, the original problem (P ) can be solved by the following two-step procedure:

• Step 1. Find the threshold arrival rates, λkl, for each options.

• Step 2. Solve the problem (P2).

In order to find the threshold arrival rates, λkl, either approximation or simulation ap-

proaches can be employed. In the approximation approach, λkl can be obtained from (8) for

given size option and overflow probability. For given ckl and βk, we obtain:

λkl = µkckl + 0.5µk(q
2
βk
− µkqβk

√
q2
βk

+ 2ckl − 1− 1).

For solving the problem (P2), we use the Lagrangian decomposition method presented

in Huang, Batta, and Nagi (2003). They relax the capacity constraint (27) and decompose

(P2) into two relatively easy subproblems. Their computational experiments showed that

the approach can deal with problems having up to 3000 flows, 200 candidate connection

sites with 6 size options in about one hour of CPU time. The average heuristic gap for all

combined data was found to be less than 2%.
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4 Computational results

In this section, we design experiments to test the performance of the column generation

approach developed in Section 2.4, to compare the results of the continuous and discrete

models, and to show the benefit of the simultaneous consideration of DC location/routing

and size. All algorithms were coded in C++ and tested on a Dell Precision 330 Pentium

4 with 1700 MHZ CPU and 512 MB RAM. The solver for the linear- and integer-program

problems is CPLEX 7.1.

The test problems were randomly generated as follows. First, we generated plants, re-

tailers and candidate DC sites’ locations, which were decided by their x- and y-coordinates.

These coordinate values were randomly selected from U(0, 200), where U denotes a uniform

distribution. For each pair of demand flow (i, j), the amount of its mean demand was ran-

domly drawn from U(1, 10). We assume tk = 1 and µk = 1. In all cases, we let the threshold

overflow probability βk = 0.05. The fixed DC construction cost Fk was randomly drawn

from different ranges: U(200, 500), U(1000, 2500), and U(2000, 5000), in order to test how

the fixed DC construction cost affects the solution difficulty. The unit shipping costs, uik

and vkj, were set to be dik and dkj, respectively, where dik is the rectlinear distance between

plant i and candidate DC site k and dkj is the rectlinear distance between candidate DC site

k and retailer j.

The headers of the columns in Tables 3 through 6 are:

• flow #: number of plant-retailer pairs;

• plant #: number of plants;
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• DC #: number of DCs;

• retailer #: number of retailers;

• CPU (s): CPU times (seconds) consumed for solving the instance;

• CG #: total number of columns added;

• GAP: (best solution value - lower bound)/lower bound * 100;

• Objective Value: objective function value in the solution;

• # of DC opened: total number of DCs opened in the solution.

4.1 Computational results for the column generation algorithm

Here we report the performance of the column generation algorithm for the continuous case.

The initial columns were obtained by solving the shortest path problem for the problem

instance. We iteratively added columns for all k with negative reduced cost to the linear

program after having solved the pricing algorithm. We stopped generating new columns

when the gap was less than 1%. For the different range of fixed DC construction cost, the

computational results for this case are showed in Table 3, 4 and 5. Figure 3 summarizes the

results. We can see that the problem becomes difficult to solve if the fixed DC construction

cost increases as other parameters remain unchanged. We can expect this since the pricing

problem usually needs more time to add columns if the fixed DC construction costs are large.
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Figure 3: Computational results for different fixed DC construction costs

4.2 Comparison of continuous and discrete cases

In this subsection, we compare the solution results of the continuous and discrete models.

The motivation for this is as follows: (i) the column generation method might not solve large

problems (see Table 5) while the discrete model may be able to; and (ii) if we discretize the

continuous case to a discrete model, what is the solution gap between them and is the gap

consistent? The problem we selected for the comparison has a size of 180 flows, 4 plants, 15

connections, and 45 retailers, with fixed cost from U(2000, 5000). A problem with this size

is difficult for the continuous case. We randomly generated 20 problems of this size.

Some additional parameters have to be set for the discrete case. We let the total number

of size options L = 3 and Fkl = Fk + tkckl. Here, the fixed DC construction cost Fk was

randomly drawn from U(2000, 5000). In order to generate feasible test problems for the

discrete case, we first generated the threshold arrival rate, λkl, then using the approximate

equation (8) we obtained the size options ckl. The λkl was randomly decided in the following
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Table 3: Computational results when fixed cost is drawn from U(200, 500)

flow # plant # DC # retailer # CPU (s) CG # GAP (%)
1 20 2 5 10 0.30 325 0.01
2 30 2 5 15 0.16 813 0.30
3 40 2 5 20 0.27 1252 0.99
4 50 3 10 25 10.58 6983 0.64
5 60 3 10 30 11.84 7391 0.62
6 105 3 10 35 45.56 11436 0.96
7 120 4 15 30 48.66 16919 0.69
8 140 4 15 35 81.47 19106 0.86
9 160 4 15 40 274.41 28019 0.81
10 180 4 15 45 254.11 27518 0.82

