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Abstract

Previously scheduled production plans frequently need to be updated because of demand uncertainty.
After making a comprehensive de"nition of nervousness which includes costs for changes in production
schedule and quantity, we suggest three methodologies. Two methods are modi"ed versions of very
well-known methods: the Wagner}Whitin algorithm and the Silver}Meal heuristic. However, our de"nition
of nervousness and its consequences for altering predetermined production volumes make the well-known
property of producing either zero or a sum of several periods' demand suboptimal. Therefore a third method,
a new mixed integer linear programming formulation, is proposed which is shown to be more e!ective in
some cases. Numerical analyses are carried out for a wide range of possible cases, through which we provide
insights to the most appropriate algorithm in a parameterized space.

Scope and purpose

Uncertainty in demand forecasts and a rolling horizon create volatility in lot-sizing results. This volatility
is characterized by frequent changes in predetermined production schedules and is highly undesirable for
production managers. It causes nervousness in the system in terms of canceling existing setups, introducing
new setups, and altering the production volumes. In this paper, we propose new cost structures for these
changes, and o!er several models that identify less nervous production schedules in a rolling horizon basis.
For practitioners, this work identi"es the most preferable algorithm for a variety of system para-
meters. ( 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Manufacturing companies determine their production schedules based on the forecasts for future
demand. It is a commonly recognized fact that accurate forecasts are generally available over
a given horizon for only a few initial periods. For the rest of the periods such "gures become
progressively blurred. Yet companies have to determine a production policy that is the most robust
to any kind of such uncertainties. Due to new information, previous schedules may need to be
updated regularly. Because of the dynamic environment, updated schedules may be quite di!erent
than previous ones. These di!erences may cause the following changes in the schedule: assigning
new production setups for some periods, calling o! some previously scheduled setups for some
other periods, and altering the production volumes of previously scheduled setups. Such changes in
schedules are referred to as nervousness. It is quite reasonable to anticipate that the changes
mentioned above would introduce some costs. In the following, we provide a review of the
developments in single-level, uncapacitated lot-sizing and in particular those that have considered
some form of nervousness in a rolling horizon.

Wagner and Whitin [1] "rst proposed an optimal algorithm to solve the single item, single-level,
uncapacitated economic lot size problem. In their model, demand "gures for future periods were
assumed to be deterministic. The algorithm is based upon three theorems that give some important
clues about the structure of optimal solutions:

1. Initial inventory can always be assigned to zero.
2. At optimality, a production volume is either zero or a sum of demands for several periods.
3. A setup results in a production quantity that satis"es all demand until the next production

setup.

The last condition of optimality encouraged researchers to suggest several simpler heuristic
methods. The Silver}Meal heuristic [2], in particular, tries to identify the production setup points
by including demand "gures one by one in the order. Such a straightforward approach constitutes
myopic behavior. Nevertheless, its e!ectiveness is observed to be as attractive as its simplicity.

Steele [3] and Mather [4] approached the nervousness problem from a managerial point of
view. The causes of nervousness were listed as: master production schedule (MPS) changes,
unexpected changes in previously made customer orders, parameter (lead time, safety stock, etc.)
changes, forecast changes, vendor plant fall-down, scrap and spoilage, engineering changes, record
errors, and unplanned transactions.

Although optimal for a single horizon, the Wagner}Whitin algorithm is not optimal in a rolling
horizon environment. Despite that, Baker [5] showed that rolling Wagner}Whitin schedules
produce e!ective results that are very close to the optimal solutions when demand is certain and
there are no costs for nervousness. However, when nervousness costs are considered, these
schedules may be less attractive.

Carlson et al. [6] de"ned nervousness as the di$culty encountered in shifting of previously
scheduled production setups because of new information obtained in a rolling horizon. They
introduced a schedule change cost (SCC), which consists of the cost of scheduling a new setup. After
the introduction of SCC, the model obtained can easily be converted into the one proposed by
Wagner and Whitin, i.e., both models are structurally identical. For this reason, the dynamic
programming solution methodology proposed by Wagner and Whitin is applicable.
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Based upon the exact schedule change cost de"nition, Kropp et al. [7] established two modi"ed
versions of the Silver}Meal heuristic and one modi"ed Part-period balancing heuristic as well. For
the "rst time, di!erent methodologies including the one proposed by Carlson et al. [6] were tested
and compared under a rolling horizon. Numerical analyses showed that the modi"ed Silver}Meal
approach was only slightly more costly than the modi"ed Wagner}Whitin algorithm.

De Bolt and Van Wassenhove [8] illustrated that the cost "gure would increase due to demand
uncertainty in a dynamic rolling-schedule environment. Their work is one of the "rst to insert
forecast errors into the material requirement planning (MRP) lot-sizing research. They also
suggested bu!ering against the forecast errors. The simulation analysis conducted showed that the
Silver}Meal heuristic with bu!ering against forecast errors might generate good solutions.

Blackburn et al. [9] examined the e!ectiveness of alternative strategies in multi-level production
processes. A series of simulation experiments was conducted to test the e!ectiveness of the
strategies. According to the "ndings, cost for schedule changes and freezing the schedule within the
horizon are signi"cantly e!ective on schedule stability. Their work encouraged researchers to focus
on those aspects of MRP system nervousness.

Ho and Carter [10] analyzed several other dampening techniques; static, dynamic, and cost-
based procedures. The cost-based dampening utilized the exact de"nition of the schedule change
cost suggested by Carlson et al. [6]. They claimed that a proper dampening procedure together
with a lot-sizing rule may result in system improvement.

Aull and LaForge [11] investigated allowable limits on predetermined production "gures
without changing the timing of setups established by the previous schedule. This is a di!erent
approach than that of Carlson et al. [6] in which the question was the setup points. Their approach
motivated us to give more emphasis on consequences of altering production volume. The In-
cremental Part-Period Algorithm was used for this purpose.

Recent studies have focused on other detailed aspects of MRP system nervousness: stochastic
demand [12,13], supply and process uncertainty [14], forecast error distribution [15], and
detecting minimal forecast window [16].

Here in our work, we question the classical de"nition of the nervousness in MRP systems. As
researchers have previously stated, system performance strongly depends on such a de"nition.
Thus, incorporating a more complete de"nition of nervousness costs, we examine the performance
of several algorithms in a rolling horizon.

In the following section, after presenting the de"nitions of the problem arguments, we provide
modi"ed versions of the Wagner}Whitin algorithm and the Silver}Meal heuristic, and a mixed
integer linear programming method. They are all designed to be employed in a rolling schedule
environment. The experimental design to test the e!ectiveness of those methodologies is discussed
in Section 3. Finally, the paper concludes with the discussion of the results.

2. Problem environment

This section contains mathematical formulations of the models that are believed to produce less
nervous production schedules. Through the rest of this paper the terms forecast window and
production window (or horizon) are used interchangeably as are the terms schedule change cost and
nervousness cost.
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2.1. Dexnitions

Through the following de"nitions, index i stands for production periods, whereas index k stands
for the order of a period within a production window. Thus, k may have the values between 1 and
the length of forecast window.

N length of forecast window
N

i
set of new setup points o!ered by schedule i that were not scheduled in schedule i!1

O
i

set of setup points cancelled from schedule i!1 by schedule i
A

i
set of periods where setup decision is unaltered by schedule i

d
i,k

demand forecast for the kth period at the beginning of horizon i
x
i,k

production volume suggested by schedule i for the kth period of the horizon; so x
i~1,k`1

refers
to production amount suggested by the previous schedule for the same period

*`
i,k

increase in the production volume suggested by schedule i for the kth period (kON); clearly,
*`
i,k
"x

i,k
!x

i~1,k`1
if x

i,k
'x

i~1,k`1
, 0 otherwise

*~
i,k

decrease in the production volume suggested by schedule i for the kth period (kON); clearly,
*~
i,k
"x

i~1,k`1
!x

i,k
if x

i,k
(x

i~1,k`1
, 0 otherwise

s
k

setup cost at the kth period
h
k

holding cost at the kth period
n
k

cost of assigning a new setup to the kth period; Logically, n
1
*n

2
*2*n

N
can be assumed. That also holds for the following costs

o
k

cost of canceling a setup that was previously scheduled to the kth period
a`
k

cost of increasing production volume by 1 unit at the kth period of the horizon
a~
k

cost of decreasing production volume by 1 unit at the kth period of the horizon
I
i,k

ending inventory at the kth period in schedule i
CS

i
total setup cost of schedule i

CH
i

total holding cost of schedule i
CN

i
total nervousness cost of schedule i

C
i

total cost of schedule i

No cost of increasing/decreasing is incurred if the change in production volume is a result of
assigning a new setup or canceling a setup.

2.2. Dynamic programming: a modixed version of Wagner}Whitin algorithm

Wagner and Whitin proposed the well-known algorithm based on the following cost structure:

C
i
"CS

i
#CH

i
, ∀i, (1)

where

CS
i
"

N
+
k/1

s
k
d(x

i,k
), ∀i, (2)

CH
i
"

N
+
k/1

h
k
I
i,k

, ∀i (3)
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with d(x
i,k

) being an indicator function de"ned as

d(x
i,k

)"G
1 if x

i,k
'0,

0 if x
i,k
)0.

It can easily be seen that Eq. (1) does not capture the nervousness concept because the algorithm
was designed for "nding the optimal schedule only for a single horizon. Carlson et al. [6]
introduced nervousness into the system for the "rst time. Here, we claim that schedule change cost
that they o!ered cannot wholly represent the nervousness in a manufacturing environment because
not only assigning new setups, but also canceling, or even changing production volumes may incur
some costs to companies. For this reason, a more comprehensive model must include the costs of
canceling a previously scheduled setup (o

i
) and altering production volume (a`

i
, a~

i
). For a single

planning horizon such a cost function can be written as

C
i
"CS

i
#CH

i
#CN

i
, ∀i, (4)

where

CN
i
" +

k|Ni

n
k
#+

k|Oi

o
k
# +

k|Ai

(a`
k

*`
i,k
#a~

k
*~
i,k

), ∀i. (5)

Our next task is to prove that total cost of a schedule for a single horizon, say i, is structurally
identical to the one used by Wagner and Whitin.

Theorem. Cost of a schedule for a single horizon, C
i
, is structurally identical to Eq. (1).

Proof. When a production schedule is generated at the beginning of period i, the following
relationships will already be established:

k3N
i
Nd(x

i,k
)"1, d(x

i~1,k`1
)"0,

k3O
i
Nd(x

i,k
)"0, d(x

i~1,k`1
)"1,

k3A
i
Nd(x

i,k
)"d(x

i~1,k`1
).

Eq. (4) can be rewritten as

C
i
"CS

i
#CH

i
# +

k|Ni

n
k
#+

k|Oi

o
k
# +

k|Ai

(a`
k

*`
i,k
#a~

k
*~

i,k
)

"

N
+
k/1

s
k
d(x

i,k
)#CH

i
# +

k|Ni

n
k
d(x

i,k
)#+

k|Oi

o
k
d(x

i~1,k`1
)# +

k|Ai

(a`
k

*`
i,k
#a~

k
*~

i,k
)d(x

i,k
)

" +
k|Ni

s
k
d(x

i,k
)# +

k|Ai

s
k
d(x

i,k
)#CH

i
# +

k|Ni

n
k
d(x

i,k
)#+

k|Oi

o
k
d(x

i~1,k`1
)

# +
k|Ai

(a`
k

*`
i,k
#a~

k
*~

i,k
)d(x

i,k
)

" +
k|Ni

(s
k
#n

k
)d(x

i,k
)#+

k|Oi

o
k
d(x

i~1,k`1
)# +

k|Ai

(s
k
#a`

k
*`
i,k
#a~

k
*~

i,k
)d(x

i,k
)#CH

i
.
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Let

x6
i,k
"G

x
i,k

if k3(N
i
XA

i
),

x
i~1,k`1

if k3O
i

and

s6
k
"G

s
k
#n

k
if k3N

i
,

o
k

if k3O
i
,

s
k
#a`

k
*`
i,k
#a~

k
*~

i,k
if k3A

i

yielding

C
i
"

N
+
k/1

s6
k
d(x6

i,k
)#

N
+
k/1

h
k
I
i,k

,

which is structurally equivalent to Eq. (1). h

A direct conclusion from the above theorem is that the Wagner}Whitin algorithm can be used to
"nd a new schedule based on a previous one. In order to perform such a task, "rst x6

i,k
's and s6

k
's

must be computed according to the relationships given above. Since it is quite straightforward
} running time of O(N) } there will not be any change in the complexity of the algorithm.

Recursive Expression of the Dynamic Program. The following backward recursive expression may
be utilized to "nd a new schedule at the beginning of period i:

CM
N`1

"0,

CM
j
" min

m>1xj:mxN`1
Gsj#

m~2
+
k/j

h
k
I
i,k
#(1!d

j
)n

j
#

m~1
+

k/j`1

d
k
o
k
#d

j
(a`

j
*`
i,j
#a~

j
*~

i,j
)#CM

mH
where j"N,2, 1, and d

j
"d(x

i~1,j`1
).

At the end, CM
1

will be the last term obtained from the recursion. The corresponding production
sequence will be the schedule o!ered by the algorithm and cost of the new schedule will be CM

1
(C

i
"CM

1
). Since it is in the exact structure of the original algorithm, its running time will be O(N2).

Now the question arises: for a "xed planning horizon, is the schedule o!ered by the modi"ed
Wagner}Whitin algorithm optimal? The answer to this question can be investigated by means of
the three conditions of optimality provided in the introduction. One of the most essential
conditions is that a production batch must equal the demand for an integral number of periods.
Evidently, this condition of optimality does not hold for our case since altering the production
volume is not a binary decision. We also have to decide the change in production volume. The
dynamic programming approach implicitly enumerates possible production volumes that are
equal to demand for an integral number of future periods. If an optimal production batch for
a period does not equal one of those possible values, then the recursive approach will simply skip
that "gure. The result will be a suboptimal schedule. This approach establishes the following
theorem.
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Theorem. The schedule identixed by the modixed Wagner}Whitin algorithm cannot guarantee opti-
mality for a xxed single planning horizon.

One of the most ironic facts about the lot-sizing problem is that a simple heuristic, such as the
one by Silver and Meal, can often outperform an optimal approach, such as the Wagner}Whitin
algorithm, in a rolling horizon. For this reason, the optimal schedule for a single horizon may not
be so attractive. In the following section, we present a modi"ed version of the Silver}Meal heuristic
for the nervousness case as has been de"ned in this work. The reason behind this choice is its
myopic structure which may o!er interesting production schedules.

2.3. Modixed Silver}Meal heuristic

We modify the Silver}Meal heuristic for nervousness as follows: Let the "rst setup covers
m periods' production where 1)m)N is determined by the following conditions:

s
1
#H

k
#N

1
#O

k
#A

k
#¸

k`1
k

)

s
1
#H

k~1
#N

1
#O

k~1
#A

k~1
#¸

k
k!1

, 2)k)m,

s
1
#H

m`1
#N

1
#O

m`1
#A

m`1
#¸

m`2
m#1

'

s
1
#H

m
#N

1
#O

m
#A

m
#¸

m`1
m

,

where

H
k
"

k~1
+
j/1

h
j
I
i,j

,

N
1
"(1!d(x

i~1,2
))n

1
,

O
k
"

k
+
j/2

d(x
i~1,j`1

)o
j
,

A
k
"d(x

i~1,2
)(*`

i,1
a`
1
#*~

i,1
a~
1

),

¸
k`1

"(1!d(x
i~1,k`2

))n
k`1

.

If no such m(N exists the complete horizon is covered by just one setup. If m(N exists,
evidently x

i,m`1
'0. The same procedure is now applied to the remaining problem over periods

m#1, m#2,2, N. Period m#1 will be assumed to be period 1 in the next iteration. Note the
di!erence between N

1
and A

k
. We always have to pay N

1
regardless of the production volume.

However, A
k
is determined by the change in the production volume. Although the expression does

not have a k term, *`
i,1

or *~
i,1

will certainly depend on k. The procedure to identify the setup point
is identical to the heuristic. The only di!erence is the expressions for total cost per period. Although
the new expressions seem a bit more complex than the original ones, they do not increase
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computational complexity, because it is straightforward to compute N
1
#A

k
#O

k
#¸

k`1
when

a previous schedule is on hand. Here, ¸
k`1

was introduced into the model to capture the status of
the period that would be the next candidate production point. That made the heuristic more
e!ective, though it would not be so suitable to view the expression as a `total cost per perioda
anymore.

As in the modi"ed Wagner}Whitin algorithm case, the modi"ed version of the heuristic cannot
guarantee the optimality for a single horizon. To remedy this we present a mixed integer linear
programming (MILP) model, that would provide us optimality for a single horizon in the following
section.

