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Strategic capacity planning in supply chain design for a new market

opportunity

SATYAVEER S. CHAUHANy, RAKESH NAGIz and
JEAN-MARIE PROTHy*

This paper addresses the problem of supply chain design at the strategic level
when production/distribution of a new market opportunity has to be launched
in an existing supply chain. The new market opportunity is characterized by a
deterministic forecast expected to occur per period. The product (or service) is
assumed to be produced (or provided) in a three-stage capacitated supply chain
where the first stage concerns suppliers, the second stage producers and the
final stage customers. There could be multiple alternatives at each stage which
are defined as nodes. Nodes in each stage are connected to the next stage through
capacitated transportation systems. Production capacity at the second stage
(i.e. producers) are also limited since they may already be involved in other
existing activities. The objective is to perform strategic capacity planning in the
supply chain in order to meet the demand of the new opportunity at minimal cost.
A linear running cost is associated with each node. If the decision is to increase the
capacity of a node, then a fixed cost applies, followed by a cost that is propor-
tional to the additional capacity.
The overall problem can be modelled as a large-scale mixed integer linear

programming problem. A solution algorithm is developed to overcome difficulties
associated with the size of the problem and is tested on empirical data sets. The
overall contribution is an analytical tool that can be employed by managers
responding to the new market opportunity at the strategic level for supply
chain design.

1. Introduction

Supply chain networks are considered as solutions for effectively meeting cus-
tomer requirements such as low costs, high product variety, quality and shorter lead
times. The success of a supply chain lies in good strategic and tactical planning
and monitoring at the operational level. Strategic planning is long-term planning
and usually involves selecting providers and distributors, location and capacity plan-
ning of manufacturing/servicing units, among others. In the context of supply chain
design we usually consider two aspects in the selection of partners: the qualitative
aspect and the quantitative aspect. The qualitative aspects are the primary selection
criteria, such as the financial position of the partner, quality policy, previous history,
adaptability towards change of product type or market situations.
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In quantitative selection criteria we usually consider the cost effectiveness of the
partners with respect to the supply chain. This consideration involves, for example,
capacity planning, transportation network design, identification of distributors in
the potential market. Plenty of models are discussed in the literature. In Erenguc
et al. (1999) the authors proposed a model of a supply chain network composed of
three stages: supplier network, producer network and distributor network, and
defined the nature of the relationship between each stage. In Cohen and Lee
(1988), a strategic model structure and a hierarchical decomposition approach for
the supply chain are presented. Nagurney et al. (2002) presented a network equili-
brium model and discussed qualitative properties of the model. For an extensive
review of strategic production–distribution models in a global supply environment,
the reader is referred to Vidal (1997) and Govil and Proth (2002).

In this paper we restrict ourselves to strategic capacity planning only. We con-
sider the case of supply chain design for a new market opportunity when the demand
in each period is known. All the potential partners have limited capacity (production
and transportation) and the capacity can be increased by introducing new resources.
The problem is to select providers and producers from among the available ones.
The problem is modelled as a mixed integer programming problem, and the difficulty
arises when the number of integer variable increases.

Integer linear programming problems constitute a subclass of combinatorial
optimization problems (Hans 2001). Many problem-specific algorithms exist for
finding the feasible solutions or even optimal solutions. Three basic methods,
branch-and-bound (Mitten 1970), cutting plane algorithm, and dynamic program-
ming, are widely used for solving integer linear programming problems (Winston
1993). Sometimes these methods are used in conjunction with others; for instance
when the cutting plane method is used with branch-and-bound, the technique
is known as the branch-and-cut algorithm (Hoffman and Padberg 1985) and
when column generation (Dantzig and Wolfe 1960) is used in conjunction with
branch-and-bound, it is referred to as branch-and-price (Vance et al. 1994). All
the algorithms using branch-and-bound require a good starting bound which is
usually obtained by LP relaxations. Langrangian relaxation (Geoffrion 1974,
Fisher 1985) is one of the available methods to obtain a good feasible bound.

In solving combinatorial optimization problems, there is always a trade-off
between computational time and quality of the solution. In this paper we present
a heuristic approach to find a good solution. Latterly, this solution can be used
as an upper bound for the branch-and-bound algorithm developed to reach the
optimal solution.

The remainder of the paper is organized as follows. Section 2 presents the
problem description and formulation. The solution approach based on the key
properties is presented in section 3. Numerical results of a computational study
are presented in section 4. Finally, conclusions are presented in section 5.