Table 4: Computational results when fixed cost is drawn from U(1000, 2500)

flow # plant # DC # retailer # CPU (s) CG # GAP (%)
1 20 2 5 10 0.08 285 0.02
2 30 2 5 15 0.17 813 0.54
3 40 2 5 20 0.95 2399 0.98
4 50 3 10 25 14.84 8098 0.82
5 60 3 10 30 90.91 15574 0.76
6 105 3 10 35 114.59 18292 0.69
7 120 4 15 30 821.02 36899 0.87
8 140 4 15 35 1132.72 49451 0.95
9 160 4 15 40 2006.61 55835 0.93
10 180 4 15 45 1815.47 49007 0.99

manner:

λk1 ∼ U(0.7ρ, 1.0ρ), λk2 ∼ U(1.1ρ, 1.4ρ), λk3 ∼ U(1.5ρ, 1.80ρ);

where ρ = 2
∑

i,j fij/|K|, and |K| is the total number of candidate DC sites. The term

∑
i,j fij/|K| is the average flow for the total number of candidate DC sites.

The discrete model was solved by the CPLEX solver optimally instead of by the La-

grangian relaxation method. By doing this, we can eliminate the heuristic gap of the method.

For all problems, CPU time for the discrete model is about 2 seconds, the average solution
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Table 5: Computational results when fixed cost is drawn from U(2000, 5000)

flow # plant # DC # retailer # CPU (s) CG # GAP (%)
1 20 2 5 10 0.38 676 0.87
2 30 2 5 15 0.91 1502 0.59
3 40 2 5 20 0.50 1185 0.80
4 50 3 10 25 88.48 14235 0.54
5 60 3 10 30 380.96 19588 0.85
6 105 3 10 35 313.20 20833 0.94
7 120 4 15 30 1222.10 42828 0.98
8 140 4 15 35 4909.27 45806 0.97
9 160 4 15 40 6943.07 51747 0.93
10 180 4 15 45 19109 123682 1.09

gap between continuous and discrete cases is 0.9%, and the standard deviation is 0.0008.

The result provides evidence that discretizing the continuous model is relatively accurate

and consistent, and that larger dimension problems can be solved by the discrete model.

4.3 Benefit of simultaneous consideration of DC location/routing

and size

The goal of this subsection is to compare the integrated model with a sequential method. The

objective value of the integrated model was obtained by solving the continuous unbounded

size case. The procedure of the sequential method here was as follows: (1) solve the related

uncapacitated facility location problem for given fixed cost Fk, obtain the objective value

Zu and λk =
∑

i,j fijxijk, and (2) find the DC size ck by (8) and the total cost Zs by

Zs = Zu + tkck. The related uncapacitated facility location problem was solved optimally

by the CPLEX solver. For each problem, we randomly generated the unit space cost tk from

three different ranges: U(1, 50), U(50, 100), and U(100, 150). The fixed cost Fk was drawn
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randomly from U(200, 500). The problem size and the results are showed in Table 6. The

benefit ranges from 0.8% to 14.9%. The average benefit for all the problems is about 4%.

The reason for the benefit is intuitive since the sizing cost is ignored in the location decision

procedure of the sequential method.

Table 6: Benefit of the integrated model

flow # plant # DC # retailer # tk ∼ U(1, 50) tk ∼ U(50, 100) tk ∼ U(100, 150)
% % %

1 20 2 5 10 4.4 4.3 3.2
2 30 2 5 15 5.0 5.6 1.0
3 40 2 5 20 2.1 14.9 1.6
4 50 3 10 25 10.0 2.7 1.3
5 60 3 10 30 7.3 2.7 4.2
6 105 3 10 35 2.0 0.8 2.3

5 Conclusions and future work

In this paper an integrated DC site selection and space determination problem has been

presented. The problem involves decisions on the number and locations of DCs, the amount

of each DC space to be constructed in order to satisfy a pre-determined service level, as

well as product routing through DCs. The objective of the problem is to minimize the sum

of inbound/outbound transportation costs and DC construction costs, for given DC service

levels. A key feature is the explicit treatment of a probabilistic constraint that guarantees a

specified DC service level. Two cases are analyzed. In the continuous size case, an approx-

imate expression is used and the problem transforms into a concave minimization problem,

which is solved using a column generation method. In the discrete size option case, we first

21



find a set of maximum arrival rates corresponding to the given size options. This converts the

probabilistic constraint into a linear capacity constraint, thereby transforming the problem

into a capacitated connection location problem with discrete size options. Computational

results show that the continuous approach has smaller error gap and that the discrete ap-

proach can deal with larger size problems. Compared to a sequential procedure, the savings

of the simultaneous consideration of DC location/routing and size are significant.

