
Simultaneous Siting and Sizing of Distribution Centers

on a Plane

Simin Huang∗, Rajan Batta∗∗ and Rakesh Nagi∗∗1

∗Department of Industrial Engineering, Tsinghua University, Beijing 100084,
People’s Republic of China.

∗∗Department of Industrial Engineering, 342 Bell Hall,
University at Buffalo (SUNY), Buffalo, NY 14260, USA.

Revised: September 2005
December 2004

1For Correspondence: Email: nagi@buffalo.edu, Tel: +1-716-645-2357x2103, Fax: +1-716-645-3302.

Abstract

The benefits of simultaneous consideration of siting and sizing of distribution centers have

been well acknowledged in supply chain design. Most formulations assume that the potential

DC sites are known and the decision on location is to select sites from the finite potential

DC sites. However, the quality of this discrete version problem depends on the selection of

potential DC sites. In this paper we present a planar version of the problem, which assumes

that there is no a priori knowledge of DC sites and DCs can be located anywhere in the

plane. The goal of the problem is to simultaneously find locations and sizing of DC sites.

The solution of the planar problem provides a lower bound for the discrete problem. The

objective of the problem is to minimize the total of inbound and outbound transportation

costs and distribution center construction costs – which include its fixed charge cost and

concave sizing cost. The problem is initially formulated as a nonlinear programming model.

We then reformulate it as a set covering problem after establishing certain key properties. A

greedy drop heuristic and a column generation heuristic are developed to solve the problem.

Computational experiments are provided.

Keywords: Distribution center sizing; Distribution center location; Supply chain design.

2

1 Introduction

This paper considers an integrated distribution center (DC) planar location and sizing prob-

lem in which products are shipped from plants to distribution centers (DCs) and then de-

livered to retailers. The objective of the problem is to minimize the total inbound and

outbound transportation costs and distribution center construction costs – which include its

fixed charge cost and concave sizing cost. Most formulations assume that the potential DC

sites are known and the decision on location is to select sites from the finite set of potential

DC sites. However, the quality of this discrete version problem depends on the selection of

potential DC sites. In this paper we assume that there is no a priori knowledge of DC sites

and DCs can be located anywhere on the plane. Therefore, the decision on location in this

problem is not to select but to generate DC sites. This version of the problem provides a

lower bound for the discrete problem. When the gap between the solutions of the discrete

and planar models is significant, it suggests that more potential DC sites should be added

in the candidate set of the discrete formulation. Another motivation of this paper is based

on the view that the design of such a system can be improved by simultaneous consideration

of location and sizing because of the trade-off between transportation costs and sizing costs.

However, the size issue in the planar location literature is neglected. In fact, Krarup and

Pruzan (1990) (page 41) point out that in most formulations reported in the literature, the

notion of facility size is essentially ignored and facilities are implicitly assumed to be points

in space as are the sites where they may be located.

The most related problem developed in the location literature is the planar location-

allocation problem, which was initiated in papers by Cooper (1963) and Cooper (1964). The

3

problem is to locate a set of p new facilities in a plane and assign a set of m existing facilities to

the new facilities in order to minimize total weighted distances. The main difficulty in solving

this problem arises from the fact that its objective function is neither convex nor concave

(see Cooper (1967)), and it is not differentiable everywhere. In general, it contains a large

number of local minima (see Eilon, Watson-Gandy, and Christofides (1971)). Therefore, most

models in this area assume that facilities are uncapacitated. Very few planar location models

consider the sizing issue. As far as we know, the only exception is the paper by Brimberg

and Love (1994). They consider a location-allocation problem with economies of scale and

present heuristic approaches to solve small-size problems. An overview of applications of

location-allocation problems is given in Hodgson, Rosing, and Shmulevitz (1993).

The other related problem is the facility sizing problem. It seeks to find a facility size

which allows a required service level to be attained and/or minimizes total costs. Facilities

can be broadly defined as buildings where people, material, and machines come together for

a stated purpose – typically to make a tangible product or provide a service (see Heragu

(1997)). Therefore, it is natural to classify the facility sizing problem based on its space

requirement, server number, inventory size, or machine capacity (or types). The warehouse

space requirement problem can be found in Sung and Han (1992), White and Francis (1971),

Lowe, Francis, and Reinhardt (1979) and Jucker, Carlson, and Kropp (1982). The server

allocation of queueing facilities has been studied in Brimberg, Mehrez, and Wesolowsky

(1997) and Brimberg and Mehrez (1997). For warehouse inventory sizing problem, Cormier

and Gunn (1996b) and Cormier and Gunn (1996a) coordinate warehouse size and inventory

policy under the assumption of constant product demand. In the case of deterministic facil-

ity capacity, Lee (1991) and Mazzola and Neebe (1999) study a multi-product capacitated

4

facility location problem with a choice of facility type. All of these models assume that either

facility locations are fixed or there is a priori knowledge of facility locations. Also, sizing

is a major issue in Huff Gravity models. A recent reference where sizing are optimized is

Aboolian, Berman, and Krass (2004).