2. Problem description and formulation

2.1. Problem description
We consider a three-echelon system in which the first echelon concerns providers,

the second echelon concerns producers and the last echelon concerns distributors.
We assume that all the partners under consideration already meet the prerequisite
requirements. All distributors have a definite demand in each period on a given
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horizon. Providers provide the raw material/semi-finished products to selected
producers, and these producers fulfil the demand of each distributor. Each provider
and producer has its production cost and transportation costs to the next stage.
These costs are invariant in time. The transportation costs vary from one pair
(provider–producer and producer–distributor) to another. Each provider and each
producer has limited production and transportation capacities. The transportation
and production capacities can be extended by investing in resources. We assume that
investment is possible only at the beginning of the first period. The transportation
costs and production costs are linear functions of quantities. Investment cost is also a
linear function of quantity, but with an additional fixed cost which does not depend
upon quantities but only on the entities it is related to. The problem is to select the
most economic combination of providers and producers such that they satisfy the
demand imposed by all individual distributors.

2.2. Mixed integer programming formulation
Let i2 {1, 2, . . . ,P} be the providers, j2 {1, 2, . . . ,M} be the producers and

k2 {1, 2, . . . ,D} be the distributors. The demand is deterministic and is known for
each distributor on time horizon T. We consider four investments in this model:
investment to enhance the capacity of providers, investment to enhance the capacity
of producers and investment to enhance the transportation capacity between
provider–producer and producer–distributor. The notations used are as follows:

Pi : raw material cost per unit at provider i.
mj : production cost per unit at producer j.
ui,j : transportation cost per unit from provider i to producer j.
vj,k : transportation cost per unit from producer j to distributor k.
Ri,j : available transportation capacity from provider i to producer j.
ri,j : added transportation capacity from provider i to producer j.
Sj,k : available transportation capacity from producer j to distributor k.
sj,k : added transportation capacity from producer j to distributor k.
Gi : available production capacity for provider i.
gi : added production capacity for provider i.
Hj : available production capacity for producer j.
hj : added production capacity for producer j.
� : discount rate.
� : depreciation factor.

xti, j : raw material shipped from provider i to producer j in period t.
ytj, k : product shipped from producer i to distributor k in period t.

In this model, we have the following four investment costs:

Investment cost for new transportation capacity ri,j from provider i to producer j

Cost ¼
Ai, j þ ai, j ri, j if ri, j > 0
0 if ri, j ¼ 0

� �
:

Investment cost for new transportation capacity sj,k from producer j to distributor k

Cost ¼
Bj, k þ bj, k sj, k if sj, k > 0
0 if sj, k ¼ 0

� �
:

2199Strategic capacity planning



Investment for provider i to enhance its capacity by gi

Cost ¼
Ei þ eigi if gi > 0
0 if gi ¼ 0

� �
:

Investment for producer j to enhance its capacity by hj

Cost ¼
Fj þ fjhj if hj > 0
0 if hj ¼ 0

� �
:

The above investment costs shows that the investment cost is zero if the capacity
addition is zero and consists of a fixed cost and quantity proportional to the added
capacity if the capacity addition is positive.

Now, the problem which we denote by P1 can be formulated as follows:

P1MIN
XT
t¼1

XP
i¼1

XM
j¼1

Ci ð pi þ ui, jÞ x
t
i, j þ

XT
t¼1

XM
j¼1

XD
k¼1

Ct ðmj þ vj, kÞy
t
j, k

þ
XP
i¼1

XM
j¼1

ðC1 �D1Þðai, j ri, j þ Ai, j Ui, jÞ þ
XM
j¼1

XD
k¼1

ðC1 �D1Þðbj, k sj, k þ Bj, k Vj, kÞ

þ
XP
i¼1

ðC1 �D1Þðei gi þ Ei WiÞ þ
XM
j¼1

ðC1 �D1Þð fj hj þ Fj XjÞ:

Subjected to:

xti, j � Ri, j þ ri, j; t 2 f1, . . . ,Tg, i 2 f1, 2, . . . ,Pg, j 2 f1, 2, . . . ,Mg ð1Þ

ytj, k � Sj, k þ sj, k; t 2 f1, . . . ,Tg, i 2 f1, 2, . . . ,Pg, j 2 f1, 2, . . . ,Mg ð2Þ

XM
j¼1

xti, j � Gi þ gi; i 2 f1, 2, . . . ,Pg, t 2 f1, 2, . . . ,Tg ð3Þ

XD
k¼1

ytj, k � Hj þ hj; j 2 f1, 2, . . . ,Mg, t 2 f1, 2, . . . ,Tg ð4Þ

XP
i¼1

xti, j ¼
Xd
k¼1

ytj, k; t 2 f1, . . . ,Tg, j 2 f1, 2, . . . ,Mg ð5Þ

XM
j¼1

ytj, k ¼ dt
k; t 2 f1, . . . ,Tg, k 2 f1, 2, . . . ,Dg ð6Þ

ri, j � Zr
i, j:Ui, j; i 2 f1, 2, . . . ,Pg, j 2 f1, 2, . . . ,Mg ð7Þ

sj, k � Zs
j, k�Vj, k; j 2 f1, 2, . . . ,Mg, k 2 f1, 2, . . . ,Dg ð8Þ

gi � Zg
i :Wi; i 2 f1, 2, . . . ,Pg ð9Þ

hj � Zh
j :Xj; j 2 f1, 2, . . . ,Mg ð10Þ

Ui, j 2 f0, 1g,Vj, k 2 f0, 1g,Wi 2 f0, 1g,Xj 2 f0, 1g ð11Þ

Ct ¼ ð1þ �ÞT�tþ1, Dt ¼ ð1� �ÞT�tþ1 t 2 f1, 2, . . . ,Tg, ð12Þ
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In the above formulation, the constraints (1) and (2) guarantee that the ship-

ment must be less than or equal to the available transportation capacity Ri,jþ ri,j
and Sj,kþ sj,k, respectively. Similarly, constraints (3) and (4) guarantee that the

delivery in each period must not exceed the capacity. Constraint (5) guarantees

that the total shipment, in each period, from all providers to all producers must

be equal to the total shipment from all producers to all distributors. Constraint

(6) guarantees that the total shipment from all producers to any distributor in

each period must be equal to the demand of the distributor in that period. Zs
j, k,

Zr
i, j, Z

g
i , and Zh

j are big numbers greater than the total demand and Ui,j, Vi,j, Wi

and Xj are binary integer variables. These binary variables are associated with

the fixed cost in the objective function and take positive values only if capacity

enhancements are made.

The problem would be simple and can be solved using the Minimum cost flow

algorithm efficiently if we knew precisely the investment locations. The problem

arises when we introduce binary variables and the size of the problem is large.

For instance, the number of binary variables required for this problem is

(PþMþP MþM D). In the above model we assume that investment takes place

in the first period only just to reduce the size of the problem. In the latter case

the number of binary variables will be equal to (PþMþP MþM D)T. But we

can see that the formulation can easily be generalized for multi-period investment

and a multi-product chain. The above formulation is a mixed integer programming

formulation.

We denote by P2 the problem P1 in which the variables Ui,j, Vi,j, Wi and Xj

can take any value in [0, 1]. Thus, P2 is obtained by relaxing constraints (11) in P1.

3. Properties and solution approach

3.1. Result 1

There exists at least one optimal solution to the problem P2 in which constraints

(7)–(10) are saturated.

Proof

Assume for instance, that gi < Zg
i Wi for an optimal solution S1. Then consider

a solution S2 that is the name as S1, except that Wi ¼ gi=Z
g
i . S2 is still feasible.

Furthermore,

CðS1Þ � CðS2Þ ¼ EiðWi � gi=Z
g
i Þ � 0; ð13Þ

where C(.) denotes the cost related to solution (.). Since Ei� 0, C(S1)�C(S2).

Two cases are possible: either C(S1)>C(S2) and S1 is not optimal, which contradicts

the hypothesis, or C(S1)¼C(S2), and S2 and S1 are both optimal. This completes

the proof.

Corollary

Since there exists at least one optimal solution such that constraints (7)–(10) are

saturated, we can reduce the size of the problem P2 by replacing Ui,j by ri, j=Z
r
i, j, Vj,k

by sj, k=Z
s
j, k, Wi by gi=Z

g
i and Xi by hj=Z

h
j in the objective function and removing

all the constraints (7)–(11).
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3.2. Result 2
For m¼ 1, 2, . . . , we denote by Pm

2 , derived from P2, obtained by:

- replacing Zr
i, j (resp. Z

s
j, k, Z

g
i and Zh

j ) by rm�1
i, j (resp. sm�1

j, k , gm�1
i and hm�1

i ) if

rm�1
i, j > 0 (resp. sm�1

j, k > 0, gm�1
i > 0 and hm�1

i > 0);

- keeping the previous value of Zr
i, j (resp. Z

s
j, k, Z

g
i , and Zh

j ) otherwise, where
rm�1
i, j , sm�1

j, k , gm�1
i and hm�1

i belong to the optimal solution of Pm�1
2 .

Then:

1. We can derive a feasible solution of P1 from the optimal solution of Pm
2 by

setting Ui,j¼ 1 (resp. Vj,k¼ 1, Wi¼ 1 and Xj¼ 1) when rmi, j > 0 (resp. smj, k,
gmi > 0 and hmi > 0) and solving the new problem which we will call Pm

3 .
2. Let Sm

2 be the optimal solution of Pm
2 . Then there exists m* such that Sm�

2 is
a feasible solution of P1.

Proof

1. The solution Sm
2 satisfies constraints (1)–(6) of problem Pm

2 , which are also
constraints of P1. Furthermore, in the solution Sm

2 , constraints (7)–(10) are
saturated and Ui,j, Vj,k, Wi, and Xj 2 ½0, 1�. They remain satisfied if these
variables are fixed to 1 and the corresponding additional capacity is strictly
positive. Then solving the problem Pm

3 , we obtain a solution that is feasible
for P1. This completes the proof of the first part of the result.

2. Consider the variables ri,j and Ui,j that concern the transportation from
providers to producers. According to result 1 and the hypothesis given in
result 2, rmi, j ¼ am�1:Um

i, j replaces the constraint (7), where am�1 is either

- equal to rMi, j , M<m, where M, the greatest integer such that rMi, j > 0 belong
to the optimal solution of PM

2 , if any;
- or equal to the initial values of Zr

i, j if r
k
i, j ¼ 0 for k¼ 1, 2, . . . ,m� 1. Thus we

have to consider two cases:

Case 1:
Uk

i, j ¼ rki, j=r
Mk

i, j , where Mk<k is defined as M. This leads to:

Ym

k¼2
Uk

i, j ¼
Ym

k¼2
rki, j=r

Mk

i, j

� �
¼ rmi, j=r

M1

i, j ,

and

rmi, j ¼ rM1

i, j

Ym
k¼2

Uk
i, j : ð14Þ

Since Uk
i, j 2 ½0, 1�, we see that rki, j decreases with k, i.e. with the number of iterations.

Case 2:
rki, j ¼ 0 for k¼ 1, 2, . . . ,m� 1, and the next value of this variables, that is rmi, j, can
only be obtained by solving Pm

2 . Let Ek be the set of variables ri,j that are strictly
positive in the optimal solution Sk

2 of Pk
2, and Fk be the set of variables that are

equal to zero in Sk
2 .

Whatever k¼ 1, 2 , . . . , we know that:X
i2Ek

rki, j ¼ constant ð15Þ
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since this quantity is the sum of the additional capacities, which is a constant (see
problem P1 and Pk

2). Furthermore, if the same variable ri,j belongs to Ek1
and Ek2

,
k2> k1, then according to (14):

rk2i, j � rk1i, j: ð16Þ

Since the number of variables ri,j is finite, the number of sets Ek, k¼ 1, 2, . . . , is finite.
But this sequence of sets has the following property:

if m2>m1, we cannot have Em2
� Em1

. The proof is straightforward:

If we had Em2
� Em1

, we would haveX
ri, j2Em2

rm2

i, j �
X

ri, j2Em2

rm1

i, j ðsee 16Þ

and X
ri, j2Em2

rm1

i, j �
X

ri, j2Em1

rm1

i, j since Em2
�Em1

Thus X
ri, j2Em2

rm2

i, j <
X

ri, j2Em1

rm1

i, j :

But we know that (see 14)
P

ri, j2Em2
rm2

i, j ¼
P

ri, j2Em1
rm1

i, j . This contradiction proves the
above claim.

As a consequence, there exists m1 and m2 such that Em1
� Em2

. If Em2
¼ Em1

,
solutions Sm1

2 and Sm2
2 are identical and are a feasible solution of P1 since the binary

variables are 0 or 1. If Em1
� Em2

, we see that the size of Em will converge since it is
limited by the number of variables ri,j and we return to the previous case.

The same proof can be applied to variables sj,k, gi, hi and the related binary
variables. This completes the proof.

3.3. Solution method
We utilize result 1 and result 2 to develop the algorithm.

3.3.1. Initialization
To initialize the variables Zr

i, j, we take the sum of the maximum demand of all
distributors on periods 1, 2, . . . ,T. This value is an upper bound of the Zr

i, j values
that represent the additional transportation capacities from provider to producers.
We subtract the available transportation capacity Ri,j from the obtained sum. If the
difference is negative, we set it to zero. We apply a similar process for each of the sets
fZs

j, kg, fZ
g
i g and fZh

j g.

3.3.2. Algorithm
In this algorithm, we derive a feasible solution of P1 from each Sm

2 , the optimal
solution of Pm

2 as mentioned in the first part of result 2. We keep the best of the
feasible solutions of P1 obtained along the iterations. The detailed algorithm is
presented in the appendix.

Remarks.We introduced a mechanism that forced the solutions Sm
2 of problem Pm

2 to
converge to a feasible solution of P1, but we cannot claim that this feasible solution
is optimal for P1 since the mechanism introduces additional constraints to the set of
feasible solutions of P1 and thus reduces this set.
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4. Numerical examples

In this section we present the solutions to 10 randomly generated examples and
compare the solution with the corresponding optimal solutions. All the examples
are generated for five providers, five producers, five distributors and for five time
periods. The ranges of different parameters are as follows:

Available production capacities of providers: 0–500;
Available transportation capacities of providers: 0–500;
Production cost of providers: 5–10;
Available production capacities of producers: 0–500;
Available transportation capacities of producers: 0–500;
Production cost of producers: 20–35;
Investment costs: 1000–5000;
Proportional investment costs: 1–10;
Demands of all distributors: 100–500;

The optimal solutions are obtained using a branch-and-bound algorithm. The
results are presented in table 1.

As we can see in these results, the solutions provided by the heuristic approach
are close, if not identical, to the optimal solutions. None of these examples required
more than ten iterations in order that Pm

2 provide a feasible solution of P1.

5. Conclusion

In general, solving linear integer programming problems is difficult because of
their combinatorial nature. In this paper the goal was to develop a good solution
method for this specific problem without using linear integer programming methods.
In our approach, because of the equality constraints in demand and supply, the heu-
ristic algorithm which modifies the Z value at each iteration performed well. This
heuristic solution can be used further as an upper bound for the branch-and-bound
algorithm, if the optimal solution is of prime importance.

Appendix

Initialization

Define maxdemand ¼
PD

j¼1Max ðdt
j Þt¼1,...,T and set

For t¼ 1, . . . ,T , j¼ 1, . . . ,M, k¼ 1, . . . ,D
Zr

i, j ¼ Max ðmaxdemand� Ri, j, 0Þ, and similarly for the other Zs, Z
s
j, k, Z

g
i and Zh

j .

Algorithm solution Optimal solution Percentage error

1 276518 275781 0.267
2 257359 257359 0.0
3 324934 322973 0.607
4 292007 292007 0.0
5 354365 354116 0.070
6 322126 325881 1.910
7 334013 333499 0.154
8 321299 319871 0.446
9 291253 290190 0.366

10 310869 310869 0.0

Table 1. Results

2204 S. S. Chauhan et al.



We initialize all the Zs with a value which represents the maximal possible
enhancement of the corresponding capacity.

Algorithm

In this algorithm, we derive a feasible solution of P1 from each Sm
2 , an optimal

solution of Pm
2 as mentioned in the first part of result 2. We keep the best of the

feasible solution of P1 obtained along the iterations.

1. Use initialization to set the Z values.
2. Set Best solution¼A big positive number.
3. For count¼ 1, 2 , . . . , until the solution of Pcount

2 is identical to the solution
of Pcount�1

2

(a) Solve the problem Pcount
2 using the simplex algorithm.

(b) i. Define the new problem Pcount
3 derived from Pcount

2 by setting the relaxed
binary variables (Ui,j, Vj,k, Wi, Xj) equal to 1 if they are greater than
zero in the solution set of Pcount

2 .
ii. Compute the optimal solution of the problem Pcount

3 .
iii. Set Candidate solution¼ criterion value of Pcount

3 .
iv. If Candidate solution<Best solution replace the Best solution by the

Candidate solution.
(c) Define the problem Pcountþ1

2 by setting Zr
i, j ¼ ri, j if ri,j>0 and similarly for

other Zs in Pcount
2 .
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