Further research on the integrated DC location and space requirement problem could

consider a multiple period planning problem with different lease ending time. In this case,

the decisions on DC include when and how long to lease DCs. Modeling the DCs as an

M/G/1 queueing system with finite waiting space could be another approach. Yet another

method would be to use an M/G/c loss system with explicit leasing costs. Both these

methods are worth exploring.
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Appendix

The following Lemma is needed to prove Property 1.

Lemma 1. If an optimal solution for the problem (P1) exists where a demand for product

from plant i at retailer j is assigned to two DCs k and l, then we have
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γk
∂Qk(x)

∂xijk

+ αijk = γl
∂Ql(x)

∂xijl

+ αijl, ∀ i, j. (30)

Proof: If the statement is not true, then we arbitrarily assume that

γk
∂Qk(x)

∂xijk

+ αijk < γl
∂Ql(x)

∂xijl

+ αijl, ∀ i, j. (31)

If we perturb xijk by δ ≥ 0 and xijl by −δ, then the net improvement of the objective function

value equals to (assuming that both DCs k and l are still open after the perturbation):

αijk(xijk + δ) + γkQk(xijk + δ) + αijl(xijl − δ) + γlQl(xijl − δ)

−(αijkxijk + γkQk(x) + αijlxijl + γlQl(x))

= δ[γk
Qk(xijk + δ)−Qk(xijk)

δ
+ αijk − (γl

Ql(xijl + δ)−Ql(xijl)

δ
+ αijl)],

where Qk(xijk + δ) denotes that only variable xijk is perturbed by δ in the function Qk(x)

and all other variables are kept unchanged. Since ∂Qk(x)
∂xijk

= limδ→0
Qk(xijk+δ)−Qk(xijk)

δ
, by

(31), the net improvement of the objective function value will be negative when δ → 0. The

statement follows from the ensuing contradiction.

Property 1. There exists an optimal solution of the problem (P1) for which each demand

for product from plant i at retailer j is allocated to a single DC, i.e., xijk = 0 or 1,∀ i, j, k.

Proof: Suppose that there is an optimal solution for the problem (P1) with a demand for

product from plant i at retailer j is allocated to at least two different DCs, say k and l.

Then both xijk and xijl are positive. Let us arbitrarily increase xijk by an amount δ = xijl

and decrease xijl to zero. Since Qk(x) and Ql(x) are concave, we obtain,
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Qk(xijk + δ)−Qk(xijk) ≤ δ
∂Ql(x)

∂xijk

,

and

Qk(xijl)−Qk(xijl − δ) ≥ δ
∂Ql(x)

∂xijl

.

From the proof of Lemma, we know the net improvement of the objective function value is

δ[γk
Qk(xijk + δ)−Qk(xijk)

δ
+ αijk − (γl

Ql(xijl + δ)−Ql(xijl)

δ
+ αijl)]

≤ δ[γk
∂Qk(x)

∂xijk

+ αijk]− δ[γl
∂Ql(x)

∂xijl

+ αijl] = 0.

The last equation follows because of Lemma 1. Thus, a new feasible solution is obtained

which is at least as good as the original optimal solution, and which has one less non-zero

variable. We repeat the process until all flows are completely allocated to a single DC. The

result follows.

Property 2. There is no optimal solution for the problem (SC) such that Ws and Ws′ are

assigned to the same DC, where Ws and Ws
′ are any demand flow sets.

Proof: Suppose that there is an optimal solution for the problem (SC) such that Ws and

Ws
′ are assigned to the same DC k. According to the definition of cs, we obtain,

cs + cs′ = cs,k + cs′ ,k

= F
′
k +

∑

i,j

aijsαijk + γk

√∑

i,j

fijaijs + F
′
k +

∑

i,j

aijs′αijk + γk

√∑

i,j

fijaijs′ .

Let Wu = Ws ∪Ws
′ , assign Wu to DC k and drop Ws and Ws

′ . Then the related cost

becomes,
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cu = F
′
k +

∑

i,j

aijsαijk +
∑

i,j

aijs′αijk + γk

√∑

i,j

fijaijs +
∑

i,j

fijaijs′ .

Since
√

x+
√

y ≥ √
x + y, for any x ≥ 0 and y ≥ 0, it is easy to see that cu ≤ cs + cs′ . By

doing this and keeping everything else unchanged, we obtain a new feasible solution, which

is better than the old one. The result follows.
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