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Abstract

In the new and emerging Agile Manufacturing paradigm, where multiple firms cooperate under flexible virtual

enterprise structures, there exists much need for a mechanism to manage and control information flow among

collaborating partners. In response to this pressing need, this paper addresses the design and implementation

of an agile manufacturing information system integrating manufacturing databases dispersed at various partner

sites. We propose a framework in which: (1) Information is modeled in a hierarchical fashion using Object

Oriented Methodology (OOM). (2) Information transactions are specified by the workflow hierarchy consisting

of partner workflows. (3) Information flow between partners is controlled by a set of distributed Workflow

Managers (WM) interacting with partner knowledge bases, which reflect partner specific information control

rules on internal data exchange, as well as inter-partner mutual protocols for joint partner communications. (4)

The prototype system is accomplished using the world wide web based on a Client-Server architecture. The

overall approach and system provides within a dynamic environment, where virtual partnerships are synthesized

in response to specific business initiatives, a dynamic and flexible mechanism to support partner information

exchange and to keep the dispersed information consistent.
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1 Introduction

Facing the competitive market, industrial manufacturers are hard pressed to adopt novel strategies and technologies

to enhance product quality, to cut manufacturing cost and to reduce product lead time. On the basis of modern

information technology, agile manufacturing focuses on enhancing the competitiveness by cooperative working.

Cooperation is the philosophy behind this strategy (Nagel and Dove, 1993).

Agile manufacturing is attracting more and more attention from both academic and industrial communities.

Extensive programs are being conducted on relevant issues to propagate agile manufacturing concepts, to build

agile enterprise prototypes and to realize an agile industry eventually. The Agile Manufacturing Enterprise Forum

(AMEF) at the Iacocca Institute of Lehigh University was created to disseminate the ideas of agile manufacturing

and to increase the pace and scope of the transition to an agile manufacturing industry (Nagel and Dove, 1993).

The Agile Manufacturing Initiative aims to develop, demonstrate, and evaluate the advanced design, manufactur-

ing and business transaction processes in the agile environment (http://www.agilityforum.org). The Concurrent

Technologies Corp. (CTC) is developing an agile manufacturing testbed to provide Department of Defense (DoD)

with increased weapon system readiness and added system mobility (Pandiarajan and Patun, 1994). The Agile

Aerospace Manufacturing Research Center (AAMRC) at the University of Texas at Arlington is conducting re-

search on agile business practices, business process identification and characterization, and enabling technologies.

The Manufacturing Research, Education and Outreach Program at the University of Illinois at Urbana-Champaign

is developing computer integrated manufacturing and machine tool systems. The Electronic Agile Manufacturing

Research Institute (EAMRI) at Rensselaer Polytechnic Institute (RPI) is focusing on electronics product realization

in distributed manufacturing environments using improved information infrastructures and architectures.

Agile manufacturing makes use of modern information technology to form virtual enterprises, which agilely

respond to the changing market demands. A virtual enterprise, different from a traditional enterprise, is constructed

by partners from different companies, who collaborate with each other to design and manufacture high quality and

customized products. It is product-oriented, team-collaboration styled, and featured as fast and flexible. Frequent

and dynamic interactions among partners in agile manufacturing enterprises entail the crucial role of an Agile

Manufacturing Information System (AMIS). It is up to the AMIS to provide partners with integrated and consistent

information, as well as to manage partner transactions accessing the information.

Heterogeneity, autonomy and geographical distribution of manufacturing partners bring new challenges to

the development of an integrated AMIS. The main issues are the following (see also Section 3): (1) Partner

information interoperability across companies. Product data and knowledge are segmented and distributed across

the distributed sites of partners who need to access product information frequently and dynamically. Information

sharing between distributed databases, as well as inter-partner transaction management are essential to support

agile product development. (2) Information consistency across partners in the virtual enterprise. Different from a

traditional enterprise where data is owned by the company itself, a virtual enterprise has multiple data ownership.

Mutual agreements or protocols are needed to resolve data ownership and keep multiple replications of the

same data consistent between companies. (3) Partner policy independence and autonomy maintenance. Agile

partners have full autonomies, in the sense that there are no hierarchical organizations in an agile enterprise.

Products are developed by collaborations performed by peer coworkers from autonomous partner companies.
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Information and information transaction management in a heterarchical agile enterprise is different from that

of a traditional hierarchical manufacturing enterprise. AMIS needs to retain partner autonomies. (4) Partner

heterogeneity accommodation. Heterogeneity in partner computer hardwares, database systems and applications

is another obstacle in achieving partner engineering information sharing and concurrent transaction management.

Existing application software and databases in design/manufacturing lack compatibility and portability. AMIS

must accommodate this heterogeneity. (5) Open and dynamic system architecture. Agile enterprises are virtual

and product oriented, they are formed dynamically and may not exist after the product’s developmental life-time.

They are different from traditional manufacturing enterprises, which usually have a relatively fixed organizational

structure. AMIS must provide a flexible and open architecture to host partners dynamically.

We aim to develop an AMIS framework which meets the AMIS requirements. Our objectives are listed as the

following. (1) Exploring the requirements on information sharing and manipulation for agile partners to develop

customized products cooperatively. (2) Designing a conceptual agile manufacturing information framework –

the Virtual Information System for Agile Manufacturing (VISAM), which consists of Partner UNit Information

Systems (PUNIS) and manages information and information transactions in a consistent way, so as to satisfy

these requirements. (3) Building the VISAM framework by developing two hierarchies: (i) the data hierarchy,

and (ii) the transaction workflow hierarchy, using system development tools. (4) Developing a Knowledge Base

which stores expert rules reflecting local partner policies and inter-partner protocols to support partner transaction

management. (5) Implementing a prototype virtual manufacturing enterprise information system for illustrative

purposes. (6) Providing a general procedure for current manufacturers to build individual agile manufacturing

information systems, to form aggregated agile manufacturing information systems for virtual enterprises, and to

realize collaborative product development.

In this paper, we focus on the requirements, design and implementation issues of the agile manufacturing

information system. Our interest is to draw attention to this important need in agile industry, and to establish the

need for information system design based on agile manufacturing business practices in a manner that least disrupts

existing company operations. We strongly believe that the information system should be designed to suit business

practice and not vice-versa if we are to fully realize the potential of an agile industry. The first task naturally in this

process is to thoroughly understand the functional and performance requirements that the agile environment places

on the information system. Even while this requirements list is evergrowing and is conditioned on the specific

joint-enterprise or industry instance, we have, in this paper, attempted to outline some of the most important

and ubiquitous ones. On this basis, we then present an AMIS framework which aims at satisfying most of the

requirements. We also identify the requirements that are out of the scope of this framework and are probably left to

low-level system implementation or other research areas. We argue the relevance of the building blocks or modules

of the overall system with respect to main issues and requirements of an AMIS. In order to remain focused, these

modules are described here in brief and the reader is referred to Song (1996) for detailed explanations. We also

present examples of how this framework supports simple information sharing scenarios, and discuss the prototype

system implemented in brief. Our ultimate aim is towards providing current manufacturers a general procedure to

build individual agile manufacturing information systems based on the VISAM framework, and enabling them to

participate in an agile industry.
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The remaining paper is organized as follows. In Section 2, we review the literature relevant to various topics

that the Agile Manufacturing Information System concepts draw upon. Section 3 is devoted to the important AMIS

requirements. An overview of the proposed framework, VISAM is presented in Section 4. The object-oriented

information viewed as an Information Hierarchy and the corresponding Workflow Hierarchy that manages this

information are detailed in Section 5. The Knowledge Based System for information control and management

is presented in Section 6. A brief description of the prototype system implementation is included in Section 7.

Finally, we conclude with directions for future work in Section 8.

2 Literature Review

This section is devoted to the review of previous work related to: (i) manufacturing information integration, (ii)

collaborative architecture engineering construction design, and (iii) system development tools. All these topics

are related to the design and implementation of a virtual information system for agile manufacturing.

2.1 Manufacturing Information Integration

Manufacturing information integration has been the focus of extensive research and development, both in data

integration and in knowledge integration. To realize aggregated functions in the enterprise scope, several strategies

have been proposed and some of them are partially implemented.

One is to develop a new, single, unified database for DataBase Management Systems (DBMS) and application

programs to store and manage all the data types (Flatau, 1988). The concept of using a meta database to include

both data and knowledge was proposed at the Rensselaer Polytechnic Institute (Hsu and Skevington, 1987; Hsu and

Rattner, 1991). They developed Two-Stage Entity Relationship (TSER) modeling and feature-based integration

methodologies. This approach requires a complete redesign of the database and application programs.

Another is to connect existing DBMSs and applications through a common interface. As one of the earliest

manufacturing information systems, the Integrated Manufacturing Database Administration System (IMDAS)

(Krishnamurthy et al., 1988) is such an example. They extended traditional database management technologies

to integrate data processing functions, and created a common interface to facilitate the communications between

application programs and IMDAS. Based on transactions of individual application systems, IMDAS retrieves and

updates data through the common interface. The system partially connected databases and applications, but system

level data integration remains unsolved. The difficulty lies in two aspects: the complexity and heterogeneity of

engineering data structures and the long duration of engineering transactions.

A recent strategy is to develop Knowledge Based Systems (KBS) to support the interoperability between

heterogeneous database systems. The framework proposed at the University of Waterloo (Dilts and Wu, 1991)

uses KBSs to connect individual databases. They designed one KBS for each manufacturing application program,

and all these KBSs are connected through a common intelligent interface. Queries from one application program

are sent to the interface, which analyzes these queries and sends them to appropriate KBSs and DBMSs for

execution, and then sends the integrated results back to the inquirer. By interactions of KBSs and the interface,

the system intelligently retrieves and updates databases to realize data integration. Their approach realizes partial
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system integration within a company, but system implementation details are not provided. Another framework

proposed at the University of Maryland also uses a KBS to control information flow between application systems

(Harhalakis et al., 1995). Their research focuses on the development of a knowledge base, which contains rules

representing company policies. The system consists of a central KBS and a distributed database management

system to manage the information flow between component databases, while issues for the distributed partners

and knowledge are not addressed.

Of the above strategies, using KBS seems to be a promising way for manufacturing information integration.

However, current approaches have only realized static connections of component systems within a company, while

flexible and dynamic information integration among multiple firms in a virtual enterprise remains unaddressed.

Our work attempts to fill this gap and provide a flexible yet consistent information framework for agile partnerships.

2.2 Collaborative Architecture Engineering Construction design

Collaborative design has been a research topic mainly in the Architecture Engineering and Construction (AEC)

domain. Many prototype systems as well as mechanisms have been proposed to support collaborative design.

Current database systems in collaborative AEC design have two architectures: the central model and the

distributed model. The central architecture has a virtual central database that is accessible by multiple partners.

An example is the DICE system (Distributed and Integrated environment for Computer-aided Engineering) being

developed at MIT (Sriram et al., 1991). DICE can be envisioned as a network of computers and users, where

communication and coordination is achieved through a global database and a distributed control mechanism.

The prototype includes: (i) Blackboard, which is a global object-oriented database and acts as the medium for

user communication and cooperation, (ii) Knowledge Modules (KM) which contain on-line tools and libraries

for designing and construction, and (iii) Control Mechanism (CM), which evaluates individual KM actions and

assists in partner negotiation. These three parts cooperate with each other intelligently to provide a consistent and

synchronized way for co-workers to perform collaborative AEC design. The distributed model includes distributed

AEC databases where data dependencies are maintained through validating inter-database constraints (Tiwari and

Howard, 1994). A Local Constraint Manager manages the portions of constraint specifications relevant to a local

site, and a Global Constraint Manager maintains global design constraints. Of these two models, the central model

puts more constraints on partner applications, while the distributed model is more complicated to implement.

Data sharing is a basic requirement in collaborative AEC design. To complement the functions of relational

databases, which are good at relational data accessing and transaction management, and the object-oriented

applications, which provide high data structure abstraction and flexible object manipulation, a front-end framework

was built in Stanford University (Law et al., 1991). The framework consists of an object interface, which is built

to connect the applications and the persistent storages, and functions as an object manager to create, delete and

update objects and view objects. An essential issue in data sharing is data consistency maintenance. For central

database systems, traditional techniques include Two-phase-locking, Time-stamping, etc. (Elmasri and Navathe,

1994), and modern approaches adopt strategies using lock management, version management, etc. (Sriram et al.,

1992). For distributed database systems, data consistencies are enforced through the classic Two-phase-commit

protocol, while new approaches include: (i) building a transparent interface between knowledge-based applications
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and databases to maintain constraints (Howard and Rehak, 1985), (ii) decomposing global constraints into local

constraints and validating global constraints through validating local constraints (Tiwari and Howard, 1994).

Current AEC design systems emphasize only the collaborative designs. However in agile manufacturing,

approaches are needed to support agile partner collaborations not only in product design, but also in process plan-

ning and resource management. In AEC domain, building global databases and maintaining distributed database

static constraints are the main approaches. Our work provides an integrated framework, which supports collabo-

rative product development across domains and companies. Constraints among distributed partner databases are

maintained dynamically, flexibly and intelligently.

2.3 System Development Tools

Many system design and modeling tools have been developed. The ICAM Definition (IDEF) proposed by the

United Air Force was a primary tool for system development. IDEF includes IDEF0, IDEF1, IDEF2 and so on.

IDEF0 models the system from the functional perspective, IDEF1 from the informational perspective, IDEF2 from

the dynamic (system simulation) perspective. All together, IDEFx provides a complete system modeling method.

Petri Nets (PNs), on the other hand, were introduced to model concurrent, asynchronous, distributed, non-

deterministic and stochastic systems (Peterson, 1981; Murata, 1989). In the manufacturing domain, PNs have

been mainly used in modeling manufacturing cell controls (Boucher et al., 1990; Teng and Black, 1990). In

manufacturing information system development, PN’s powerful synthesis and validation techniques have been

used in developing Knowledge Based Systems (Lin, 1991).

Using objects, Object Oriented Methodology (OOM) simulates system mechanisms and captures system

entity attributes dynamically and accurately. OOM has been widely applied in manufacturing system modeling

and analysis, examples include the object oriented FMS model (Adiga and Gadre, 1990), the unified modeling

framework called Information Processing Object Hierarchy (IPOH) (Sun and Lin, 1992; Changchien et al, 1994),

and the M*-OBJECT methodology in manufacturing information system development (Berio et al., 1995). We will

draw upon OOM concepts and use Petri Nets to model and validate our knowledge based information controllers.

3 Agile Manufacturing Information System Requirements

Agile manufacturing systems are proposed to support partner cooperations so as to penetrate the global market

(Nagel and Dove, 1993). The operational unit in agile manufacturing industry is a dynamic virtual enterprise con-

sisting of agile partners who collaborate with each other. The overall objective of an agile manufacturing industry

is to achieve quick response to marketing demands, with compatible product quality and lower manufacturing

cost. This section discusses the various requirements on the information and information transaction management

in the agile collaborative product development process. The purpose is to analyze the system requirements needed

to support collaborative activities in product design, process planning and manufacturing resource planning, so

as to design and implement the information systems supporting these requirements. Our goal in this effort is to

least disrupt partner companies’ established procedures for design/manufacturing, and to encourage cooperative

virtual manufacturing. In this view, to support collaborations among product designers, process planners and
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manufacturing resource planners at various stages of product development, AMIS must possess the following

functionality.

1. Provide consistent information to distributed partners Partners are distributed geographically and

use data replications or local databases. Inconsistent data at different partner sites will lead to product

misdescription or even manufacturing chaos. It is up to the AMIS to make sure that every transaction brings

the agile manufacturing system from one consistent state to another. To maintain the system information

consistency, AMIS is required to support the following.

(a) Representation and maintenance of data dependencies across companies. Different from traditional

manufacturing enterprises, where data is sitting in a single company under the same information

management policies, a virtual enterprise has distributed partner database systems across different

companies. Data dependencies exist between different partner database systems. AMIS must specify

and maintain these inter-company data dependencies.