This paper is organized as follows: Section 2 presents a mathematical formulation of the

problem and establishes properties of the model. Section 3 reformulates the model as a set

covering problem. A greedy drop heuristic and a column generation heuristic are developed

to solve it. Section 4 reports on computational results for both algorithms. Finally, Section

5 provides a summary and directions for future work.

2 Formulation

We are given a set of plant nodes, I = {1, 2, · · · , m}, and a set of retailer nodes, J =

{1, 2, · · · , n}. Let (i, j) denote a flow from plant i to retailer j and fij its flow amount,

∀ i ∈ I and j ∈ J . Let k ∈ K = {1, 2, · · · , p} be a DC index.

We assume that the transportation costs are determined by the distances of the shortest

paths between nodes. Let Yk be the location decision variable of DC k and d(i, Yk) be the

shortest distance between plant node i and DC k, where d(·) is a distance measure. Let xijk

be the fraction of flow amount fij that passes through DC k. Then, the transportation cost

can be expressed as

∑
i∈I

∑
j∈J

∑
k∈K

fij(d(i, Yk) + d(Yk, j))xijk.

Generally speaking, DC sizing cost is based on its space requirement, server number,

inventory size, or machine capacity (or types), which should be determined by the maximum

5

flow amount that can go through the DC. Let ck be the sizing variable of DC k. We assume

that the sizing cost function of DC k, fk(c), includes its fixed charge cost and concave sizing

cost. It takes the form as follows:

F × I(ck) + h(ck), ∀ k ∈ K,

where F is a constant which denotes the fixed charge cost of a DC, I(ck) is an indicator

function with I(0) = 0 and I(ck > 0) = 1, and h(ck) is an increasing concave function of ck

and h(0) = 0.

The objective of the simultaneous DC siting and sizing problem is to minimize total of

inbound and outbound transportation costs and distribution center sizing costs. Then, the

problem can be formulated as follows:

(P) min
c, x, y

ZP (c, x, y) =
∑
i∈I

∑
j∈J

∑
k∈K

fij(d(i, Yk) + d(Yk, j))xijk

+
∑
k∈K

(F × I(ck) + h(ck)) (1)

subject to
∑
k∈K

xijk = 1, ∀ i ∈ I, j ∈ J, (2)

∑
i∈I

∑
j∈J

fijxijk ≤ ck, ∀ k ∈ K, (3)

xijk, ck ≥ 0, Yk ∈ R2 ∀ i ∈ I, j ∈ J, k ∈ K. (4)

The objective function (1) minimizes the total transportation cost and DC sizing cost.

Constraint (2) stipulates that the flows are only transported through DCs. Constraint (3)

is a capacity constraint. Constraints (4) are non-negativity constraints.

The major difficulty in solving this problem is due to the form of the objective function,

which is neither convex nor concave. We establish some properties with the hope of finding

6

an effective solution procedure for Problem (P). For simplicity, we develop the properties

and a heuristic algorithm under the Manhattan distance. However, they can be extended to

the general polyhedral gauge case (see Huang, Batta, Klamroth, and Nagi (2005)).

In this paper, we consider the grid construction for the Manhattan distance as follows:

Consider the smallest rectangle (bounding rectangle) that encloses all plants and retailers

and whose sides are parallel to the x and y axes. Within this bounding rectangle, the grid

is formed by lines parallel to the x and y axes through all plant and retailer nodes. A grid

point is an intersection point of any two lines.

Property 1. There exists at least one optimal solution of Problem (P) with the Manhattan

distance for which each DC is located on a grid point.

Proof: If all Y ∗
k s are located at grid points, then we already obtain the property.

Suppose that the assertion is not true and let (c∗, x∗, y∗) be an optimal solution for

Problem (P). If all Y ∗
k s are located at grid points, then we already obtain the property. If

at least one of them is not located at a grid point, without loss generality, we assume that

Y ∗
1 is not a grid point and located inside the rectangle ABCD (see Figure 1); here A, B, C,

and D are grid points and there are no grid points in the interior of rectangle ABCD. Let

RA, RB, RC , and RD be the northwestern region of node A, the northeastern region of node

B, the southwestern region of node C, and the southeastern region of node D, respectively.

We also assume that

∑
i∈RA

∑
j∈RC

fijx
∗
ij1 +

∑
i∈RC

∑
j∈RA

fijx
∗
ij1 ≥

∑
i∈RB

∑
j∈RD

fijx
∗
ij1 +

∑
i∈RD

∑
j∈RB

fijx
∗
ij1,

∑
i∈RA

∑
j∈RB

fijx
∗
ij1 +

∑
i∈RB

∑
j∈RA

fijx
∗
ij1 ≥

∑
i∈RC

∑
j∈RD

fijx
∗
ij1 +

∑
i∈RD

∑
j∈RC

fijx
∗
ij1.

Let ∆1 be the horizontal distance between Y ∗
1 and A and ∆2 be the vertical distance

7

between Y ∗
1 and A. Now, if we move Y ∗

1 to the grid point A and all others remain unchanged,

then the net improvement of the objective function value is

∆1

⎛
⎝∑

i∈RA

∑
j∈RC

fijx
∗
ij1 +

∑
i∈RC

∑
j∈RA

fijx
∗
ij1 −

∑
i∈RB

∑
j∈RD

fijx
∗
ij1 +

∑
i∈RD

∑
j∈RB

fijx
∗
ij1

⎞
⎠

+∆2

⎛
⎝∑

i∈RA

∑
j∈RB

fijx
∗
ij1 +

∑
i∈RB

∑
j∈RA

fijx
∗
ij1 −

∑
i∈RC

∑
j∈RD

fijx
∗
ij1 +

∑
i∈RD

∑
j∈RC

fijx
∗
ij1

⎞
⎠ ≥ 0.

Thus the objective function will not increase if we move Y ∗
1 to a grid point. This procedure

can be repeated for any other Y ∗
k which is not currently at a grid point. Thus a grid point

solution of equal or superior value can be constructed from any non-grid point solution. The

property follows.

*
1Y

2

1

DC

BA

RR

RR

DC

BA

Figure 1: Proof of grid point optimality

Property 2. If (c∗, x∗, y∗) is an optimal solution for Problem (P), then

c∗k =
∑
i∈I

∑
j∈J

fijx
∗
ijk, ∀ k ∈ K.

Proof: Suppose that there exists an l ∈ K such that c∗l �= ∑
i∈I

∑
j∈J fijx

∗
ijl. According

to constraint (3), c∗l >
∑

i∈I

∑
j∈J fijx

∗
ijl. Let c

′
l =

∑
i∈I

∑
j∈J fijx

∗
ijl, then h(c∗l) > h(c

′
l)

(because h(·) is an increasing function). Using c
′
l to replace c∗l in the optimal solution, we

can claim that the new solution has a lower objective function value. The result follows by

contradiction.

8

Thus, Problem (P) is equivalent to the following problem:

(EP) min
c, x, y

ZEP (c, x, y) =
∑
i∈I

∑
j∈J

∑
k∈K

fij(d(i, Yk) + d(Yk, j))xijk

+
∑
k∈K

(F × I(
∑
i∈I

∑
j∈J

fijxijk) + h(
∑
i∈I

∑
j∈J

fijxijk)) (5)

subject to
∑
k∈K

xijk = 1, ∀ i ∈ I, j ∈ J, (6)

xijk, ck ≥ 0, Yk ∈ R2 ∀ i ∈ I, j ∈ J, k ∈ K. (7)

Before we establish Property 3, we need to use the approach in Brimberg and Love (1994)

to establish that the flows from plants to retailers can be assumed to be assigned to exactly

one DC.

Lemma 1. If an optimal solution for Problem (P) exists where a flow (i, j) is assigned to

two DCs k and l, then we have

f
dh(ck)

dck
+ fij (d(i, Yk) + d(Yk, j)) = f

dh(cl)

dcl
+ fij (d(i, Yl) + d(Yl, j)) , (8)

where dh(ck)/dck denotes the first derivative of the sizing cost function h(·) and f =

∑
i∈I

∑
j∈J fij.

Proof: If the statement is not true, then we assume without loss of generality that

f
dh(ck)

dck
+ fij(d(i, Yk) + d(Yk, j)) < f

dh(cl)

dcl
+ fij(d(i, Yl) + d(Yl, j)). (9)

Note that ck =
∑

i∈I

∑
j∈J fijxijk in any optimal solution. If we perturb xijk by a quantity

δ > 0 and xijl by −δ, then
∑

i∈I

∑
j∈J fij(xijk + δ) = ck + δf . Hence, the net improvement of

the objective function value equals (assuming that both connections k and l are still open

after the perturbation)

fij(d(i, Yk) + d(Yk, j))(xijk + δ) + h(ck + δf) + fij(d(i, Yl) + d(Yl, j))(xijl − δ) + h(cl − δf)

9

−(fij(d(i, Yk) + d(Yk, j))xijk + h(ck) + fij(d(i, Yl) + d(Yl, j))xijl + h(cl))

= δ

(
f

h(ck + δf) − h(ck)
δf

+ fij(d(i, Yk) + d(Yk, j)) −
(

f
h(cl + δf) − h(cl)

δf
+ fij(d(i, Yl) + d(Yl, j))

))
.

Since dh(ck)/dck = limδf→0
h(ck+δf)−h(ck)

δf
and f is a constant, by (9), the net improvement

of the objective function value will be negative when δ → 0. The statement follows from the

ensuing contradiction.

Property 3. There exists an optimal solution of Problem (P) for which each plant-retailer

flow (i, j) is allocated to a single DC, i.e., xijk = 0 or 1, ∀ i ∈ I, j ∈ J, k ∈ K, if h(·) is an

increasing concave function and ck is unbounded.

Proof: Suppose that there is an optimal solution for Problem (P) with a flow (i, j) that is

allocated to at least two different DCs, say k and l. Then both xijk and xijl are positive.

Let us arbitrarily increase xijk by an amount δ = xijl and decrease xijl to zero. Since h(·) is

concave, we obtain,

h(ck + δf) − h(ck) ≤ δf
dh(ck)

dck
,

and

h(cl) − h(cl − δf) ≥ δf
dh(cl)

dcl
.

¿From the proof of Lemma 1, we know the net improvement of the objective function value

is

δ

(
f

h(ck + δf) − h(ck)
δf

+ fij(d(i, Yk) + d(Yk, j)) −
(

f
h(cl + δf) − h(cl)

δf
+ fij(d(i, Yl) + d(Yl, j))

))

≤ δ

(
f

dh(ck)

dck

+ fij(d(i, Yk) + d(Yk, j))

)
− δ

(
f

dh(cl)

dcl

+ fij(d(i, Yl) + d(Yl, j))

)
= 0.

The last equation follows from Lemma 1. Thus, a new feasible solution is obtained which is

at least as good as the original optimal solution, and which has one less non-zero variable.

10

We repeat the process until each flow is completely allocated to its single DC. The result

follows.

If only a single DC needs to be located, by Property 2, the sizing cost term in Problem

(P) is a constant in any optimal solution and constraint (3) is redundant. Therefore, the

problem becomes

(SP) min
c, y

ZSP (c, y) =
∑
i∈I

∑
j∈J

∑
k∈K

fij(d(i, Yk) + d(Yk, j)). (10)

Let all origin-destination nodes be the existing nodes. For each existing nodes, its demand

is either
∑

j∈J fij (for origin node) or
∑

i∈I fij (for destination node). Thus we obtain the

following property:

Property 4. If only a single DC needs to be located, Problem (P) reduces to a standard

single facility location problem.

3 Set covering problem and column generation approach

In this section, we first reformulate Problem (P) as a set covering problem. Then a column

generation approach is presented to solve the problem.

3.1 Set covering model

By Property 3, an optimal solution to Problem (P) consists of a partition of origin-destination

flow (i, j) into nonempty subsets. We can find an optimal partition from all nonempty

subsets of the demand flow set by solving a set covering problem. Let S be the collection of

all nonempty subsets of the origin-destination flow set, i.e., S = {W1, W2, · · · , Ws, · · ·}. Let

11

bijs be a constant that is equal to 1 if origin-destination flow (i, j) is included in subset Ws

and 0 otherwise, and os,Yk
be the related total cost if Ws is assigned to a single DC located

at Yk. Thus,

os,Yk
= F +

∑
(i,j)∈Ws

fij(d(i, Yk) + d(Yk, j) + h

⎛
⎝ ∑

(i,j)∈Ws

fij

⎞
⎠ .

By Property 4, for a given Ws, locating the single DC can be reduced to a standard single

facility location problem. Suppose that T s
Yk

is the optimal transportation cost in the standard

single facility location problem for Ws, i.e.,

T s
Yk

= min
∑

(i,j)∈Ws

fij(d(i, Yk) + d(Yk, j)),

and Ws is not empty, then we obtain the lowest cost of having one DC serve the flow set Ws,

os, as follows:

os = F + T s
Yk

+ h

⎛
⎝ ∑

(i,j)∈Ws

fij

⎞
⎠

= F + T s
Yk

+ h

⎛
⎝∑

i∈I

∑
j∈J

fijbijs

⎞
⎠ .

Let decision variable zs = 1 if the origin-destination flow set Ws is selected to be served

by a DC and 0 otherwise. Problem (P) or (EP) can be reformulated into a set covering

problem as follows:

(SC) min
z

ZSC(z) =
∑

Ws∈S
oszs (11)

subject to
∑

Ws∈S
bijszs ≥ 1, ∀ i ∈ I, j ∈ J, (12)

zs ∈ {0, 1}, ∀ Ws ∈ S. (13)

Constraint (12) guarantees that each origin-destination flow belongs to at least one selected

origin-destination flow set. Constraint (13) is the integrality constraint. For this set covering

problem, we obtain the following property:

12

Property 5. There is no optimal solution for Problem (SC) such that Ws and Ws′ are

assigned to the same DC, where Ws and Ws′ are any two origin-destination flow sets.

Proof: Suppose that there is an optimal solution for Problem (SC) such that Ws and Ws′

are assigned to the same DC k with location Yk. According to the definition of os, we obtain,

os + os′ = F + T s
Yk

+ h

⎛
⎝∑

i∈I

∑
j∈J

fijbijs

⎞
⎠

+F + T s′
Yk

+ h

⎛
⎝∑

i∈I

∑
j∈J

fijbijs′

⎞
⎠ .

Let Wu = Ws ∪ Ws
′ , assign Wu to DC k and drop Ws and Ws

′ . Then the related cost

becomes,

ou = F + T s
Yk

+ T s′
Yk

+ h

⎛
⎝∑

i∈I

∑
j∈J

fijbijs +
∑
i∈I

∑
j∈J

fijbijs′

⎞
⎠ .

Since h(x) + h(y) ≥ h(x + y), for any x ≥ 0 and y ≥ 0 (because h is concave), it is easy

to see that ou ≤ os + os
′ . By doing this and keeping everything else unchanged, we obtain a

new feasible solution, which is at least as good as the old one. The result follows.

This property guarantees that only one origin-destination flow set will be assigned to

each generated DC in the optimal solution.

The number of columns involved in this formulation is exponential. Neither the set

covering problem nor its linear programming relaxation can be solved by a method that

first generates all feasible columns explicitly. We therefore resort to a column generation

approach.

13

3.2 Column generation approach

Let (S̄C) be the linear programming relaxation of (SC) and (S̄CS′) be the master problem

of (S̄C) in which a subset S ′
of S is available. Thus, the master problem (S̄CS′) is as follows:

(S̄CS′) min
z

Z S̄CS′ (z) =
∑

Ws∈S′
oszs (14)

subject to
∑

Ws∈S′
bijszs ≥ 1, ∀ i ∈ I, j ∈ J, (15)

0 ≤ zs ≤ 1 ∀ Ws ∈ S ′
. (16)

From the theory of linear programming, we know that a solution to a minimization

problem is optimal if the reduced cost of each variable is nonnegative. Here, the reduced

cost o∗s of any subset Ws is given by

o∗s = os −
∑
i∈I

∑
j∈J

λijbijs

= F + T s
Yk

+ h

⎛
⎝∑

i∈I

∑
j∈J

fijbijs

⎞
⎠−∑

i∈I

∑
j∈J

λijbijs,

where λij is the given value of the dual variable corresponding to constraint (15) for i and

j. To test whether the current solution is optimal, we determine if there exists a Ws with

negative reduced cost. Thus the pricing problem is as follows:

(PP) min
∑
i∈I

∑
j∈J

fij(d(i, Yk) + d(Yk, j))xijk + h

⎛
⎝∑

i∈I

∑
j∈J

fijxijk

⎞
⎠−∑

i∈I

∑
j∈J

λijxijk, (17)

subject to xijk ∈ {0, 1}, Yk ∈ R2, ∀ i ∈ I, j ∈ J, k ∈ K. (18)

Here, we drop the constant F and will add it to the optimal objective function value after the

pricing problem is solved. The pricing problem is a mixed integer nonlinear programming

14

problem. The difficulty to solve this problem is two fold. First, the DC location Yk is a

variable. Therefore,
∑

i∈I

∑
j∈J fij(d(i, Yk) + d(Yk, j))xijk is a mixed integer nonlinear term.

Second, the function h(·) is a concave function. However, according to Property 1, we know

that DCs will be located at grid points in an optimal solution. Thus, we choose the DC

locations from the grid points. For given grid point,
∑

i∈I

∑
j∈J fij(d(i, Yk)+d(Yk, j))xijk is a

linear function of xijk. If for every grid point we have nonnegative reduced cost, then every

subset Ws has nonnegative reduced cost. Let G be the set of all grid points. The pricing

problem reduces to the following problem (RPPk) for each grid point Yk ∈ G:

(RPPk) min
x

ZRPPk(x) =
∑
i∈I

∑
j∈J

(fijdijk − λij)xijk + h

⎛
⎝∑

i∈I

∑
j∈J

fijxijk

⎞
⎠ , (19)

subject to xijk ∈ {0, 1}, ∀ i ∈ I, j ∈ J, (20)

where dijk = d(i, Yk)+d(Yk, j) is a known constant here since Yk is a grid point. Coincidently,

the pricing problem is very similar to the one in Shen, Coullard, and Daskin (2003). They

developed an effective approach to solve such the pricing problem. Following their idea, we

can develop an algorithm to solve the pricing problems in polynomial time.

Let x∗ be an optimal solution to Problem (RPPk) and the minimum reduced-cost set

Ws = {(i, j) : x∗
ijk = 1}, and G∗

k = F + ZRPPk(x∗). If G∗
k ≥ 0, then we can conclude that

there is no set Ws assigning to grid point k with negative reduced cost. If ∀k, G∗
k ≥ 0, we

can conclude that there is no set Ws ∈ S with negative reduced cost.

Now suppose that all flows (i, j), ∀ i ∈ I, j ∈ J , have been sorted so that:

fi1j1di1j1k − λi1j1

fi1j1

≤ fi2j2di2j2k − λi2j2

fi2j2

≤ · · · ≤ fiγjγdiγjγk − λiγjγ

fiγjγ

,

15

where γ is the total number of non-zero flows. Then, the following theorem is an immediate

consequence from Shen, Coullard, and Daskin (2003).

Theorem 1. There is an optimal solution x∗
ijk to Problem (RPPk) in which the following

properties hold:

1. If fijdijk ≥ λij, then x∗
ijk = 0, ∀ i ∈ I, j ∈ J .

2. If x∗
itjtk = 1, for some t ∈ {1, 2, · · · , γ}, then x∗

iljlk
= 1, for all l ∈ {1, 2, · · · , t − 1}.

Using Theorem 1, we can develop an algorithm to solve the pricing problems in poly-

nomial time. In fact, we can solve Problem (RPPk) by enumeration, i.e., by generating all

solutions with the properties and selecting the one with the lowest objective function value.

The complexity of the pricing problem is O((m + n)2mn log(mn)), where m and n are total

numbers of plant and retailer nodes, respectively.

3.3 Greedy drop heuristic algorithm

In this section we develop a greedy drop heuristic algorithm to solve Problem (P). The

purpose of this section is twofold. First, we need a set of initial columns. Second, we need

a good upper bound. Both objectives can be achieved by using a greedy drop heuristic

algorithm. To present this algorithm we first need to introduce the concept of a shortest

path flow set.

3.3.1 The shortest path flow set

Before we develop the heuristic algorithm, we need to introduce a shortest path flow set of

each grid point for a given grid construction. The grid construction under the Manhattan

16

distance in this paper is defined in Section 2.

We define the shortest path flow set for each grid point as follows. Let (i, j) refer to a pair

of plant and retailer with coordinates (xi, yi) and (xj , yj), respectively, and s refer to any

grid point with location coordinates (xs, ys). Then the shortest path flow set of grid point s,

Ps, is given by:

Ps := {(i, j) : xi ≤ xs, yi ≥ ys, xj ≥ xs, yj ≤ ys} ∪ {(i, j) : xi ≤ xs, yi ≤ ys, xj ≥ xs, yj ≥ ys}

∪{(i, j) : xi ≥ xs, yi ≥ ys, xj ≤ xs, yj ≤ ys} ∪ {(i, j) : xi ≥ xs, yi ≤ ys, xj ≤ xs, yj ≥ ys}.

Under the Manhattan distance, if we select s as a DC location, then for all (i, j) ∈ Ps the

shortest path from plant i to retailer j passes through s. Figure 2 provides examples of sets

Ps.

, ()2, j1{(i=sP

Grid PointPlantRetailer

i

j

i

j

i1

2

)}22 , ji)1 , (, j2

4

j

j 1

2

s

3

Figure 2: An illustration of the shortest path flow set

17

3.3.2 Greedy drop heuristic algorithm

The greedy drop heuristic algorithm is built based on the shortest path flow set of each grid

point. Let fs =
∑

(i,j)∈Ps
fij . Then fs is the total flow amount that passes through s with

the shortest distance. Intuitively, the larger fs is, the more important the grid point s is

because of the concave sizing cost function. Thus, the basic idea for this heuristic algorithm

is to use the order of fs to find a heuristic solution.

The greedy drop heuristic algorithm is as follows: First, we define W to be the set of all

plant-retailer pairs, (i, j), ∀ i ∈ I, j ∈ J , and W u to be the set of (i, j) that are currently

not assigned to any DC. Initialize G = {s : s is a grid point} and W u := W . Find the

shortest path flow set, fs =
∑

(i,j)∈Ps∩W u fij , ∀s ∈ G. Pick the grid point s with the largest

fs value as a candidate DC location and assign all (i, j) ∈ Ps ∩ W u to this DC, and let

Ws = {(i, j) ∈ Ps ∩ W u}. Update W u := W u \ Ps and G := G \ {s}, and repeat the

procedure until W u is empty. Using this procedure, we obtain a collection of initial Ws sets

and their corresponding grid points.

Second, we drop one initial Ws, assign the flows of this set to the nearest available

grid point that is selected above, and recalculate the objective function. The procedure is

repeated for all initial Ws sets. Then we drop the Ws with the most improved objective

function, update Ws and repeat the procedure until we see no further improvement in the

objective function value.

Each step of the algorithm generates a collection of Ws sets. All of them could be used

as an initial subset S ′
in the column generation algorithm. We also note that the solution of

the greedy drop heuristic algorithm provides an upper bound for the original problem (P).

18

3.4 Column generation algorithm

Now, we are ready to give a step-wise description of the column generation algorithm as

follows:

1. Generate the initial subset S ′
as described above.

2. Solve the linear programming relaxation to obtain the vector of current dual costs.

3. Use the pricing algorithm to determine if there is subset Ws whose associate column

has negative reduced cost. If such subset Ws exist, then add it to S ′
and go to step 2.

4. If no such subset Ws exist, then stop. Solve the set covering problem (SC) for S ′
.

4 Computational Results

In this section, we test the performance of the greedy drop heuristic algorithm and the

column generation algorithm. The efficiency of the algorithms are tested by solving randomly

generated problems of different sizes. The algorithms were programmed in Microsoft Visual

C++ 5.0 and CPLEX8.1. All of the experimental tests were carried out on a Dell OptiPlex

GX240 with 512MB RAM and 1.8GHz CPU. Computation times are in seconds.

4.1 Data generation

First, we generated locations of each plant and retailer, which are given by their x and

y coordinates. These coordinate values were randomly selected from U(0, 200), where U

denotes a uniform distribution. For each pair of plant-retailer, the amount of flow was

19

randomly drawn from U(5, 30). The constant fixed charge cost of a DC, F , was 1000.

Also, the DC sizing cost function was set to be h(ck) = 50
√

ck. The sizes of randomly

generated problems were the combination of the following parameters: number of plant

nodes m = 5, 10; number of retailer nodes n = 10, 15, 20, 25, 30; and total number of flows

from plants to retailers were 50, 60, 70, 80, 90, 100.

4.2 Computational performance

Here we report the performance of the greedy drop heuristic algorithm and the column

generation algorithm for Problem (P).

We had two schemes for adding the negative reduced cost column to the linear program

after having solved the pricing algorithm. In the first one (called Cg1), we iteratively added

a column with the smallest negative reduced cost from all k ∈ G to the linear program. We

continued the procedure until the pricing problems could not find a negative reduced cost

column, i.e., the linear programming relaxation problem was solved optimally. In the second

scheme (called Cg2), we remove some columns during the column generation procedure so

as to reduce the size of the restricted master problem. The criterion of removing a column

is as follows: calculate the average reduced cost for the existing columns that have positive

reduced costs, then remove those columns whose reduced cost is greater than or equal to

two times of the average reduced cost.

Table 1 summarizes the computational results for the greedy drop heuristic algorithm

and the column generation algorithms (both Cg1 and Cg2). Some headers of the columns

in Table 1 are:

20

• CPU time (seconds): Total CPU time (seconds) consumed for solving the instance;

• Greedy: greedy drop algorithm presented in Section 3.3;

• Greedy/lb: (greedy solution value - linear relaxation lower bound)/linear relaxation

lower bound * 100;

• Cg1/lb: (Scheme (Cg1) solution value - linear relaxation lower bound)/linear relax-

ation lower bound * 100;

• Cg2/lb: (Scheme (Cg2) solution value - linear relaxation lower bound)/linear relax-

ation lower bound * 100;

¿From Table 1, we can see that both greedy drop and column generation with scheme Cg2

algorithms performed extremely well for the given problem sizes, in terms of computational

time and heuristic gap. In fact, they have the same heuristic gaps for the given instances.

The column generation algorithm with scheme Cg1 also performed well, except for the last

problem instance. For this instance, we forced the integer programming solver to stop after

one hour. Therefore, the heuristic gap for this case is large, compared with others. However,

the column generation algorithm with scheme Cg1 solved the problem optimally for eight

instances.

We also tested very large size problems with hundreds of retailers and thousands of flows.

For both schemes, the column generation algorithm could not generate a solution. But the

increased problem size did not affect the greedy drop heuristic algorithm as expected, in

terms of computational time.

21

Table 1: Computational Results

CPU time (seconds) Gap (%)

m n Flow Number Greedy Cg1 Cg2 Greedy/lb Cg1/lb Cg2/lb

5 10 50 0 30.162 7.844 0.002 0.000 0.002

5 15 60 0 90.068 17.562 0.003 0.000 0.003

5 20 70 0 134.529 15.563 0.014 0.000 0.014

5 25 80 0.016 210.166 29.72 0.009 0.000 0.009

5 30 90 0.016 593.015 87.658 0.032 0.000 0.032

10 10 60 0 519.898 15.953 0.587 0.210 0.587

10 15 70 0.047 73.682 15.344 0.664 0.000 0.664

10 20 80 0.016 162.329 38.251 0.666 0.000 0.666

10 25 90 0.015 270.556 50.157 0.355 0.000 0.355

10 30 100 0.032 3886.83∗ 52.58 0.845 8.783∗ 0.845

22

5 Conclusion

This paper proposes a model for studying the problem of simultaneous consideration of

siting and sizing of DCs on the plane. The problem minimizes the total transportation cost

and DC sizing costs, which include its fixed charge cost and concave sizing cost. The most

significant results are the grid node optimality property under the Manhattan distance and

full flow assignment property under the concave sizing cost assumption. These results allow

us to reformulate the problem as a set covering problem and develop an efficient greedy drop

heuristic algorithm and a column generation heuristic algorithm. The computational results

show the efficiency and accuracy of the algorithms.

Several extensions of the problem are possible. For example, we assume that the fixed

charge sizing cost of a DC is constant for all potential DC sites. Developing a model for

location related fixed charge sizing cost is a possible topic for further research. The problem

could also be investigated under different distance measures, for example, the Euclidean

distance. The solution approach developed in this paper can also be extended to network

location and sizing problem, where DCs have to be located on a given network.

Acknowledgments

The authors would like to acknowledge support from the National Science Foundation via

Grant No. DMI-0300370. They would also like to thank the referees for their constructive

comments.

23

References

Aboolian, R., O. Berman, and D. Krass (2004). Competitive facilities location and design

problems on a network. Presented at the EURO XX Conference in Rhodes, Greece,

July 2004 .

Brimberg, J. and R. F. Love (1994). A location problem with economies of scale. Studies

in Locational Analysis 7, 9–19.

Brimberg, J. and A. Mehrez (1997). A note on the allocation of queueing facilities using

a minisum criterion. Journal of the Operational Research Society 48, 195–201.

Brimberg, J., A. Mehrez, and G. O. Wesolowsky (1997). Allocation of queueing facilities

using a minimax criterion. Location Science 5, 89–101.

Cooper, L. (1963). Location-allocation problems. Operations Research 11, 331–343.

Cooper, L. (1964). Heuristic methods for location-allocation problems. SIAM Review 6,

37–53.

Cooper, L. (1967). Solutions of generalized locational equilibrium models. Journal of Re-

gional Science 7, 1–18.

Cormier, G. and E. A. Gunn (1996a). On the coordination of warehouse sizing, leasing

and inventory policy. IIE Transactions 28, 149–154.

Cormier, G. and E. A. Gunn (1996b). Simple models and insights for warehouse sizing.

Journal of the Operational Research Society 47, 690–696.

Eilon, S., C. D. T. Watson-Gandy, and N. Christofides (1971). Distribution Management:

Mathematical Modelling and Practical Analysis. Hafner, New York.

24

Heragu, S. (1997). Facilities Design. PWS Publishing Company.

Hodgson, M. J., K. E. Rosing, and F. Shmulevitz (1993). A review of location-allocation

applications literature. Studies in Locational Analysis 5, 2–29.

Huang, S., R. Batta, K. Klamroth, and R. Nagi (2005). The K-connection location prob-

lem in a plane. Annals of Operations Research 136, 193–209.

Jucker, J. V., R. C. Carlson, and D. H. Kropp (1982). The simultaneous determination

of plant and leased warehouse capacities for a firm facing uncertain demand in several

regions. IIE Transactions 14, 99–108.

Krarup, J. and P. M. Pruzan (1990). Ingredients of locational analysis. In P. B. Mirchan-

dani and R. L. