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The variable capacity sizing and selection of connections in the facilities design context is discussed (to the best knowledge of the
authors) for the first time in the open literature. A connection is defined as the connected part that links different sets of
departments through which some interdepartmental material flows must go through. The goal of the problem is to select the
location and capacity of the connections (and to assign the flows) so as to minimize the sum of the fixed connection installation
costs and material movement cost in the material handing system. Mathematical programming formulations are presented for
continuous and discrete capacity options. For the continuous unbounded capacity case, we prove that it can be reduced to the
uncapacitated fixed charge facility location problem. For the discrete capacity case, a Lagrangian relaxation-based solution
approach is developed. It provides a ‘good’ feasible solution as well as a lower bound for assessing the optimality gap. Compu-
tational results are reported. Our findings indicate that the discrete version of the problem can be effectively solved with the
Lagrangian heuristic.

1. Introduction

Manufacturing facility design, in the most general case,
involves the arrangement of a fixed number of depart-
ments so as to optimize a certain performance measure,
such as travel time or manufacturing costs. This paper
discusses the specific problem of variable capacity sizing
and selection of connection parts within a facility layout.
We use the term ‘connection’ in a generic sense. It is de-
fined as the connected part that links different sets of de-
partments. Some material flows have to pass through at
least one of the connections, much like they have to pass
through a material exchange point or aisle. The term may
represent a variety of scenarios. Some examples are the
following: (i) an Input/Output (I/O) station of a depart-
ment that connects the department with its outside envi-
ronment, also known as ingress/egress or pickup/dropoff
for material; (ii) an aisle that connects different sets of
departments; and (iii) a staging, inspection and distribu-
tion station. In all cases, the location and capacity sizing of
the connections of a plant have a strong impact on the
efficiency of the manufacturing Material Handling System
(MHS). Suppose that we have a set of candidate connec-
tion sites. For each candidate connection, we have to de-
cide its capacity size in terms of the volume of material that

can flow through it. This would relate to the size of the
door/gate or width of an aisle, for example. Different ca-
pacities have different construction costs associated with
them. The goal of this paper is to develop an approach to
select the location and the capacity of connections in order
to minimize the sum of the fixed connection installation
costs and proportional material movement costs in the
MHS. We call it the variable capacity sizing and selection
of connections problem. A special case of this system is
illustrated in Fig. 1, where there are four departments and
three candidate connections. We have to select the con-
nections to open, and for each chosen connection, we have
to determine its capacity. The lines that connect depart-
ments and connections are possible flow paths.
A large number of papers in the literature have con-

sidered capacity in the context of a material flow network
design problem. Magnanti and Wong (1984) provide a
comprehensive survey on the application of network de-
sign models and their resolution by mathematical pro-
gramming techniques. Some capacitated models were
discussed there. Other research works related to the ca-
pacity of a network include the papers by Khang and
Fujiwara (1991), Herrmann et al. (1995) and Herrmann
et al. (1996). All of those models assume that the capacity
of the network links is known. On the other hand, some
research focuses on the location of input/output sta-
tions, pickup stations, etc. Montreuil and Ratliff (1988)
proposed a methodology for characterizing and locating
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input/output stations within a facilities layout. A linear
programming model for optimizing the station locations
under rectilinear distance and with rectangular boundary
regions was presented. Kiran and Tansel (1989) devel-
oped a procedure to determine the best locations of
pickup and delivery stations along a predefined flow path
so as to minimize the system’s operational cost. Some
strongly polynomial solution methods were presented.
Luxhoj (1991) presented a procedure, practical layout
planning, to determine the location of facility ingress/
egress points of departments in a manufacturing system.
Benson and Foote (1997) provided a new distance metric,
the shortest path distance between departments along
aisles, to layout aisles and door locations.
Few researchers consider the capacity sizing of the

connections. The fact remains, however, that connection
capacity is a critical factor in many material handling
systems. Traffic congestion in the system results in costly
delays. Connection capacity will affect the selection of the
connections and the assignment of material flows to the
connections. The purpose of this paper is to introduce the
variable capacity sizing and selection of connections
problem, to analyze its properties, and to present efficient
solution methods for solving practical versions of the
problem.
The rest of this paper is organized as follows: Section 2

provides some preliminaries. Section 3 analyzes the case
of continuous capacity, and develops properties of this
problem that help reduce it to an uncapacitated fixed
charge facility location problem. Section 4 details the
discrete capacity case, which includes the development of
a Lagrangian relaxation algorithm. Section 5 details our
computational experience with these models. It aims at
comparing the continuous and discrete cases, and also at
detailing computational experience with the Lagrangian
heuristic for the discrete case. Finally, Section 6 provides
a summary and gives directions for future work. For ease
of readability, the proofs of all properties and theorems
have been placed in the Appendix.

2. Preliminaries

We assume that connections will be selected from a set of
candidate sites K and let jKj ¼ nK , where j � j denotes a
set’s cardinality. Let G ¼ ðN ;AÞ be the material handling
network, where N is the set of departments in the system,
with jN j ¼ nN , and A is the arc set of material handling
flow paths of the system. The term fij represents the flow
from department i to j, for ði; jÞ 2 A. The unit of flow
could be truck trip, a pallet, or a unit part, etc., based on
the particular situation. We assume that fij > 0 for all
ði; jÞ 2 A. This will simplify our presentation of the for-
mulation, proofs and analysis. If some fij are equal to
zero we can reformulate the problem by only defining
decision variables for i; j combinations that have fij > 0.
Flows have to go through one of the connections. We
assume that the flow volumes are symmetric, i.e., fij ¼ fji.
The terms dik and dkj represent the shortest distances from
department i to connection k and from connection k to
department j, respectively. We assume that the connec-
tions allow bi-directional flow. Other variations (e.g.,
unidirectional flows) can be analyzed in a similar manner.
We will use the notation ZPðxÞ to denote the objective
function of a certain problem, where (P) indicates the
problem and x indicates the vector of decision variables.
The definitions of the problems considered in this paper
can be found in Appendix A, Table A1.
Two basic cases will be considered. In the first one, we

assume that the capacity of the connections is a contin-
uous variable and the fixed connection installation costs
are a linear function of location and capacity. In this case,
we have two models based on whether or not the con-
tinuous capacity variable has an upper bound. The other
case assumes that the capacity of the connections is se-
lected from a set of discrete options.

3. The continuous capacity case

Suppose that the fixed connection installation costs in-
clude two components: The cost related to location, Fk,
and the cost related to capacity, vck, where v is the cost of
unit capacity and ck is a continuous capacity variable. We
assume that Fk depends on the location k because the
potential connection sites may have different clearing
costs of freeing up space (or important levels) in the ex-
isting layout. On the other hand, we assume that unit
installation costs are the same throughout the layout.
This is a reasonable assumption in the case of a shop floor
setting (we note that this may not be true in urban lo-
cation settings, where not only real estate but construc-
tion costs are site dependent). Thus the fixed installation
cost of connection k is Fk þ vck. The fixed installation
costs are incurred at the beginning of the design horizon
whereas the material handing costs are incurred on a
uniform basis over the expected design horizon. To model

Fig. 1. An example.
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this, we let a be the equal payment series present worth
factor that translates, to net present worth, the cost per
unit distance per unit flow evaluated over the design
horizon. The parameter depends on the discount (inter-
est) rate and its formula can be found in most engineering
economics textbook, e.g., Park (2002).
Our decision variables are xijk, the fraction of flow i-j

via connection k 2 K; yk which is an indicator variable
where

yk ¼
1 if a connection is located at candidate site k,
0 otherwise,

�

and ck (defined earlier). For notational convenience we
define x, y, and c as vectors that denote the collection of
decision variables xijk, yk, and ck, respectively.
Two models will be discussed in this section. In the first

one, we assume that the continuous capacity variable has
no upper bound. In the second one, there is an upper
bound for the continuous capacity variable. This is done
to model practical limits on connection size, e.g., width of
an aisle or a door, or space available at a site.

3.1. The unbounded case

The formulation for this case is as follows:

ðP1Þ min
x;y;c

ZP1ðx; y; cÞ ¼
X
ði;jÞ2A

X
k2K

afijðdik þ dkjÞxijk

þ
X
k2K

ykðFk þ vckÞ; ð1Þ

subject to X
k2K

xijk ¼1; 8 ði; jÞ 2 A; ð2Þ
X
ði;jÞ2A

fijxijk 	 ckyk; 8 k 2 K; ð3Þ

xijk 
 0; yk 2 f0; 1g; ck 
 0; 8 ði; jÞ 2 A; k 2 K: ð4Þ
The objective function (1) minimizes the total cost, which
is the sum of the fixed connection costs and the total flow-
weighted distance multiplied by the unit cost. It is a
nonlinear function. Constraint (2) stipulates that the
flows only travel through connections. Constraint (3) is a
nonlinear capacity constraint. Constraint (4) represents
the integrality and non-negativity constraints.
The problem ðP1Þ is a nonlinear mixed integer pro-

gramming problem and is therefore difficult to solve di-
rectly (Nemhauser and Wolsey, 1988). We establish some
properties of ðP1Þ with the hope of finding an effective
solution procedure for this problem. See Appendix B for
detailed proofs.

Property 1. If ðx; y; cÞ is an optimal solution for the prob-
lem ðP1Þ, then 8k 2 K,

P
ði;jÞ2A fijxijk ¼ ckyk.

It is easy to see that the property is true because the
optimal solution could not have unused excess capacity,

since we have to pay for that unused capacity. We can
infer from this property that the optimal total capacity
should be equal to the total flow, that is,

P
k2KP

ði;jÞ2A fijxijk ¼
P

ði;jÞ2A fij ¼
P

k2K ckyk. Thus the term

v
P

k2K ckyk in the objective function is a constant if the
solution is optimal.

Property 2. There exists an optimal solution for the prob-
lem ðP1Þ in which xijk ¼ 0 or 1, 8ði; jÞ 2 A; k 2 K, if the
capacities have no upper bound limit.

According to Property 2, any flow will be fully assigned
to the chosen open connection. Thus, the assignment
variables, xijk, will naturally assume integer values.
To facilitate the development of an efficient solution

strategy for ðP1Þ, we consider a related uncapacitated
fixed charge connection location problem, ðP01Þ. It is de-
fined as follows:

ðP01Þ min
x;y

ZP
0
1ðx; yÞ ¼

X
ði;jÞ2A

X
k2K

afijðdik þ dkjÞxijk þ
X
k2K

Fkyk;

subject toX
k

xijk ¼ 1; 8 ði; jÞ 2 A;

xijk 	 yk; 8 k 2 K;

xijk 
 0; yk 2 f0; 1g 8 ði; jÞ 2 A; k 2 K:

This can also be viewed as an uncapacitated fixed charge
facility location problem if we treat each flow as a de-
mand node and each connection as a facility.
We now claim that the problem ðP1Þ can be solved by

the following two-step procedure:

Step 1. Solve the uncapacitated fixed charge connection
location problem ðP0

1Þ.
Step 2. Set ck ¼

P
ði;jÞ2A fijxijk;8 k.

Theorem 1. The solution of the two-step algorithm is op-
timal for the problem ðP1Þ.

We conclude that the solution methods for the unca-
pacitated fixed charge facility location problem discussed
in Mirchandani and Francis (1990) can be applied to
solve ðP01Þ. In particular, we suggest the use of Erlenk-
otter’s method (Erlenkotter, 1978). He used a dual-based
procedure to obtain a near-optimal solution of the dual
and the complementary slackness conditions to improve
the bound.
A simple example is presented in the Appendix C

(Example 1) to illustrate: (i) the procedure to obtain an
optimal solution; and (ii) the optimal solution’s proper-
ties as mentioned above.

3.2. The bounded case

In this subsection, we assume that there is an upper
bound for the continuous capacity variable. LetMk be the
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known upper bound of the capacity for connection k. The
value of Mk might be determined, for example, from the
space available at site k. This new problem ðP2Þ is the
same as problem ðP1Þ except that we need to add a con-
straint set

ck 	 Mk; 8 k 2 K:

Let ðP02Þ be the capacitated fixed charge connection lo-
cation problem related to ðP2Þ. It is defined as follows:
ðP02Þ min

x;y
ZP

0
2ðx; yÞ ¼

X
ði;jÞ2A

X
k2K

afijðdik þ dkjÞxijk þ
X
k2K

Fkyk;

subject toX
k

xijk ¼ 1; 8 ði; jÞ 2 A;

X
ði;jÞ2A

fijxijk 	 Mkyk; 8 k 2 K;

xijk 
 0; yk 2 f0; 1g 8 ði; jÞ 2 A; k 2 K:

This can also be viewed as a capacitated fixed charge
facility location problem if we treat each flow as a de-
mand node and each connection as a facility. Daskin
(1995) provides some methods to solve problem ðP02Þ,
including those that use Lagrangian relaxation. Note that
Property 2 may not hold in this case. Using a similar
argument to that presented in Section 3.1, we can estab-
lish that ðP2Þ can be solved by the following two-step
procedure:

Step 1. Solve the capacitated fixed charge connection
location problem ðP02Þ.

Step 2. Set ck ¼
P

ði;jÞ2A fijxijk; 8 k.

4. The discrete capacity case

4.1. Formulation

In many applications, the capacity variable is likely to
have just a few discrete choices. For instance, doors/gates
might come in standard size options. Suppose that L is the
capacity option set and jLj ¼ nL. For simplicity in pre-
sentation, we assume that there are an equal number of
capacity options for each connection (this can be
achieved by using an infinite fixed cost when fewer op-
tions are provided). We let ckl represent the lth capacity
option of a connection at candidate site k if a connection
is located there; Fkl denotes the fixed cost of locating a
connection at candidate site k with capacity option l; xijk
is the fraction of flow i-j via connection k 2 K; and

ykl ¼
1 if a connection is located at candidate site

k with capacity option l,

0 otherwise.

8<
:

This problem can be formulated as follows:

ðP3Þ min
x;y

ZP3ðx; yÞ ¼
X
ði;jÞ2A

X
k2K

afijðdik þ dkjÞxijk

þ
X
k2K

X
l2L

yklFkl; ð5Þ

subject to X
k2K

xijk ¼ 1; 8 ði; jÞ 2 A; ð6Þ
X
ði;jÞ2A

fijxijk 	
X
l2L

cklykl; 8 k 2 K; ð7Þ

X
l2L

ykl 	 1; 8 k 2 K; ð8Þ

xijk 
 0; ykl 2 f0; 1g; 8 ði; jÞ 2 A; k 2 K; l 2 L: ð9Þ
The objective function (5) minimizes the total cost, which
is the sum of the fixed connection costs and the total flow-
weighted distance multiplied by the unit cost. Constraint
(6) stipulates that the flows only travel through connec-
tions. Constraint (7) is a capacity constraint. Constraint
(8) assures that only one capacity option is selected for
each connection. Constraints (9) are the non-negativity
and integrality constraints. In this case, we do not have
the properties that are correspondent to the continuous
capacity case, even for special cases like Fkl ¼ Fk þ vckl,
where Fk is the installation cost related to location. The
following example illustrates the different solution struc-
ture between the discrete case and the continuous case.
Consider again the layout shown in Fig. 1, with a ¼ 1.

The travel distances and flow weights are the same as
those in Appendix C (see Table A2). The capacity options
and the related fixed costs are given in Table 1.
It is easy to check (by enumeration) that the unique

optimal solution for this example is:
For the x variable, x131 ¼ 1, x141 ¼ x142 ¼ 0:5, x242 ¼ 1,

and others equal to zero.
For the y variable, y11 ¼ y21 ¼ 1, and others equal to

zero.
Substituting the solution into the objective function (5),
we obtain an objective function value equal to 40.
The example shows that: (i) it is not necessary to haveP
k2K
P

l2L cklykl 6¼
P

ði;jÞ2A fij if ðx; yÞ is optimal; (ii) it is
not necessary that the optimal solution for the ðP3Þ has
the feature xijk ¼ 0 or 1, 8i; j; k, and (iii) the optimal ob-
jective value for the discrete case is greater than or equal

Table 1. Data for example (discrete case)

Connection Capacity option Fixed cost

1 2 3 1 2 3

1 5 10 15 6 11 16
2 5 10 15 6 11 16
3 6 12 16 7 13 17
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to that for the continuous case given that the cost terms
are correspondent. More precisely, the following obser-
vation can be easily verified.

Observation. The optimal objective value for the discrete
case is always greater than or equal to that for the con-
tinuous case, if their fixed costs of the connections has the
same structure as Fkl ¼ Fk þ vckl.

If the fixed cost of locating a connection at a candidate
site is not related to the capacity size options, then we
always select the maximal capacity option and the
problem can be reduced to the capacitated fixed charge
facility location problem. Otherwise, an algorithm needs
to be developed.
Before discussing solution algorithms, we note the

following: For a selected set of connections such that
their total capacity is greater than or equal to the total
flows, the problem becomes a transportation problem.
Specifically, if we are given ykl and

P
k2K
P

l2L
yklckl 


P
ði;jÞ2A fij, then the optimal assignment of flows

to connections can be found by solving the following
transportation problem:

min
x

X
ði;jÞ2A

X
k2K

afijðdik þ dkjÞxijk;

subject to X
ði;jÞ2A

xijk ¼ 1 8 ði; jÞ 2 A;

X
ði;jÞ2A

fijxijk 	 ckl 8 k; l such that ykl ¼ 1;

xijk 
 0:

We therefore assume for the rest of this section that the
total capacity of the connections is greater than or equal
to the total flows.

4.2. Lagrangian relaxation algorithm

In general, a greedy algorithm is one of the simplest
heuristic ways to solve this kind of problem. Before we
start to present a Lagrangian relaxation algorithm, we
briefly discuss a greedy algorithm for this problem. The
idea is as follows:

• Open all the connections and choose the maximal ca-
pacity option at each connection.

• Use the transportation problem to assign the flows to
each connection.

• Close the connection that results to reduce the objec-
tive value the most.

• Repeat the procedure until the problem is infeasible or
solution cannot be improved.

The greedy algorithm always does the best it can at
each sequential decision. But this may not lead to the
globally optimum solution. Example 2 in Appendix C

shows that it exhibits poor performance at times. This
motivates us to consider a Lagrangian relaxation heu-
ristic algorithm. Another reason to use the Lagrangian
relaxation algorithm is that it provides a lower bound for
the original problem. This simultaneously allows us to
evaluate how effective is the algorithm.
There are several choices related to which constraint is

to be relaxed. In the capacitated fixed charge facility lo-
cation problem, Klincewicz and Luss (1986) relax the
constraints on the facility capacities. The corresponding
subproblems become uncapacitated facility location
problems. Other choices include relaxing assignment
constraints or both; see Pirkul (1987) and Beasley (1993).
We choose to relax the capacity constraints (7). Let

ðP03Þ be the Lagrangian relaxation problem:

ðP03Þ min
x;y

ZP
0
3ðlÞ ¼

X
ði;jÞ2A

X
k2K

fijðaðdik þ dkjÞ þ lkÞxijk

þ
X
k2K

X
l2L

yklðFkl � lkcklÞ; ð10Þ

subject to (6), (8), and (9).
The ideal choice of multipliers is such that they solve

the Lagrangian dual problem, denoted by (DP):

ðDPÞ max
l

ZDPðlÞ: ð11Þ

The optimal value of the above problem (DP) provides
the ‘best’ lower bound (using the Lagrangian method).
For fixed values of the Lagrange multipliers lk, the op-
timal value of the x variables in the Lagrangian relax-
ation problem ðP03Þ can be established independently of
the optimal values of the y variables. In fact, ðP03Þ can be
solved by independently solving the following two sets of
problems: a set of jAj problems ðSP1Þ and a set of nK
problems ðSP2Þ, where:

ðSP1Þ min
x

ZSP1ðl; i; jÞ ¼
X
k2K

fijðaðdik þ dkjÞ þ lkÞxijk;

subject to X
k2K

xijk ¼ 1; 8 ði; jÞ 2 A;

xijk 
 0; 8 ði; jÞ 2 A; k 2 K;

(which is decomposed on the indicies i and j), and

ðSP2Þ min
y

ZSP2ðl; kÞ ¼
X
l2L

yklðFkl � lkcklÞ;

subject to X
l2L

ykl 	 1; 8 k 2 K;

ykl 2f0; 1g; 8 k 2 K; l 2 L:

(which is decomposed on the index k).
We observe first that ðSP1Þ can be solved easily by

setting xijs ¼ 1 for the s value that minimizes fijaðdik þ
dkjÞ þ lkÞ over all k. The optimal value for ðSP1Þ is
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ZSP1ðl; i; jÞ ¼ min
k2K

ffijaðdik þ dkjÞ þ lkg: ð12Þ

Next, we observe that ðSP2Þ is a 0–1 knapsack problem. It
can be solved by setting ykl ¼ 1 if Fkl � lkckl 	 0 and is
chosen such that Fkl � lkckl is minimized. The optimal
value for ðSP2Þ is

ZSP2ðl; kÞ ¼ minfmin
l2L

fFkl � lkcklg; 0g: ð13Þ

Therefore, the optimal value for problem ðP0
2Þ is

ZSP
0
2ðlÞ ¼

X
ði;jÞ2A

ZSP1ðl; i; jÞ þ
X
k2K

ZSP2ðl; kÞ: ð14Þ

For a given l, the optimal solution to the problem ðP0
3Þ is

not likely to be feasible for the original problem ðP3Þ. In
particular, it may violate constraint (7), the capacity
constraint that was relaxed. If, for some k, the constraint
is violated, we will use a transportation algorithm to find
a feasible solution, since for given y the problem is a
transportation problem. This will provide a feasible so-
lution to the original problem ðP3Þ. Its objective value is
an upper bound for ðP3Þ, denoted by UBðlÞ.
In order to find the best lower bound for the original

problem ðP3Þ, we need to find the optimal solution to the
dual problem (DP). The dual problem can be solved by
the subgradient approach (Fisher, 1981). Given an initial
value l0, a sequence of values ln is generated by the rule:

lnþ1
k ¼ max 0;ln

k þ tn
X
ði;jÞ2A

fijxnijk �
X
l2L

cklynkl

0
@

1
A

8<
:

9=
;;

ð15Þ
where the values of xn and yn are the optimal solution to
ðP03Þ for fixed ln. Here tn is a positive scalar step size. It
can be computed as follows:

tn ¼ bnðUB� ZP
0
3ðlnÞÞP

k2Kð
P

ði;jÞ2A fijx
n
ijk �

P
l2L ckly

n
klÞ

2
; ð16Þ

where b is a scalar satisfying 0 < bn < 2. We usually be-
gin with b1 ¼ 2. The value of bn is generally halved if the
lower bound, ZP

0
3ðlnÞ, has not increased in a given num-

ber of consecutive iterations. UB is the best upper bound
so far on the original problem ðP3Þ. ZP

0
3ðlnÞ is the ob-

jective function of the problem ðP0
3Þ. The algorithm ter-

minates when one of the following conditions is true: (i)
we have performed a pre-specified number of iterations;
(ii) the upper bound equals the lower bound (in this case,
the solution is optimal) or is close enough to the upper
bound; or (iii) bn becomes small.
The solution procedure can be described as follows.

After relaxing constraint set (7), we initially fix the value
of the Lagrange multipliers lk (see Theorem 2, later) and
use the greedy algorithm to find a feasible solution for the
original problem. It is an upper bound for the original

problem. As indicated above, the resulting problem can
be solved by solving two sets of simple problems, ðSP1Þ
and ðSP2Þ. The optimal solutions for ðSP1Þ and ðSP2Þ will
be an optimal solution for the relaxed problem ðP03Þ for
the given lk. The objective value of the problem ðP03Þ
provides a lower bound for the original problem ðP3Þ. If
the solution for the relaxed problem is feasible to the
original problem, we compute and update the upper
bound of the original problem. If it is not, use the
transportation problem to find a feasible solution to up-
date the upper bound. If the termination conditions are
satisfied, we stop. Otherwise, we decide if we need to
update the Lagrange multipliers lk. If we decide to ter-
minate the Lagrangian procedure, the best upper bound
gives us a heuristic solution. The following is a step-by-
step description of the procedure:

Step 1. Relax constraint set (7), fix the initial lk, and find
an initial upper bound by the greedy algorithm.

Step 2. Solve ðSP1Þ and ðSP2Þ, compute and update the
lower bound.

Step 3. If the solution for the relaxed problem is feasible
to ðP3Þ, update the upper bound; if not, use the
transportation problem to find a feasible solu-
tion, then update the upper bound.

Step 4. If the termination conditions are satisfied, stop;
otherwise, update lk, and go to Step 2.

The next theorem provides a good initial set of La-
grangian multipliers.

Theorem 2. There exists an optimal dual solution in which
lk ¼ Fkl=ckl; 8k 2 K, if constraint ð7Þ is satisfied.

To help interpret the result of Theorem 2, we note that
Fkl=ckl is the ratio of fixed installation cost to capacity.
Thus it is natural to set the initial Lagrangian multipliers
as l0k ¼ minlfFkl=cklg. By the theorem, it appears to be
beneficial to set the Lagrangian multipliers such that
lk ¼ Fkl=ckl.

5. Computational experiments

The aim of this section is two-fold. First, we focus on the
value of allowing more connection options, which entails
a discussion of the continuous and discrete cases. Then,
we test the performance of the heuristic algorithm for the
discrete case.

5.1. Comparison of continuous and discrete models

First, we generated each department’s location, which
was decided by its x-coordinate and the y-coordinate.
These coordinate values were randomly selected from
Uð0; 1000Þ, where U denotes a uniform distribution. The
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candidate sites of connections were also decided by its x-
coordinate and the y-coordinate, where the x-coordinate
values and y-coordinate values were randomly selected
from the minimum value of the x-coordinate and the y-
coordinate values of department’s location to maximum
value of x-coordinate and the y-coordinate values of de-
partment’s location. For each pair of distinct depart-
ments, the amount of flow was randomly drawn from
Uð5; 30Þ. We assume a ¼ 1. About the fixed connection
installation costs, let Fk ¼ 1000 and v ¼ 50 for the con-
tinuous case and Fkl ¼ 1000þ 50ckl for the discrete case.
Two small sets of test problems are considered. Set 1 has
15 departments and 20 candidate connections. Set 2 has
20 departments and 30 candidate connections. In each set
of data, we let the capacity option of each connection be
three, five, and nine, respectively. We ensure that in each
progressively higher option case the previous capacity
options are included, where the minimum and maximum
ckl values are arbitrarily chosen. We use a solver (CPLEX
6.5) for these small size problems and obtain optimal
objective values are given in Table 2. The results show
that the optimal objective values of the discrete case de-
crease as the number of capacity options increase and
approach to that of the continuous case for both data
sets. They also suggest a decreasing marginal return in
terms of improvement in objective function value as the
number of capacity options increases.

5.2. Computational experiments for Lagrangian algorithm

In this subsection, we design experiments to test the
performance of the Lagrangian algorithm for the discrete
case. All of the experimental tests were carried out on
HP-UX 11 servers. The algorithm was coded in Cþþ.
Specifically, we have two goals: (i) performance analysis
of the algorithm for varying test data (size and parame-
ter); and (ii) comparison of computation time with a
Linear Mixed Integer Program solver (LMIP). The par-
ticular solver we used is CPLEX 6.5.
We generate network data as in Section 5.1. We let the

number of capacity options be three or six for each
connection now. The capacity options, ckl, were ran-
domly decided in the following manner: (i) for three ca-
pacity options, ck1 � Uð0:7q; 1:0qÞ, ck2 � Uð1:1q; 1:4qÞ,
ck3 � Uð1:5q; 1:80qÞ; (ii) for six capacity options, ck1 �
Uð0:7q; 0:85qÞ, ck2 � Uð0:90q; 1:05qÞ, ck3 � U ð1:1q;
1:25qÞ; ck4 � Uð1:30q; 1:45qÞ, ck5 � Uð1:50q; 1:65qÞ,

ck6 � Uð1:65q; 1:80qÞ; where q ¼ 2
P

ði;jÞ2A fij=jKj, or
q ¼ 3

P
ði;jÞ2A fij=jKj, and jKj is the total number of can-

didate connection sites. The term
P

ði;jÞ2A fij=jKj is the
average flow for the total number of candidate connec-
tion sites. We use different q values in order to study how
the capacity option affects the algorithm’s performance.
Therefore, two sets of data were generated according to
different q values. The parameter values for test problems
are summarized in Table 3. We use the term ‘‘heuristic
gap’’ to evaluate the efficiency of our algorithm. Heuristic
gap is defined as (best upper bound � best lower bound)/
bestlower bound � 100. According to the ‘‘weak duality’’
theorem (Shapiro, 1979), any objective value of the re-
laxed problem is a lower bound of the original problem.
The objective value of any feasible solution for the orig-
inal problem provides a upper bound of the original
problem. Therefore, as illustrated in Fig. 2, we can
guarantee that the solution for the original problem is
near-optimal if the heuristic gap is very small.
Tables 4–6 provide the computational results for three

(different size) test data sets. The large capacity refers to
q ¼ 3

P
ði;jÞ2A fij=jKj, while for the small capacity

q ¼ 2
P

ði;jÞ2A fij=jKj. Heuristic time is the CPU time for
the LR algorithm. For small size problems, LMIP time is
the CPU time to get the optimal solution when using
LMIP. For medium size problems, the LMIP time re-
cords the CPU time to get the first feasible solution using
default parameter settings, since we can not get the op-
timal solution within 1 hour for this size of problem. In
some cases, LMIP could not provide any feasible solution
within 1 hour. We denote this situation as ‘>3600’. For

Table 2. Comparison of optimal objective values

Data set Number of capacity options
in discrete case

Continuous case

3 5 9

1 1224 200 1219 160 1218 920 1218 230
2 1859 440 1854 250 1852 065 1850 490

Table 3. Parameter values for test problems

Parameter Small Medium Large

1 Number of departments 10–30 55–65 70–80
2 Number of connections 15–45 110–160 180–200
3 Number of capacity

options
3 or 6 3 or 6 3 or 6

4 Number of non-zero
flows

45–435 1485–2080 2415–3160

Fig. 2. Heuristic gap as a function of the number of iterations.

Capacity sizing in a facility layout 7



large size problems, we only applied the LR heuristic
algorithm.
In general, the algorithm performs very well. The av-

erage heuristic gap for all combined data is about 1.77%
and the computation time is less than 1 hour except for
one case. Table 7 shows performance sensitivity of the
algorithm to different parameters. A two-way ANOVA
was performed. The p-value for the q value effect is 0.000
724, and the p-value for the number of options effect is
0.004 765. The results show that both the q value and the
number of options have a significant effect on the accu-
racy of the algorithm.

6. Summary and future work

In this paper the variable capacity sizing and selection of
connections problem has been studied. To our knowledge
the determination of capacity size along with connection
selection with fixed and variable capacity costs is new to
the open literature. This work is motivated by the design
of appropriate connections for a material handing system
in the manufacturing facility. We note that application of
this problem with revised assumption can be also found
in other areas, such as urban planning, communication
systems, and distribution systems. For the continuous
capacity case without a bound, we prove that it can be
reduced to the uncapacitated fixed charge facility location
problem. For the discrete capacity case, a Lagrangian
relaxation-based approach has been developed. This ap-
proach decomposes the original problem to two sets of
simple mathematical programming problems. The com-
putational results for three different size test data show
that the algorithm is efficient in accuracy and the com-
putational time is also affordable. An ANOVA test shows
that the capacity size and the number of options effect are
significant to the algorithm performance.
Capacities are important in many facility design

problems. However, fixed capacities are less important
than are ‘practical capacities’ in many cases. For exam-
ple, the flows may not arrive at a connection uniformly
over time. Thus, the practical capacity of a connection
may be significantly different from the theoretical one. In
order to get such a practical capacity we need to use
knowledge of queuing theory in conjunction with an

Table 4. Computational result for small sized problems

Dept
number

Option
number

Heuristic
gap

Heuristic
time

LMIP
time

(%) (s) (s)

Large capacity 10 3 3.74 0.07 0.24
10 6 1.88 0.07 0.31
20 3 3.40 0.38 1.48
20 6 2.52 0.65 15.72
30 3 2.63 7.86 219.23
30 6 1.81 8.37 74.57

Small capacity 10 3 1.39 0.07 0.16
10 6 2.33 0.07 0.37
20 3 1.87 0.83 3.58
20 6 1.15 1.03 39.30
30 3 1.58 5.86 77.05
30 6 1.33 6.87 449.83

Table 5. Computational result for medium sized problems

Dept
number

Option
number

Heuristic
gap

Heuristic
time

LMIP
time

(%) (s) (s)

Large capacity 55 3 1.96 255.60 545
55 6 1.27 305.27 790
60 3 2.45 698.42 3482
60 6 1.44 694.49 3390
65 3 1.86 779.64 2460
65 6 1.36 1066.45 >3600

Small capacity 55 3 1.70 265.20 306
55 6 1.15 295.43 324
60 3 1.27 643.21 3572
60 6 1.24 650.32 >3600
65 3 1.23 767.24 >3600
65 6 1.12 891.29 >3600

Table 6. Computational result for large sized problems

Dept
number

Option
number

Heuristic
gap

Heuristic
time

(%) (s)

Large capacity 70 3 2.10 2183.88
70 6 1.67 1570.23
75 3 2.38 2259.78
75 6 1.35 2423.09
80 3 1.82 4169.62
80 6 1.51 2966.22

Small capacity 70 3 1.28 1899.93
70 6 1.92 643.88
75 3 1.66 2101.88
75 6 0.99 1996.69
80 3 1.84 2403.31
80 6 1.61 1405.79

Table 7. Average gap for different problem sizes and parameter
values

Size Capacity size Capacity options Average

Large
capacity

Small
capacity

3 6

Small 2.66 1.61 2.44 1.84 2.14
Medium 1.77 1.28 1.75 1.30 1.50
Large 1.81 1.55 1.85 1.51 1.68
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understanding of flow behavior. This is an area suggested
for future work. The planar version of this problem could
be another future work, in which the fixed connection
installation cost is a function of the location (that can be
chosen from some planar region).
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Appendices

Appendix A

The definitions of the problems considered in this paper
are presented in Table A1.

Appendix B

Property 1. If ðx; y; cÞ is an optimal solution for the prob-
lem ðP1Þ, then 8k 2 K,

P
ði;jÞ2A fijxijk ¼ ckyk.

Proof. Suppose that the assertion is not true and let
ðx�; y�; c�Þ represent an optimal solution for ðP1Þ. It fol-
lows that there exists a k such that

P
ði;jÞ2A fijx

�
ijk 6¼ c�ky

�
k .

From constraints (3) and (4), it follows that
P

ði;jÞ2A
fijx�ijk < c�ky

�
k and that y

�
k ¼ 1. Therefore,

P
ði;jÞ2A fijx

�
ijk <

c�k . Let c
0
k ¼

P
ði;jÞ2A fijx

�
ijk. We replace c�k by c0k for all k

where
P

ði;jÞ2A fijx
�
ijk < c�ky

�
k . If

P
ði;jÞ2A fijx

�
ijk ¼ c�ky

�
k , we let

c�k remain unchanged. Let the new c vector be labeled c0. It
is easy to see that the solution ðx�; y�; c0Þ is feasible for ðP1Þ.
Moreover,

ZP1ðx�; y�; c�Þ ¼
X
ði;jÞ2A

X
k2K

afijðdik þ dkjÞx�ijk þ
X
k2K

y�k ðFk þ vc�kÞ

>
X
ði;jÞ2A

X
k2K

afijðdik þ dkjÞx�ijk þ
X
k2K

y�k Fk þ
X
k2K

y�k vc
0
k

¼ ZP1ðx�; y�; c0Þ;

which establishes a contradiction. Hence, the assertion of
the property is correct. j

Property 2. There exists an optimal solution for the prob-
lem ðP1Þ in which xijk ¼ 0 or 1, 8ði; jÞ 2 A; k 2 K, if the
capacities have no upper bound limit.

Table A1. Problem definitions

Problem Definition

ðP1Þ Variable capacity sizing and selection of
connections model without upper bound

ðP0
1Þ Uncapacitated fixed charge connection location

problem related to ðP1Þ
ðP2Þ Variable capacity sizing and selection of

connections model with upper bound
ðP0

2Þ Capacitated fixed charge connection location
problem related to ðP2Þ

ðP3Þ Variable capacity sizing and selection of
connections model with discrete options

ðP0
3Þ Lagrangian relaxation problem of problem ðP3Þ

(DP) Lagrangian dual problem
ðSP1Þ Subproblem of (DP)
ðSP2Þ Subproblem of (DP)
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Proof. Consider an optimal solution ðx�; y�; c�Þ and sup-
pose that there exists i, j, k such that xijk =2f0; 1g. Since
0 < x�ijk < 1, it follows from (2) that there exists a k0 6¼ k
such that x�ijk0 > 0 and that x�ijk þ x�ijk0 	 1. From the fact
that x�ijk > 0, x�ijk0 > 0 and fij > 0, it follows from (3) that
y�k ¼ 1 and y�k0 ¼ 1, respectively. Clearly, either dik þ dkj 	
dik0 þ dk0j or dik þ dkj > dik0 þ dk0j. We consider the first
case (the proof for the second situation is very similar).
Let xijk ¼ x�ijk þ x�ijk0 , xijk0 ¼ 0, ck ¼ c�k þ fijx�ijk0 , ck0 ¼ c�k0 �
fijx�ijk0 , yk ¼ 1 and yk0 ¼ 1. The solution ðx; y; cÞ with these
values for xijk, xijk0 , ck, ck0 , yk and yk0 , and other values
remaining unchanged is a feasible solution to ðP1Þ. This
can be verified by checking constraints (2) and (3). The
objective function value for this new solution is less than
or equal to the value for the ðx�; y�; c�Þ solution. This can
be verified by using Equation (1). By repeated application
of this procedure we can arrive at a binary solution in
which xijk ¼ 0 or 1, 8ði; jÞ 2 A; k 2 K. j

Theorem 1: The solution of the two-step algorithm is op-
timal for the problem ðP1Þ.

Proof. Suppose that ðx�; y�Þ is the optimal solution ob-
tained in Step 1 and that Step 2 yields the vector c�.
Therefore,

X
k2K

c�ky
�
k ¼

X
k2K

y�k
X
ði;jÞ2A

fijx�ijk

0
@

1
A ¼

X
ði;jÞ2A

fij
X
k2K

y�k x
�
ijk

 !

¼
X
ði;jÞ2A

fij
X
k2K

x�ijk

 !
¼
X
ði;jÞ2A

fij:

We now prove that ðx�; y�; c�Þ is an optimal solution for
problem ðP1Þ.
First, feasibility is readily established by checking

constraints (2), (3), and (4).
Now, we assume that ðx0; y0; c0Þ is an optimal solution

for the problem ðP1Þ. Then ðx0; y0Þ is a feasible solution
for the problem ðP01Þ. Upon comparing the objective
functions of ðP1Þ and ðP01Þ, we get ZP1ðx0; y0; c0Þ ¼
ZP

0
1ðx0; y0Þ þ v

P
k2K cky0k. Since ðx0; y0; c0Þ is optimal to

ðP1Þ, from Property 1 we get ZP1ðx0; y0; c0Þ ¼ ZP
0
1ðx0; y0Þ þ

v
P

ði;jÞ2A fij, where v
P

ði;jÞ2A fij is a constant. Thus, Z
P01

ðx0; y0Þ ¼ ZP
0
1ðx�; y�Þ, and ZP1ðx0; y0; c0Þ ¼ ZP

0
1ðx�; y�ÞþP

k2K c�ky
�
k ¼ ZP1ðx�; y�; c�Þ: This implies that ðx�; y�; c�Þ is

also an optimal solution for problem ðP1Þ. j

Theorem 2: There exists an optimal dual solution in which
lk ¼ Fkl=ckl, 8 k 2 K, if constraint (7) is satisfied.

Proof:We assume that the above condition is not true for
some optimal solution l�

k and derive another solution of
greater or equal value satisfying the condition. Choose a

connection k in the optimal solution violating the above
condition. There are two cases:
If l�

k < Fkl=ckl, then Fkl � l�
kckl ¼ d > 0. According to

the above discussion, in the optimal solution to ðP03Þ,
y�kl ¼ 0. Let l0

k ¼ l�
k þ d=ckl, which increases the La-

grangian multiplier since d is positive. It is easy to see that
Fkl � l0

kckl ¼ 0, and the second term of the objective
function does not change. But the first term of the ob-
jective function may increase. Thus the objective function
will not decrease.
If l�

k > Fkl=ckl, then Fkl � l�
kckl ¼ d < 0. According to

the above discussion, in the optimal solution to ðP03Þ,
y�kl ¼ 1. Let l0

k ¼ l�
k þ d=ckl, which decreases the La-

grangian multiplier since d is negative. It is easy to see
that Fkl � l0

kckl ¼ 0. Now, the second term of the objec-
tive function will increase by jdj. The first term of the
objective function will decrease by

P
ði;jÞ2A fijx

�
ijkjdj=ckl. If

constraint (7) is satisfied, then we have
P

ði;jÞ2A
fijx�ijkjdj=ckl < jdj. Thus the objective function will in-
crease. The theorem follows. j

Appendix C

Example 1. We use the layout shown earlier in Fig. 1.
There are three flows: (1,3), (1,4), and (2,4). Suppose that
a ¼ v ¼ 1, and F1 ¼ F2 ¼ F3 ¼ 1. The travel distances and
flow fij are as in Table A2.
From the first step, it is easy to get the following op-

timal solution:
For the x variable, x131 ¼ x141 ¼ x242 ¼ 1, others equal

to zero; For the y variable, y1 ¼ y2 ¼ 1, and y3 ¼ 0.
From the second step, set c1 ¼ 6, c2 ¼ 4, and c3 ¼ 0.
Substituting the solution into the objective function (1)

we obtain the optimal objective value of 38. An enu-
meration check reveals that it is the optimal solution. It
can be verified that this solution has the characteristics
stated in Properties 1 and 2.

Example 2. There are two flows: (1,3) and (2,4). The total
number of candidate connections are three and only one
capacity option exists at each connection. Suppose that
a ¼ 1, F1 ¼ 12, F2 ¼ 20, F3 ¼ 12, and c1 ¼ c3 ¼ 1; c2 ¼ 2.
The travel distances and flow fij are as in Table A3.
Using the greedy algorithm, we find that the solution is

to open connections 1 and 3 with an objective function
value of 30. Using the Lagrangian relaxation heuristic,

Table A2. Data for Example 1 (continuous case)

Flow fij Travel distance

Connection 1 Connection 2 Connection 3

(1,3) 4 2 6 8
(1,4) 2 3 5 7
(2,4) 4 5 3 5
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the solution is to open just connection 2 and the resultant
objective function value is 25. This also happens to be the
optimal solution.
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Table A3. Data for Example 2 (discrete case)

Flow fij Travel distance

Connection 1 Connection 2 Connection 3

(1,3) 1 4 2 4
(2,4) 1 2 3 2
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