(b) System transaction atomicity assurance across companies. Information in a virtual enterprise is

distributed at various partner sites. Transactions usually involve multiple partners. It is critical to

make sure that every partner transaction brings the whole system from one consistent state to another,

which means that every transaction must process atomicity: either be committed as a whole, or not be

committed at all.

2. Resolve multiple data ownership and form multiple information views Agile partners are from

various companies and perform diverse tasks in the product development process. On one hand, to support

partner collaborations across companies, multiple information views need to be built from the same primitive

data storage, and the same primitive information storage may be updated from different partner views. On

the other hand, multiple data ownership exists in a virtual enterprise, which limits the primitive data updating.

AMIS must resolve the inter-company data ownership by mutual agreements to form multiple object views.

3. Reflect partner individual policies and retain partner autonomy In traditional manufacturing enter-

prises, there exists a single set of policies within the company’s scope. In a virtual enterprise which consists

of multiple partner policy sets, AMIS must reflect the partner’s own policy set regarding the information

flow in/out of that partner. To join the agile manufacturing network, it is usually a big concern that individual

partners keep their policies independent, while mutual cooperations can be guided through mutually agreed

protocols. So it is necessary for the Agile Manufacturing Information System to provide flexible schemes

to reflect company specific policies and procedures.

An agile partner in a virtual enterprise is dependent and independent. It is dependent in the sense that it

cooperates with others to develop products; it is independent in the sense that it has full autonomies in

executing its policies. Flexible schemes must be provided so that partners’ heterogeneity and autonomy are

unaffected in a virtual agile enterprise. AMIS needs to provide the following.

(a) An open system architecture. A manufacturer should be independent in joining the agile manufacturing

network or leaving a virtual enterprise. As an analogy, our ultimate objective is to provide a “phone
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jack”, and it is up to the manufacturer to decide whether to “plug in the phone and connect to the

network” or not. As the first step towards this goal, AMIS needs to have an open system architecture.

(b) Partner policy independency. After joining a virtual enterprise, a partner needs to retain its autonomy.

AMIS must provide flexible partner cooperation schemes so that individual partner policies are reflected

and partner autonomies are retained.

4. Accommodate partner heterogeneity Heterogeneity in partner computer hardwares, database systems

and applications is the reality in virtual enterprises. To achieve partner information sharing and concurrent

transaction management. AMIS must accommodate partner’s heterogeneity.

5. Provide necessary security to partners Cooperations between agile partners are agile and dynamic.

Necessary procedures must be provided to ensure individual partner information securities.

(a) Information access control. Information access from outside partners to a local manufacturer should

be controlled by the local manufacturer’s site, through procedures such as user authentication, group

authentication, firewall setup, restricted access, etc. We only use user authentication in our system im-

plementation, and hope that more robust access control techniques can be adopted in more sophisticated

implementations.

(b) Secure information transmission. Advanced technologies should be provided so that messages between

partners are kept secure. Current approaches include cryptography techniques, etc. We will leave this

issue to the data transmission domain, and narrow our focus on the other system requirements.

In this section, we have described the information presentation and manipulation requirements in agile collab-

orative environment. We will develop our information system model based on these requirements. Nevertheless,

this is not a complete list of AMIS requirements, there are many other requirements such as teleconference sup-

porting, partner concurrent collaboration supporting, etc. We focus on developing a framework which provides

partner database interoperability, maintains data consistency between partners, reflects partner individual policies

and provides multiple object views, while accommodating partner heterogeneity and retaining partner autonomy.

In the following sections, we propose an integrated information framework which satisfies these requirements.

It has been brought to our attention that the information security issue is extremely important in setting up

the agile manufacturing network. However, this is beyond our current effort. It is our hope that in the future,

other research will address this issue and provide advanced technologies to secure information accessing and

transmission, and altogether, provide a secure and flexible agile manufacturing network. At this time it is hard

to anticipate any reasons why our framework will not be able to work in conjunction with security supporting

technologies.

4 Overview of the Virtual Information System for Agile Manufacturing

In order to satisfy the requirements of an AMIS detailed in the previous section, we overview here our proposed

framework – the virtual information system for agile manufacturing. While alternative choices may exist, our
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framework is guided by the concept of the virtual enterprise structure composed of several physically distributed

manufacturing companies. As a parallel to this structure, we propose a distributed virtual information system

composed of several partner information systems. Further, our framework is based on the fact that each partner

is autonomous and has specific policies on information management. First, we present the virtual enterprise and

information system architectures. In the second part, we discuss a single partner unit of the virtual information

system, the Partner UNit Information System (PUNIS) which resides at a specific partner site and will remain

our main focus in this paper. Finally, we overview the functions of these information units in the virtual system

with the help of an example scenario. In summary, we present a virtual enterprise information system model from

three aspects: the virtual enterprise information system architecture, the partner unit information model and the

enterprise information operational model.

4.1 Virtual Enterprise and Information System Architecture

Considering the cooperative business practices and the emerging agile environment, heterarchical structures are

appropriate for virtual enterprises. Figure 1 gives the snapshot of a virtual agile enterprise and the individual agile

companies – the partners in the virtual enterprise.

As shown in Figure 1, the virtual enterprise is composed of three autonomous partners: company A, company

B and company C. The network connects them and provides channels for their collaborations. Company A,

B and C have agreed upon being partners and working cooperatively on the development of a new product P.

The profile for the enterprise is: company B is specialized in design and is responsible for product Computer

Aided Design (CAD); company A has experts in Computer Aided Process Planning (CAPP), and is chosen as a

partner to develop process plans. Company C is to construct enterprise Manufacturing Resource Plans (MRP).

This heterarchical agile enterprise has the following characteristics: (1) The system is open and modifiable. A

partner can be connected to or disconnected from a joint-venture virtual enterprise. Partner selection is the process

of partner mutual interaction and connection establishment. (2) The working partners are fully autonomous. In

this example, companies A, B and C are partners, they have full autonomies, and they cooperate with each other

through mutually agreed protocols.

On the other hand, the virtual information system has the following features:

1. Each partner is connected to the network through a Client and a Server. The server is responsible for serving

other partners. It receives queries, interacts with the DataBase Management Systems (DBMS) to execute

the queries and sends the results back to the inquirer. The client is responsible for coordinating the workflow

execution. It sends subqueries to other partners and receives results.

2. The local Workflow Manager controls the information flow. Based on the query from the user, the workflow

manager has to retrieve relevant rules to analyze the query, and form workflows to be executed by the client

to keep system data consistency.

3. The correct workflow execution is ensured by the cooperations of partner servers and clients. The client

at the global workflow initialization site becomes the temporary workflow coordinator. It uses dynamic

two-phase-commit protocol to ensure the workflow execution atomicity.

Figure 1 around here
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Now zooming into a single partner, as shown in Figure 1, there exist seven modules in a typical agile

partner model: the local primitive information storage (database), the DataBase Management System (DBMS),

the Knowledge Base, the Workflow Manager (WM), the engineering applications, the partner client and the

partner server. Local primitive information storage stores local primitive information and forms a part of the

enterprise primitive information storage. DBMS manages local primitive information accessing, updating and

constraint maintenance. By interacting with the DBMS, the server is responsible for local atomic object generation

and instantiation. Application programs access information storage through the Workflow Manager (WM),

the Knowledge Base stores partner policies and inter-partner protocols supporting partner transaction workflow

specifications. The Client and Server are responsible for connecting to the network and transmitting information

back and forth. The partner unit information system has the following features:

1. With the manufacturing applications (CAD/CAPP/MRP), DBMS and local database storage, each site is a

stand-alone system and has its autonomy.

2. Adding the software modules such as the Server, the Client, the Workflow Manager and the Knowledge

Base, the partner becomes an active node in the agile manufacturing network. With the server connected to

the local DBMS, the partner makes local data accessible to the other partners. With the client, the partner

may access the other partners’ data.

3. The workflow manager is responsible for converting a partner query to a partner workflow. A workflow

is defined as a collection of subqueries (single-database queries) organized to fulfill a business task. The

workflow manager consults with the knowledge base to decide whether the partner query is local transaction

only (i.e., transactions that involve only local data) or involves global transactions (i.e., transactions that

access global data). This brings flexibility, with some trade off on the efficiency.

In summary, our architecture emphasizes global integration while keeping the autonomy, heterogeneity and

geographical distribution of agile partners, and maintaining the dynamic property of the virtual agile enterprise.

Within such an architecture, agile partners are able to collaborate flexibly and dynamically to develop high quality

products with quick response to customers.

4.2 A Partner Unit Informational System Model

The partner unit information model describes the information representation method and control mechanisms of a

single partner of the virtual enterprise. We use two parallel hierarchies to represent the model: the data hierarchy

and the transaction workflow hierarchy. These two hierarchies form two sets: (1) the set of partner information

objects (i.e., atomic objects constructed at a single partner site and composite objects formed from multiple partner

sites), and (2) the set of transaction workflows to form and manage partner information objects. These two sets are

mutually related to each other. We use a knowledge base to store the partner information management guidelines:

the partner policies and inter-partner protocols.

As shown in Figure 2, the data hierarchy represents the information in an object oriented fashion. At the bottom

of the hierarchy is the local primitive information storage needed to represent basic product and enterprise resource

data. The next to bottom layer contains Atomic Objects, which are usually created by local partners within local

domains. Objects combined from local and/or remote domains compose the upper layer, the Composite Object
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layer. From the enterprise point of view, these three layers (aggregated over each partner) compose the enterprise

data hierarchy. The data hierarchy is further discussed in Section 5.1.

The workflow hierarchy, on the other hand, specifies the partner information transactions. Corresponding to

the structure of the information hierarchy, at the bottom of the workflow hierarchy is the set of primitive data

transactions. The upper layers consist of the local workflows and global workflows. The workflow hierarchy is

elaborated further in Section 5.2.

The Knowledge Base, composed from local partner policies and inter-partner protocols, is used to compile

the workflow specifications and manage partner information flows. The knowledge base consists of expert rules

controlling partner information exchanges. It is briefly discussed in Section 6.

Using these two hierarchies and the knowledge base, we are able to represent and manage information for a

partner, and subsequently in a virtual enterprise, to support partner collaborations. Our main task, then, is to form

these two hierarchies, and the knowledge base which controls the information flow in a consistent manner.

Figure 2 around here

4.3 Operational Model: A Sample Scenario

To describe the information flow within a virtual enterprise, we use a sample scenario to illustrate its operational

model: the collaboration between an MRP planer and the design engineers in the virtual enterprise.

As shown in Figure 3, (only modules related to our sample process are shown in the figure), company Y and

Z form a virtual enterprise to design and manufacture product P. Suppose designers D1 and D2 from company

Y are working on the design of P. D1 and D2 share various design objects, which are generated from primitive

information storage at site Y. At a certain time, an MRP planner M from company Z tries to work on P’s MRP

report. M needs P’s Bill-Of-Materials (BOM) information. M sends a query to the local workflow manager

through the MRP application program, which interacts with the local knowledge base and compiles a transaction

workflow. The local client then sends this BOM request to company Y. The server at site Y, after receiving the

query and performing identification checks, interacts with the DBMS in site Y to generate and instantiate a BOM

object from the primitive information storage. It then sends it to M and records M’s identification and query in log

files. Later on, when a new design version of P is reached by D1 and D2, and the primitive information storage is

updated, the WM at site Y consults with local knowledge base and log files, compiles workflows to be executed

to keep the global data consistency.

From this sample process, we can see that the cooperation between partners is realized through the cooperations

of the partner clients and servers, and local workflow manager controls local information flow. As the main parts of

the PUNIS, the partner WM and Knowledge Base reflect local partner’s own policies and manage the information

exchange between the local host and the outside world. As specified in Section 3, concurrent partner collaboration

is beyond the scope of the current research.

Figure 3 around here

In summary, the VISAM information system for an agile manufacturing enterprise is virtual and formed

by distributed partner information hierarchies, and the enterprise transaction workflow hierarchy is really the
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aggregation of partner unit information transaction management systems. Information exchange among partners

is managed by interactions among distributed partner WMs. In subsequent sections, we will look into issues about

the data hierarchy, the workflow hierarchy and the knowledge base development in more detail, and present the

prototype system which realizes the framework for illustrative purposes.

5 Data and Workflow Hierarchies

This section describes the two hierarchies in our framework: the data hierarchy and the workflow hierarchy. The

data hierarchy represents the agile manufacturing information in a flexible, object-oriented, hierarchical structure,

so that the agile partners can dynamically share the information from different views and at different abstraction

levels. The basic idea is to provide Dynamic Object Views from primitive information storage. Focusing on the

object framework development, we emphasize on the hierarchical structure as well as the methods to form the

data hierarchy. Based on the three layer hierarchical structure discussed in Section 4, Section 5.1.1 describes the

primitive information storage in agile manufacturing. Section 5.1.2 discusses the agile manufacturing objects,

and presents the overall data hierarchy structure. In Section 5.2, we discuss the workflow hierarchy. Based on

the discussion of these two hierarchies, Section 5.3 gives a detailed example with a sample data hierarchy, and a

simple workflow used to form the composite object.

5.1 The Data Hierarchy

There are three layers in the data hierarchy: (1) the primitive information storage, (2) the atomic object layer, and

(3) the composite object layer.

5.1.1 Primitive Information Storage

The primitive information storage in an agile manufacturing system provides necessary ingredients to form

information objects used/processed by collaborative partners and applications. It includes fundamental data

needed in agile design/manufacturing. In an agile manufacturing environment, the following major information

types are needed as the primitive storage in the process of product development and enterprise resource planning.

This information list is not exhaustive, and it may also differ depending on the specific industry sector.

1. Primitive Product Information. Product information basically describes what will be produced in terms

of engineering drawings, product assembly structure and part lists, group codes and CAD databases, etc.

Starting from conceptual specifications from customers, product information are enriched by designers and

manufacturers throughout the product lifetime. Primitive product information are the fundamental data and

knowledge describing product properties. It is the minimum information set for a product description. For

example, the primitive information for discrete mechanical parts will include the following: (1) primitive

geometrical information, (2) primitive topological information, (3) materials, (4) surface finish information,

and (5) tolerance information (Qiao et al., 1993). These information are primitive in the sense that they

must be specified to represent the product, and that they are used to construct design/manufacturing objects

throughout the product development process. From engineering design, feasibility and manufacturability
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evaluations, to process planning and manufacturing resource planning, exchange of product data is essential

for agile partners to keep track of product information so as to accomplish the whole production realization

procedure consistently.

2. Primitive Process Information. Process data specifies the procedures to transform raw materials to final

products in terms of manufacturing operations and activities, and possibly machine operation programs

such as numerically controlled (NC) programs. In an agile manufacturing environment, primitive process

information is defined as the minimum set of processes for making the product. It includes the primitive op-

erations on the products and it relates to product design information and manufacturing resource information.

Examples of the primitive process operations for mechanical parts will include primary processes (casting,

injection molding, etc.), secondary processes (turning, drilling, etc.), and tertiary processes (grinding, etc.).

3. Primitive Manufacturing Resource Information. Manufacturing resource information describes production

means in terms of manufacturing facilities (including machines, humans as well as applications) and their

spatial, temporal and organizational properties. Manufacturing resource information are primitive in the

sense that they are essential for partner selection, product design, design manufacturability evaluation,

product fabrication and enterprise resource planning. In developing and manufacturing the product, manu-

facturing resources are the primitive means to generate the physical product. An example of the primitive

manufacturing information is the data structure of a workcenter. The basic properties of a workcenter

includes the following: (1) work center ID, a unique identifying number assigned to each work center in the

system, (2) work center description, (3) department, (4) work center status (hold, working or released), (5)

work center state (available or busy), (6) capacity parameters such as horse power, speed range, feed range,

work envelope, accuracy, tool change time, feed change time, speed change time, etc.

Sitting at the bottom of the data hierarchy, the aforementioned primitive information are stored in various

partner design/manufacturing databases at distributed partner sites, managed by various DataBase Management

Systems (DBMS), and are used by high level partners and partner applications to form objects in the product

development process. The data hierarchy is built from the primitive information dynamically, using the partner

workflows, either locally or globally.

Current engineering information systems often lack the link between the primitive information storage and

high level application objects (Law et al, 1991). Our approach is to construct a channel, which connects remote

partner primitive information storage with partner application objects, and provides a common mechanism for

distributed partners to access remote primitive information storage concurrently and consistently. We will discuss

the approach in the following sections.

5.1.2 Agile Manufacturing Objects

Viewing the world as a collection of objects, Object Oriented Methodology (OOM) takes everything as objects

(Rumbaugh et al., 1991). For instance, a data value is an object, a manufacturing part is an object, an assembled

product is an object, too. OOM provides a unified information view and flexible approaches for data exchange and
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transfer; thus, it is appropriate for agile manufacturing information representation. Here we give a brief definition

first, and then focus on the object generation and construction schemes.

(1) Definition

In agile manufacturing, we define an agile object as the following:

Agile Object(AO)=(ClassID:CID, ObjectID:OID, Constructor:C, Attributes:A, Methods:M)

where

CID is the identification of the class which AO belongs to;

OID is the unique object identification;

C is the function specifying the procedures for generating the object;

A is a finite set of object attributes, including both static and dynamic attributes;

M is the set of methods to access and pass messages to the object.

Here, we are interested in the constructor C as we need to build the scheme to construct objects. We divide agile

objects into two categories: atomic objects and composite objects. Atomic objects are defined and constructed

directly from primitive information storage at a single partner site, while composite objects are constructed from

atomic or composite objects, which are formed at different partner sites. The atomic objects are domain specific

and need to be coded by individual partners or generated by advanced applications during the product development

process. For example, in designing a mechanical assembly P, the constructor for the object “BOM of P” is the

function to form the BOM of product P, it can be specified by the assembly designer, or be generated automatically

using applications in the design process. Composite objects, on the other hand, are constructed from objects, and

the partner needs to specify algorithms for constructing the object. In short, it is the partner’s responsibility to give

the object constructor, and given the constructor, the information system integrates the distributed engineering

databases and forms the object automatically.

(2) Object Construction

As we have discussed, atomic objects are formed directly from primitive information and are usually formed

by a local partner from the local database storage. On the other hand, composite objects are constructed from

atomic objects or composite objects, which may not be located at a single site. So we are mainly interested in the

composite objects. An example of a composite object is the product assembly which is constructed from object

o1 at partner site P1 and o2 at P2. To form composite objects, it is essential for remote partners to process the

subqueries and pass atomic/composite objects between distributed partner sites.

To construct a composite object, we need to specify the location and formation algorithms for the sub-objects,

the dependencies between these sub-objects, and the algorithm for forming the object from these sub-objects. We

have developed the Partner Query Language (PQL) and the Partner Workflow Language (PWL) to specify the

object construction and manipulation (information transaction) queries (refer to Section 5.2.1 and 5.2.2 for more

details of PQL and PWL).

(3) The Data Hierarchy

From the above discussions, we can see the enterprise data hierarchy aggregates the distributed partner databases

into an integrated virtual database. These distributed partner manufacturing databases are not simply connected
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physically. These databases are connected and managed by a certain scheme so that they satisfy the agile

manufacturing information system requirements as a whole unified database. The database hierarchy has the

following properties:

1. Flexible and dynamic object construction and sharing schemes. The virtual enterprise data hierarchy

is composed of individual partner information hierarchies, which aggregate together to form a complete

enterprise information representation. The primitive information is stored at distributed partner sites, the

atomic objects are constructed from local storage, and the composite objects are formed by using other

atomic objects and composite objects located at local or global sites. As shown in Figure 2, there are three

layers in each partner site: the bottom is primitive information storage, the middle is atomic objects, and

the top is composite objects. A composite object in partner A can be formed from the atomic objects from

partner A, B and C, and the composite objects from Partner A, B and C.

2. Multiple object views. Based on the distributed primitive manufacturing information, atomic objects

and composite objects are built from different partner views. For example, a product is an assembly of

engineering drawing and specifications from the product designer’s point of view, it is an aggregation of

primitive processes from the process planner’s perspective, and for an MRP user, a product concerns the

work schedule, the inventory and the purchase orders. Because of the partner information exchangeability,

our framework allows the formation of multiple object views from the same primitive storage. Recently,

EXPRESS-V and EXPRESS-X are also being developed as standards for this (Spooner and Hardwick,

1996).

In the next section, we cover the schemes for constructing and manipulating these objects: the workflow

specification and execution schemes.

5.2 The Workflow Hierarchy

Based on the enterprise data hierarchy, we divide partner transactions into two categories: the local transactions

and the global transactions. Local transactions are those which involve local atomic objects and primitive storage

and are described by local workflows. Global transactions are transactions which need to access or manipulate

data located at multiple partner sites and are represented by global workflows.

The workflow hierarchy consists of workflows managing partner object constructions and manipulations. Since

our focus is the workflow specification and execution schemes, we develop languages for partners to specify object

construction and manipulation queries, and operational scenarios and protocols for partner query executions.

5.2.1 Partner Query Language

Partner Query Language (PQL) is developed to facilitate partners to compile partner queries to the distributed

manufacturing databases. From a partner’s point of view, when the information is logically stored in a single

site, the Structured Query Language (SQL) for relational databases (Elmasri and Navathe, 1994) is appropriate for

compiling the query. We adopt the SQL format in our Partner Query Language. The basic syntax for a partner

query is the following:
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construct (or create, delete, update) Object name

from partner database schema

where condition clause

The object name is the template of the object(s) to which the query is applied. The partner database schema

is the set of schema in which the data or objects reside. The condition clause specifies the conditions needed in

the query. An example is to construct a composite object from atomic objects at distributed partner sites. Assume

in our previous sample enterprise (Figure 1) formed by partner A, B and C, the enterprise Inventory information

is stored in an MRP database, the product Gross Requirement (GR) is stored in the SALES database in the sales

department, and the product data is stored in a CAD database, then the query for the MRP partner to construct the

object “Production Order Release (POR)” for part #32 would be as shown in Figure 4.

To compile partner queries using PQL, the sharing common data schema between partners must be built

according to mutual agreements. For existing databases, inconsistencies in database tables and attributes can be

resolved using the heterogeneous database discrepancy resolution (Rusinkiewicz et al., 1995). PQL ensures the

partner query’s integrity by using the two-phase-commit protocol in executing its corresponding workflow.

5.2.2 Partner Workflow Language

Partner queries compiled using PQL do not specify the query details such as partner sites and object construct

algorithms. The system is responsible to find out where these objects (BOM, GR and INVENTORY) should

be formed and transformed (see also Section 5.2.3 for mapping from PQL to PWL). Since the partner query is

going to be executed as workflows, we developed the Partner Workflow Language (PWL) to specify partner global

and local transaction details. Here we describe this language by using a sample query and giving its syntax and

semantic meanings (see Song, 1996, for further details).

A sample query written in PWL is shown in Figure 4. This query is actually based on the partner query shown

on the left side. The syntax of a partner workflow query is the following.

beginprogram

query components

endprogram

Figure 4 around here

The query components contain four fundamental components: objects, subtask definitions, subtask depen-

dencies and preference specifications.

(1) Objects

The objects here are a broad concept: they can be atomic objects or composite objects in the data hierarchy

(the usual case), they can also be the primitive information storage. Objects are used in PWL as arguments or

results of the partner subtasks.

The type of an object specifies its categories. The object type is basically a user-defined object structure. It

can be the basic data types such as “Integer”, “CharString”, etc., if the object is actually the primitive data storage.
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It can be an aggregate set of basic types, if the object is an atomic object. It can also be an aggregate set of objects,

if the object is a composite object. For example, the object BOM has the following type:

object BOM of
Part Id: Integer
Part name: CharString
Child Id: Integer
ChildQuantity: Integer
endobject

Passing objects through the network is an active research topic (Mowbray and Zahavi, 1995). Currently, we

focus on the object data passing, and in our system implementation, we use a certain format to represent object

data. For example, data for “BOM” is represented using the format of “parent-quantity (child-quantity)” with a

recursive format. Particularly, the BOM for part #32 is:

“32-1(321-2(3211-1) 3211-1)” (which is recursive parent-#(child-#) format)

In this manner a BOM is encoded at the sender site and decoded at the receiver site.

(2) Subtask definition

Subtasks are the partner subtransactions executed at individual partner sites. A subtask is defined by the

following specifications:

i. The subtask name,

ii. The input object specified by the name of the subtasks generating the object,

iii. The partner host site, specified by the domain name of the host IP address,

iv. The partner software system name,

v. The valid subtask execution time period,

vi. The subtask execution procedure,

vii. The commit option when the subtransaction is instructed to commit,

viii. The undo option when the subtransaction is instructed to abort,

(3) Subtask dependency specifications

This part specifies the control flow or the subtask execution order of the global workflow. It actually synchro-

nizes the subtask execution order. The subtask dependency specification is based on the data flow and control flow

of the global transaction. Generally, subtask dependencies include subtask ordering dependencies defining subtask

execution orders, and trigger dependencies defining contingency executions (Zhang, 1994). The dependency

specifications in the sample workflow (shown in Figure 4) are the following:

i. subtask t1, t2 and t3 can be executed in parallel,

ii. only subtask t4 can be executed only after t1, t2 and t3 succeed,

iii. if t4 succeeds, the global workflow succeeds,

iv. if t1 or t2 or t3 fail, the global workflow aborts.
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(4) Alternative workflow specification

Alternative workflow specifies the workflow which is an alternative to “this” workflow, while workflow

preference defines a certain criteria for committing/aborting the subtasks.

5.2.3 Mapping from PQL to PWL

We have discussed the Partner Query Language (PQL), which is used by individual partners and reflects the logical

view of an aggregated database, and the Partner Workflow Language (PWL), which is constructed by the system

and reflects the logical view of relationships between distributed partner database systems. The mapping from

PQL to PWL is performed by consulting the system data dictionary, and the knowledge base consisting of partner

information sharing policies. Considering the partner query and the workflow query in Figure 4, the mapping from

a partner query to a workflow query is performed by the following steps:

i. Based on the component database systems specified in the PQL, find out the relevant partner IP addresses

and software systems;

ii. Based on the component database tasks specified in the PQL, construct the workflow subtask specifications.

This is accomplished by checking the global data dictionary;

iii. Based on the transaction specific expert rules stored in the knowledge base, and the component database

dependencies, build the subtask dependencies including execution order, trigger and real-time subtask

dependencies;

iv. Specify any alternative workflows or subtask preferences.

In our framework, the Workflow Manager (WM) is responsible for constructing PWL queries from PQL

queries. To perform the mapping steps, WM needs to consult the expert rules stored in the knowledge base.

Basically, the knowledge base contains two portions of information: one is the partner information regarding the

data schema, the host address and the software systems of relevant partners; the other is transaction specific rules

specifying partner information transaction management policies (Section 6).

5.2.4 The Workflow Execution Scheme

PWL specifies the locations and dependencies of the distributed partner data needed to execute the query, and how

to use the information. Actual mechanisms are needed to implement the specified algorithm. Here we describe

the partner workflow execution protocols first, and then give a scenario which realizes this implementation by

two-way communications between partner database systems.

(1) Partner workflow execution protocol

The whole purpose for building the data hierarchy and the workflow hierarchy is to represent the data in an

object oriented form and to let the partners share the information across the enterprise dynamically. Based on

the information system requirements presented in Section 3, we use the following partner workflow execution

protocols as guidelines.
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(1) Dynamic Two-Phase-Commit protocol. This protocol is based on the traditional “Two-Phase-Commit”

Protocol. It is dynamic in the sense that the system coordinator role is no more central, the role is

dynamically assigned to the client at the workflow initialization site, which may be any one of the multiple

partners in the agile enterprise. To execute a partner query, the workflow manager decomposes it into

subqueries (subtasks) and specifies their relationships. The local client (temporary system coordinator)

sends out all the subqueries and a vote message to each participant partner server. Each partner server

enters into the preparation state for subquery execution and responds with a vote. After the client collects

all the votes, it makes a decision based on the votes, and broadcasts the decision to all the participants. If

all positive votes are received, it sends “commit” commands to all component partner servers and waits for

results; otherwise it aborts the whole workflow by sending an “abort” command. This protocol guarantees

the workflow execution atomicity. In the agile manufacturing environment, a central system coordinator is

inappropriate in the virtual enterprise structure; thus the client which tries to execute the workflow becomes

the temporary system coordinator. The workflow may or may not succeed, depending on the partner local

system states.

(2) Partner data ownership protocol. This protocol requires that all data updating transactions must be performed

by the data owner. Negotiation may exist, but final data updating is made by the local partner system. In an

agile manufacturing environment, this is essential because of the existence of multiple data ownership. For

example, update of the BOM object can only be conducted by the CAD user.

(3) Inter-partner data dependency reservation protocol. This protocol requires that each transaction must not

violate the inter-partner data dependencies and constraints. Particularly, if local partner data is to be updated,

the local workflow manager and client are responsible for compiling compensation workflows to update

relevant objects. For instance, when performing BOM updating, the CAD site is responsible for compiling

workflows to change the status of relevant parts to “hold” at the other sites.

These three protocols are mutually consistent. The Dynamic Two-Phase-Commit protocol makes sure that

each workflow brings the system into a data consistent state, while the partner who owns the data is responsible

for local data updating: whenever a local updating is to be made, corresponding compensation workflows need to

be compiled and executed according to the data ownership protocol, and if a workflow is executed, it is executed

completely or not executed at all.

(2) Partner workflow execution schemes

With the partner workflow execution protocols in mind, a workflow execution scheme is developed. The idea

is to build a server and a client at each partner site, which implements the necessary functions. The complete

mechanism is as the following.

1. At local site, a local server (e.g., Unix daemon) is launched and it listens to the network all the time so that

the local partner is ready to provide service.

2. At local site, if the partner compiles a partner query, the workflow manager consults with the knowledge

base and converts the partner query into a partner workflow which consists of a set of subqueries.
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3. At local site, the client program is invoked to act as the temporary system coordinator. It tries to connect to

the partner database systems at various partner sites by sending them the subqueries and votes.

4. At another remote partner site, just like the local site, a server has been launched to listen to the network all

the time. When the server receives the connection request from the client, it performs authorization checks,

and sends back a positive vote when the system is ready.

5. At local site, if the client receives all the positive votes, it issues the “commit” command to relevant partner

servers, else it issues the “abort” command.

6. At the remote site, if a “commit” command is received, the remote server (daemon) then forks a child

process, which works with the remote database management systems to execute the subquery. At the same

time, the parent process listens to the network for any other possible connections. If an “abort” command is

received, the remote server disconnects from the local client, and continues to listen to the network.

7. At the remote site, the child process sends the subquery results back to the client, and records the partner

ID, the transaction time and subquery in the log file. Later on, if local information storage is updated, a new

workflow is formed to look up all the logs and notify relevant partners to keep information consistent.

8. At local site, after the client has received all the necessary information from all the partners, it commits the

workflow completely. Of course, all the information are recorded by the local logs for future tracking.

5.3 A Detailed Example

5.3.1 A Sample Data Hierarchy

In this part, we give a simple data hierarchy example. As discussed in Section 4, the sample virtual enterprise

has three partners: company B is responsible for design, company C for manufacturing resource planning and A

for process planning. Applying the above agile object concepts in our sample virtual enterprise, a simple data

hierarchy can be built. Figure 5 shows a simplified data hierarchy and its layers.

1. Figure 5a shows the different layers of the data hierarchy. Figure 5b is the primitive storage layer. Primitive

product data is stored at partner B, and the primitive resource data is stored at partner C. Figure 5c is the

atomic object layer. Atomic object BOM is formed at partner site B, atomic object INVENTORY is formed

at site C, object GR (Gross Requirement) is formed at the sales department (not shown in the figure). Figure

5d is the composite object layer. Composite object Production Order Release (POR) is formed based on

BOM, GR and INVENTORY.

2. The primitive information storage layer includes two parts: i) the primitive product data stored at site B

(schema 1), where table 1 specifies the structure of part #32, and table 2 specifies the structure of part #321.

ii) The primitive inventory information stored at site C (schema 2), where table 3 stores the current inventory

for part #32, #321 and #3211.

3. The atomic object layer is formed using the primitive storage. BOM for part #32 is formed from table 1 and

2 and is shown in Figure 5c.
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4. The composite object layer. From the part Gross Requirement (GR) passed from the sales department

and the BOM object from company B, based on the atomic object INVENTORY, we can construct the

composite object “POR for part #32”. Assuming the leadtime and lotsize for part #32, #321 and #3211 are

the following.

The algorithm POR FORMATION has two parts.

(1) Constructing POR for a particular part.

For a particular part, in period t = [0; T ], given initial inventory I(0), Gross Requirement GR(t), lead time

1, lotsize s (s = 0 means lot-for-lot), POR is formed as:

For time period t = 0 to T do f
if I(t) > GR(t) then I(t+ 1) = I(t)� GR(t);
else if(s 6= 0) then POR(t � 1) = s; I(t+ 1) = s + I(t)� GR(t);

else POR(t � 1) = GR(t)� I(t); I(t+ 1) = 0; g

(2) Calculating GR for child part from parent part.

Given the parent (ID is parentID) part’s BOM as an array Q(parentID)(childID), the child (ID is childID)

part’s GR(t) is formed as the following.

Search the BOM tree to find all the parents
For each parent, which has POR(t)

For time period t = 0 to T do f
GR(t)+ = Q(parentID)(childID) �POR(t); g

Figure 5 around here

5.3.2 A Sample Workflow Specification and Execution

In the simple data hierarchy presented in Section 5.3.1, the composite object POR is formed from three atomic

objects: GR, BOM and INVENTORY. Examining the sample transaction “Build the Production Order Release

(POR) from GR, BOM and INVENTORY,” the following steps are employed to specify and execute the workflow.

1. Partner constructs the query using PQL, the query is shown in Figure 4;

2. Workflow Manager retrieves relevant rules from the knowledge base and forms the workflow using PWL,

the workflow is shown in Figure 4 and is composed of the following subqueries:

subquery1: Partner B construct BOM object for part #32;

subquery2: Partner C retrieves local INVENTORY object;

subquery3: Partner C reads GR from sales department;

subquery4: Partner C constructs the POR object using the received objects;

3. Local client is invoked as the system coordinator, which executes the workflow based on the above specifi-

cations. The executing process is shown in Figure 6.

Figure 6 around here
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5.4 Summary

In this Section, we have discussed the agile manufacturing object concepts and construction schemes. We have

discussed partner workflow specifications and execution schemes. The information hierarchy represents enterprise

information with multiple object views. The partner workflows build and mange these objects. We have also

introduced the dynamic two-phase-commit protocol to keep the transaction atomicity. Partner data ownership and

partner data dependency mechanisms are introduced to keep the system data consistent.

Per our discussion, the partner primitive information builds the ground of the information hierarchy. Using

object orientation, various atomic objects and composite objects are built using partner workflows. Currently, data

objects are encoded using a certain data format (e.g., recursive parent-#(child-#) for BOM object). Such encodings

can be replaced in the future by the emerging CORBA standard (Mowbray and Zahavi, 1995). The workflow

hierarchy is used to build and manage the information hierarchy. These two hierarchies are mutually related and

provide consistent, dynamic and multiple views to distributed collaborative partners.

6 The Knowledge Base

The knowledge base stores expert rules reflecting partner information management policies. By interacting with

the knowledge base, the workflow manger is able to convert partner queries into workflow queries, and manage

the local client to execute the workflow in a consistent way. Building the knowledge base is a critical step in our

framework development. In this section, we present an approach for building the knowledge base. Our approach

includes the following steps. The details are described in subsequent sections (see also Song, 1996).

1. Knowledge acquisition. Form the set of partner generic policies and inter partner protocols for partner

information exchanges. These abstract policies are further decomposed into subtransaction specifications

using a “Top-down” approach (see Section 6.1).

2. Knowledge modeling. Use Petri Nets (PN) to model the subtransactions (see Section 6.1). The purpose is

to use PN verification techniques to assure knowledge consistency.

3. Petri Net synthesis and verification. Bottom up, starting from subtransactions, synthesize low level PNs

into higher level compound PNs, then use PN verification techniques to verify all levels of PNs, so that

inconsistencies and redundancies in these PNs are eliminated (see Section 6.2).

4. Knowledge base formulation. Build expert rules to specify partner policies and inter-partner protocols based

on the Petri Nets models (see Section 6.3).

5. Knowledge base validation. Testing the knowledge base with the sample transaction management policies.

6.1 Knowledge Acquisition and Modeling

The knowledge base is designed for and used to reflect partner policies and protocols to control the information

flow between agile partner applications. The rules embedded in the knowledge base specify the constraints and

relations between the distributed manufacturing database systems located at various partner sites. The necessary

knowledge includes two parts: (1) knowledge about virtual enterprise partners including: (a) Partner user ID and
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password, host IP address; (b) Partner database schema; (c) Partner data dependencies, and (2) knowledge about

partner information control policies including: (a) local partner policies governing manufacturing transactions; (b)

inter-partner information exchange protocols.

The first part can be built in the process of partner interaction and virtual enterprise formation. The second

part are generic policies and can be formed by individual interviews and group meetings with enterprise partners.

We assume the first part is available, and focus on the second part. For simplicity, our prototype system rules are

extracted from our own industrial experience and from Lin (1991).

Generally speaking, any “partner policy” and “partner protocols” start from abstract specification about the

general global rules which control transactions. Sample transactions in AMIS include the following.

Product data (CAD) transactions Process Planning (CAPP) transactions
(1) Add new product parts in CAD; (7) Building new process plans in CAPP;
(2) Add new component relationships in CAD; (8) Deleting process plans in CAPP
(3) Deleting product parts in CAD; (9) Modifying process plans in CAPP;
(4) Deleting component relationships in CAD; Resource Planning (MRP) transactions
(5) Revising product parts in CAD; (10) Deleting work centers in MRP;
(6) Change component part quantities in CAD; (11) Modifying work centers status in MRP;

As an example, consider the partner policy for transaction “deleting a part in the CAD database”. We can

specify and decompose the partner policy, and model the transactions using Petri Nets as the following.

(1) The partner policy description

CAD partners have the sole authority to update the CAD databases. This is because the CAD user is the CAD

database owner and thus is responsible for CAD data manipulation according to the data ownership protocol. The

CAD user is also responsible for notification of any data updates in the CAD database.

(2) Policy decomposition

The generic policy can be decomposed into sub-descriptions:

(i) To delete a part in the CAD database, the CAD user needs to provide the following: part ID and related part

IDs (e.g., the IDs of the parent part and child part).

The system needs to check that the provided part and relevant parts do exist in the CAD database system.

If the answer is yes, the system sends votes and a brief message to the CAPP site and the MRP site, if the

answer is no, the system outputs an error message and restarts;

(ii) at the CAPP site, the system needs to check the CAPP database for the existence of the specified part ID,

and replies a positive vote if it does exist.

(iii) at the MRP site, the system performs the same actions.

(iv) if all positive votes are received, the local CAD site deletes part #3211, and sends “commit” command to

servers at the CAPP and MRP sites, else it sends “abort” command. The CAPP and MRP partners will need

to do appropriate adjustments in their responsible domains.

(3) Modeling the primitive transaction using Petri Nets (PN)

The PN model is shown in Figure 7, we use SysA, SysB and SysC to represent systems in sites A, B and C.

Figure 7 around here
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6.2 Petri Nets Refinement and Verification

From the above example, we can see Petri Nets can model partner policies at various levels. All these PNs need be

verified by verification techniques to keep the consistency of the system and eliminate any existing redundancies.

Current PN verification techniques include the general verification, structure verification and domain knowledge

verification (Lin, 1991). General verification assures that each PN has the basic valid characteristics and includes

techniques such as “Reachability Tree” and “PN invariants”. Reachability Tree can be used to detect and eliminate

deadlocks and undesired final states. The net invariants specify the constant attributes of Petri Nets, e.g., the total

number of tokens between two different markings is a constant. So by checking whether the net invariant has been

changed, we can check any invalid transitions.

Structural verification checks completeness and consistency of the hierarchy and includes completeness check-

ing and consistency checking. Completeness verification checks existence of unfirable transitions and unreachable

places. Unfirable transitions are transitions which will never fire and can be checked out with finite set of initial

markings and the reachability tree. Unreachable places are the places which will never be marked. Consistency

verification checks the existence of redundant transitions and subsumed transitions. Redundant transitions are

transitions which have the same sets of input places and output places. Subsumed transitions are transitions which

have the same output set but one has more input places (see also Murata, 1989).

Domain knowledge verification ensures that the model of the domain in the rule base complies with the real

world semantics. It checks the semantic validity for the knowledge base by checking the existence of conflicting

transitions and free choice transitions. Conflicting transitions are the transitions that have the same set of input

places but have conflicting output places, and can be detected by checking the incidence matrices. Free choice

transitions are the transitions that have the same input places but have different non-contradictory output places

and can be detected by checking their incidence matrices, and resolved by considering the semantic meanings of

these transitions.

Using the Petri Nets modeling, we can perform PN refinement and verification techniques on our sample model

for the transaction “Deleting part in the CAD database”. The refined model can be referred to in Song (1996).

6.3 Building the Expert Rules and Validation

After PN modeling and verification, we come up with a consistent model of partner transaction policies. Now, we

need to map the PN model to expert rules stored in the knowledge base. For the time being, we use plain text files

to represent the expert rules. The expert rule for the sample transaction can be referred to in Song (1996). The

expert rules for all the transactions in Section 6.1 compose the knowledge base.

The next step is to debug and validate the expert rules developed earlier. We need to test these expert rules

using the partner policy specifications for the manufacturing transactions listed in Section 6.1. If the expert rules

are not validated, go back to step 1 in Section 6.1, and iterate the process until we get a consistent and validated

knowledge base.

To summarize, a systematic approach for forming the knowledge base is presented in this section. Starting from

generic partner policy specifications, we decompose them and use Petri Nets to model and verify partner policies

and inter-partner protocols to form a consistent knowledge base used as guidelines for partner workflows. The
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knowledge base, the information hierarchy and the transaction workflow hierarchy, form our agile manufacturing

information system architecture, which is expected to support distributed partner interactions in the design and

manufacturing domain. In next section, we will discuss the trial implementation of a prototype system using

TCP/IP socket programming and World Wide Web applications.

7 Prototype System Implementation

The previous sections described the Virtual Information System for Agile Manufacturing (VISAM) framework

and its detailed component modules. Based on this agile manufacturing information system model, we have

implemented a prototype system for illustrative purposes.

The system has the following four modules: Partner Server, Partner Client, Partner Workflow Manager and

the local Knowledge Base. These and some other assisting modules are as follows:

1. Web Graphic User Interface is developed using the HyperText Markup Language (HTML). Mosaic Forms

are used to accept user queries.

The Web GUI is implemented using HTML. It includes the information for each local partner in the homepage

and partner query submitting forms in the next layer using Mosaic Forms.

2. Web Server is down loaded from the World Wide Web. Currently it is NCSA 1.5.1.

3. Workflow Manager is developed using cgi/perl script. It interprets the user query and interacts with the

local knowledge base to form the partner workflow query, so as to keep the global data consistency. It then

invokes the partner client to connect to the other partners.

The Partner workflow manager accepts the user query written in Partner Query Language, converts it into

workflows in the format of the Partner Workflow Language, and invokes the client to execute the workflow.

Considering the actual environment, the workflow manager includes two parts:

(1) The Web Server is developed using cgi/perl script. This part accepts query through the Web Browser,

consults the knowledge base and converts it into workflows, and sends a signal to the Client Daemon.

(2) the Client Daemon which listens to the network all the time. When it receives the signal, it invokes

the client to execute the workflow, and it sends a signal back to the Web server after workflow is executed.

Control is then switched back to the Web Server to send query results back to the user.

4. Partner Server is listening to the network all the time. It accepts the query, interacts with local DBMS to

process the query and sends results back to the inquirer. The server is implemented using the Unix daemon.

It is designed using socket programming. The idea is to create a socket, bind it with a high port number and

let it listen to the network all the time. When a connection requirement is heard, it forks a child process to

deal with the requirement, and it continues to listen to the network itself.

5. Partner Client is responsible for sending the subqueries to relevant partners, coordinating query execution

and accepting the results. The workflow execution is implemented using the two-phase-commit protocol.

The client is implemented using socket programming. As the temporary system coordinator, it receives
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the partner workflow from the workflow manager, parses the query and send the subqueries and a vote to

relevant parties. When all the positive votes are received, it sends “commit” command; otherwise it sends

“abort” command.

8 Conclusion

In the emerging agile manufacturing industry, a manufacturer needs to have a flexible and dynamic environment

to cooperate with other manufacturers and form virtual enterprises to produce customized products. Based on the

information requirements in an agile enterprise, a virtual agile manufacturing information system framework has

been developed. Under this framework, a Workflow Manager, together with the partner Knowledge Base which

captures partner specific and enterprise wide information management policies, the local partner DBMS, and partner

Server and Client, construct a flexible integrated system for each partner. This Partner UNit Information System

(PUNIS) supports partner local information transactions and provides a dynamic channel for local manufacturer

to plug in the agile manufacturing network. The interactions of member Partner Unit Information Systems form

the virtual information system which controls the information flow within the virtual enterprise.

Based on some important AMIS requirements identified in the paper, we have developed the AMIS framework,

designed the AMIS model and implemented a prototype system for demonstration purpose. Our main contributions

include the following: (1) Development of an AMIS framework which provides interoperability between partner

databases and assures data consistency among partner databases. (2) Design of the AMIS model which includes

the information hierarchy, the transaction hierarchy and the knowledge base: (a) the information hierarchy

represents virtual enterprise information using Object Oriented Methodology; (b) the transaction hierarchy uses

a Partner Query Language to compile queries and a Partner Workflow Language to specify partner workflows;

(c) the knowledge base is built based on the partner policies and protocols. The modeling and validation of

transaction procedure knowledge is accomplished using Petri Nets. (3) Implementation of the prototype system,

which integrates the distributed partner information using a Client-Server architecture. Through the process of

framework development and prototype system implementation, we have come up with a thorough approach for

building partner self-support systems, to plug into the agile manufacturing network and form virtual enterprises.

Even while the approach is sound, significant work must be accomplished in system development. Firstly,

workflow and information management policies must be acquired by careful system study and by interviewing

domain experts. Information modeling work would include identification of system objects and specification of the

algorithms that develop composite objects. Secondly, network and data communication technologies are changing

rapidly, and security issues are becoming increasingly important. These may require modifications to system level

modules. With these in mind, further investigation needs to be conducted in making this approach viable for

industrial use. Future research directions may include: (1) System performance evaluation and improvement to

ensure the information system satisfies the real-time agile manufacturing activities. (2) System scope extension.

To accommodate commercial engineering, management and accounting applications easily, they must be based on

an open architecture paradigm. It is noted that most current CAD/MRP packages do not have explicit DataBase

Management Systems. (3) System level improvements. Recent technologies such as CORBA and Java are

revolutionizing distributed object communication, and powerful GUI development environments are available.
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beginprogram

 INVENTORY in MRP

object POR of
TimePeriod:       integer

  subtransactions:

            construct BOM from CAD
       subtransaction t2: partner C

       subtransaction t1: partner B

subtransaction t3:
     Read GR from Sales

            construct INVENTORY from MRP

endprogram

where partID=32;

from BOM in CAD, GR in SALES and 

consturct POR (using POR_FORMATION)

Construct POR from GR, BOM and IN-
VENTORY using POR_FORMATION

dependency:

POR: output
   t4 depends on t1, t2, and t3

subtransaction t4:

       (PQL)

  (PWL)

OrderQuantity:  integer
endobject

PartID:               integer

Figure 4: A sample partner query compiled using PQL and PWL
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Figure 7: Petri Net Model for Transaction “Delete Part in CAD”
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