2.4. Mixed integer linear programming model

The following MILP provides an optimal new schedule for a single horizon at the beginning of
period i based on a previous known schedule. In order to represent the status of a period in the
previous schedule, dM

k
is introduced through the expression. So dM

k
"d(x

i~1,k`1
) always holds. It can

easily be inferred that dM
k
's are known binary constants (dM

k
3M0, 1N) at the beginning of the new

planning horizon:

minimize:
N
+
k/1

s
k
y
k
#

N
+
k/1

h
k
I
i,k
#

N
+
k/1

(1!dM
k
)n

k
y
k
#

N
+
k/1

dM
k
o
k
(1!y

k
)#

N
+
k/1

(a`
k

*`
i,k
#a~

k
*~

i,k
)

subject to: I
i,k~1

#x
i,k
!I

i,k
"d

i,k
, k"1, 2,2, N, (6)

I
i,0
"0, I

i,N
"0, (7)

M
i
y
k
*x

i,k
, k"1, 2,2, N, (8)

*`
i,k
*(x

i,k
!x

i~1,k`1
)!M

i
(2!y

k
!dM

k
), k"1, 2,2, N, (9)

*~
i,k
*(x

i~1,k`1
!x

i,k
)!M

i
(2!y

k
!dM

k
), k"1, 2,2, N, (10)

x
i,k
*0, *~

i,k
*0, *`

i,k
*0, k"1, 2,2, N, (11)

y
k
3M0, 1N, k"1, 2,2, N. (12)

Notice that there are N binary decision variables y
k
, k"1,2, N, which are the same as d(x

i,k
)'s,

so

y
k
"G

1 if a production setup is assigned at the kth period,

0 if not.

The constant M
i
is a large number; M

i
"+N

k/1
d
i,k

will be su$cient. Constraints (9) and (10) are
constructed to assign suitable values of production change. Through the use of M

i
, these con-

straints ensure that no cost of increasing or decreasing production volume is incurred if the change
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in production volume is a result of assigning a new setup or canceling a setup. Note that if *~
i,k
'0

then *`
i,k
"0 will hold, and vice versa.

Although the MILP contains several binary variables, it is not prohibitive to solve with
a standard solver. The model's size depends only on N, the forecast horizon, which is unlikely to be
larger than 20 periods.

3. Numerical analysis

In order to identify the most e!ective procedure for the lot-sizing problem in the long run, several
numerical experiments were conducted. This study compared the conventional and nervousness
costs generated by several production scheduling algorithms. This comparison was conducted for
a variety of demand patterns and demand forecast error patterns with the intent of examining both
horizon length e!ects and forecast error e!ects.

3.1. The ewects

It is assumed that during the process we have a "xed horizon length. That is to say, once length
of the forecast window is "xed, it will not be changed until the end of the experiment. The following
values are chosen for the horizon length 4, 6, 8, 10, 12, 14, and 16. The length of an entire
experiment is 1040 periods. For each case, a single experiment is executed for six di!erent
replications of data "les generated from di!erent seed numbers.

The horizon ewect. In this e!ect, it was assumed that the forecast "gures within the window are
not subject to change. Once a forecast "gure is set up for a particular period, it never changes until
the end of the experiment. Such a forecasting process is perfectly stable. The only uncertainty
involved is due to the rolling horizon when a new demand "gure for the very last period of the
horizon appears. This new information may cause schedule changes that cause nervousness. In fact,
this is the reason why the term `horizon ewecta is used for this case.

The forecast ewect. Contrary to the previous e!ect, here all demand "gures within the window are
subject to change. In such a case, it would not be di$cult to guess that the models would be less
successful to identify solutions close to optimality. Since every single forecast "gure is subject to
change, we may be forced to reschedule the previous schedules more often. Obviously, this will
result in much higher nervousness costs. The details of demand "gure generation will be presented
later.

3.2. The models

The Wagner and Whitin model (WW). The original algorithm is coded without any nervousness. It
is aimed to observe di!erences between a method that completely ignores the nervousness concept
and others that do not. When a new production schedule is derived, the costs of nervousness are
not taken into account. On the other hand, they are computed subsequently for comparison
purposes.

The Carlson, Jucker, and Kropp model (CJK). As mentioned in the introduction, Carlson et al. [6]
proposed a dynamic programming model that included the cost of assigning a new production
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setup as nervousness. In order to observe the e$ciency of the model and to create a basis for
comparison, it is included in this experimental study. As in the Wagner and Whitin case, after
determining the best schedule according to the algorithm, all components of the nervousness are
calculated subsequently.

The modixed Wagner and Whitin model (MWW). This is the model that is proposed in Section 2.2
of this paper. In this case, all components of the nervousness concept are taken into account in the
decision-making step.

The modixed Silver and Meal heuristic (MSM). This model is included in the study in order to
observe the performance of a heuristic. Notice that, previous models (WW, CJK, and MWW) have
a running time of O(N2). Theoretically, this version of the heuristic runs in O(N) time.

The mixed integer linear programming model (MILP). This is the only model that guarantees to
provide optimal production schedules for a single production window. It contains an integer
variable for each period of the production window. For our experimental analysis, there would be
at most 16 integer variables. It will obviously be the most expensive in CPU usage. LINDO was
chosen as the MILP solver.

3.3. The demand distributions

The following demand distributions are considered: U1: Uniform(0, 40), U2: Uniform(20, 40), N1:
Normal(20, 6), N2: Normal(30, 12), B1: Uniform(20, 60) w.p. 0.6, or 0 w.p. 0.4, and B2: Uni-
form(45, 6) w.p. 0.4, or 0 w.p. 0.6. The bimodal distributions (B1 and B2) model less frequent
demand patterns with some intermittent periods having no demand. All of the above distributions
are used for the horizon e!ect case. However, for the forecast error case, only normal distributions
(N1 and N2) are used. That is because it is more complicated to generate demand "gures for the
forecast e!ect case. N1 and N2 are termed as external distributions. Details are discussed in the
following section.

3.4. Demand generation in forecast ewect

Whenever a production period enters into the production window for the very "rst time,
a forecast "gure is generated from the external distribution (either N1 or N2). Subsequently for the
next decision period, a new forecast "gure for that production period is generated from a normal
distribution that has a mean as the previous forecast "gure, and a standard deviation that is
speci"ed by the period index. This distribution is termed as the internal distribution. To illustrate
the situation, let us suppose that the production window is equal to 4, and that N1 is selected as the
external distribution. Further suppose that 24, 10, 18, and 15 are the previous forecast "gures. New
forecast "gures and the demand encountered in the next decision period are summarized in Table 1.
The series of p

1
, p

2
,2, p

N~1
constitutes a standard deviation pattern. Three of such patterns were

established. Table 2 presents these patterns. It may seem that the most interesting standard
deviation pattern is the decreasing one, because such a pattern represents the case in which the
imminent future has more variation than the distant future. This pattern may be relevant in
a highly volatile and hard to forecast situation where the planners do not expend much e!ort
revising distant forecasts. In such a situation, demand "gures for only the imminent periods will
tend to deviate.

1334 O. Kazan et al. / Computers & Operations Research 27 (2000) 1325}1345



Table 1
Demand generation in the forecast e!ect

Period 1 2 3 4 5

Previous forecast 24 10 18 15 N/A
New forecast N(10, p

1
) N(18, p

2
) N(15, p

3
) N(20, 6)

Demand (Internal) (Internal) (Internal) (External)

Table 2
Standard deviation patterns

p
1

p
2

p
3

p
4

p
5

p
6

p
7

p
8

p
9

p
10

p
11

p
12

p
13

p
14

p
15

Increasing 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Constant 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Decreasing 7 6.5 6 5.5 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0

Table 3
An example of nervousness costs

Period (k) 1 2 3 4 5 6 7 8 9 10 11 12

New (n
k
) 20 18 16 14 12 10 8 6 4 2 0 0

Canceled (o
k
) 10 9 8 7 6 5 4 3 2 1 0 0

Altered (a
k
) 0.67 0.60 0.53 0.47 0.40 0.33 0.27 0.20 0.13 0.07 0 0

3.5. Cost structures

Conventional holding cost (h) was "xed at 1. Relative to this cost, setup costs (S) were varied as
20, 40, 60, and 80. For nervousness costs, the following relationships were established:
n
k
"S(11!k)/20 for k"1, 2,2, 10, or 0 otherwise, o

k
"n

k
/2 for any k, and a`

k
"a~

k
"n

k
/30 for

any k. These formulas represent a linearly decreasing relationship between the period index and
each nervousness cost. We argue that such a relationship would be more realistic for practical
situations. Table 3 illustrates nervousness cost "gures when the setup cost-holding cost ratio (S/h)
is 40.

3.6. Implementation issues

Because the models are very comprehensive and there are many cases to test, an object-oriented
program was constructed with the C##programming language. Basically, a production schedule
was designed to be an object. To specify each object, requirement "gures, production and demand
amounts, and both cost structures were designed to be private variables. All models were coded as
public member functions of the objects. CPU times were obtained by running the models one by
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one for a single data "le, for all seven possible values of the horizon length. Since all arguments of
the problem for that particular run were arranged to be the same, it created a robust basis for
comparison. A 248 MHz SUN, ultraSPARC-II workstation was utilized for this purpose. The
CPU results support the theoretical argument made earlier on the running times. The running
times were 1.53, 1.57, 1.79, and 1.04 s for the WW, CJK, MWW, and MSM algorithms, respectively.
The CPU time used by the MILP model, 3271.76 s } a little less than an hour } was signi"cantly
more than that of any other model.

4. Results

In this section we present a comparison of the various models under a variety of demand
distributions. The relative performance of the models was generally insensitive to the choice of
demand distributions. None of the models were signi"cantly superior in the Bimodal distribution
case. Because the structures of B1 and B2 contain many zero demand periods and are only used in
the horizon e!ect case, a few changes will be su$cient to update previous production schedules. As
the probability of having no demand for a period decreases, the robustness of the models decreases,
and the di!erence between the models become more noticeable.

Computational results from di!erent random data "les were very close to each other. These
results led to the construction of very narrow upper and lower bounds with 95% con"dence. In all
cases, the resultant cost "gures were normalized by dividing them by the corresponding optimal
cost that can only be computed by having the perfect information about the future. Naturally, such
a "gure does not have a nervousness component. This "gure enabled us to make better compari-
sons between all cases.

Fig. 1 shows the horizon e!ect for various S/h ratios. These results clearly demonstrate that, as
the S/h ratio increases, the di!erence between the models becomes more signi"cant. For example,
when the ratio is 20, all models perform similarly. However, when the ratio is 80, it is easy to make
a distinction between the models. Here MSM outperforms the others for the high values of the S/h
ratio. In all cases of the horizon e!ect, the total cost approaches the optimal value asymptotically
with increasing horizon length. It is important to emphasize that our purpose here is not to identify
the best horizon length but to determine which model will outperform the others for the di!erent
horizon lengths. In fact, making a comparison between the results from di!erent horizon lengths is
unjusti"able. Because more periods are included in the production horizon, the more source of
nervousness we would have.

Another signi"cant observation from Fig. 1 is that the conventional cost "gures are very stable
for all distributions. All of the models were able to identify production schedules very close to
optimum even for narrow horizon windows such as 6. Therefore, the nervousness cost component
is the one that determines the trends in total cost. For the horizon e!ect case, nervousness cost
"gures drop rapidly with the horizon length. Intuitively, that is reasonable because the more we
know about the future, the less we pay for unplanned changes in production schedules. This is even
valid for the models which are less sensitive to the nervousness concept. For example, the Wagner
and Whitin model without nervousness has a similar trend with greater total cost "gures. In
almost all cases, WW is the model that could provide us the schedules with the smallest
conventional cost "gures. Since it completely ignores the nervousness costs, it pays more attention
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Fig. 1. Comparison of the models in the horizon e!ect case.

to the conventional cost. However, for total cost it is the worst model in all cases. The CJK model is
similar. Its conventional cost "gures are reasonable, but since it only penalizes for assigning
a brand new production setup, the other two components of the nervousness cost make the total
cost higher. In most of the cases, it is MSM that suggests the least nervous schedules, whereas its
conventional component is usually higher than the others. The reason behind that might be its
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Fig. 2. Comparison of the models in the forecast e!ect case.

myopic approach to the problem. In contrast to the other models, it tries to identify the best
decision for the very "rst period, then does the same thing for the rest of the window. The MWW
model is much better in conventional cost "gures and also successful in keeping down nervousness.
There is no signi"cant di!erence between these two models. Both models can be used interchange-
ably. Although MSM has a better running time, MWW is not computationally prohibitive either.
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Fig. 2 summarizes results for the forecast e!ect. As in the horizon e!ect case, the performance of
the models separates as the S/h ratio increases. On the other hand, because there is more
uncertainty involved in horizons, the total cost "gures do not tend to approach optimality (perfect
information case) but rather some values much higher than the optimal level. Nevertheless, it is still
possible to observe a similar asymptotic behavior. When S/h is 40 none of the models could identify
a solution within 70% of optimality. For the conventional cost, even WW could not get any closer
than 20% of optimality. Evidently, it seems that there is always an unavoidable penalty in the
forecast e!ect case caused by unpredictable changes in the demand "gures. This penalty cost
increases as the S/h ratio increases. MWW is more successful in most of the cases. As the S/h ratio
increases, performance of MSM improves.

Fig. 3 presents the di!erences between the standard deviation patterns. Uncertainty in the model
is re#ected in the cost "gures. In the increasing order case, the uncertainty is the least and so are the
cost "gures. On the other hand, for the decreasing order case the cost "gures are the highest. In all
cases, the myopic MSM is more successful for the small values of the horizon length. For the rest,
MWW is slightly better.

The MILP model is not presented in Figs. 1}3, because both of its cost components are nearly
identical to those of MWW. The motivation behind the construction of the MILP model was to
observe the performance of a model that could guarantee us the optimal solution for a single
production window. Because the current cost of altering production volume is not highly empha-
sized, MWW or even sometimes MSM can easily identify the optimal solution. In order to measure
the performance of MILP, some cases in which the cost of altering production volume was
signi"cantly higher were established. In the other cases, because of the computational complexity,
MWW or MSM should be preferred.

Fig. 4 shows the trends in the cost "gures when all three components of the nervousness cost are
doubled. The horizon e!ect case is less sensitive to this change. MWW, MILP, and especially MSM
suggest better schedules. However, for the forecast e!ect case, MILP outperforms all of the other
methods. Although deviations are more volatile than the previous cost "gures, a similar asymptotic
behavior is observed.

Fig. 5 shows the e!ect of increasing the cost of altering production volume to "ve times higher
than the original cost structure. This corresponds to a production system where decreasing the
production volume by 16 units is more expensive than canceling the whole setup. In this case, we
thought that it might be quite interesting to visualize the rolling horizon performance of MILP that
provides optimality for a single production window. The nervousness cost "gures for the models
WW and CJK are more than doubled. That is because they ignore that nervousness component.
For the horizon e!ect case, MILP produces slightly better results than the other two procedures
(MWW, MSM) for small values of the horizon length. As the horizon gets wider, MSM also
becomes preferable. For the forecast e!ect case, the superiority of MILP is undeniable. It
outperforms others signi"cantly for all cases. For this reason, in such extreme cases, MILP is much
preferred to the other models.

Fig. 6 summarizes the results of the di!erent cost structures discussed. For all combinations of
S/h ratio and horizon length, the model that provides the best result is shown. Therefore, it also
identi"es which model is the best for a particular case. Again, the results were standardized with
respect to the optimal solution with perfect information in order to provide a better basis for
comparison and discussion.
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Fig. 3. Comparison of standard deviation patterns for forecast error.

5. Conclusions

Because almost all arrangements in production planning are time dependent, it is an undeniable
fact that when new production schedules are being generated, previous ones can never be totally
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Fig. 4. All nervousness costs are doubled.

O. Kazan et al. / Computers & Operations Research 27 (2000) 1325}1345 1341



Fig. 5. Altering production volume cost is "ve times higher.
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Fig. 6. Best models in parameterized space.
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ignored. Therefore, it is perfectly logical to observe some penalties (costs) associated with changes
in earlier arrangements. In this work we have suggested a new, broader de"nition of the ner-
vousness concept that would represent such penalties. Based upon that de"nition, modi"ed
versions of the Wagner}Whitin algorithm and the Silver}Meal heuristic were presented in this
paper. Our new comprehensive approach to the nervousness concept changes the optimality
conditions of a classical lot-sizing problem for a single horizon. That fact motivated us to construct
a Mixed Integer Linear Programming model.

We have compared implementation and performance of the models (WW, CJK, MWW, MSM,
and MILP) for the lot-sizing problem. We compared the models in a rolling horizon because
a model that may not guarantee optimality for a single period may produce better and more stable
production schedules in the long run. This is more likely the case if we have a usual cost structure
representing a realistic production system. On the other hand, for some cases a particular method
may be more successful because it pays more attention to some components of the problem. Our
mixed integer linear programming model (MILP) is the best example of this. When operating
a production system that is not #exible to changes in predetermined production volume, the MILP
model is the preferable tool to generate new schedules.

In this paper both the horizon and the forecast e!ects are studied separately. A more realistic
approach may suggest combining these e!ects together. That is, for a single problem we might have
a production window in which the "rst several periods' demand "gures are "xed, whereas the
remaining periods' demand are subject to change. By making a distinction between the e!ects, we
tried to study the independent cases.

Another important aspect of the methods studied in this paper is that all of them were blind
beyond the production horizon. None of the models is interested in the structure of the demand
distribution, nor in the probabilities of having some changes in predetermined production volumes.
A stochastic model that would take these aspects into account might be more appropriate for the
lot-sizing problem on rolling horizon basis. We believe that such extensions would o!er interesting
directions for future research.
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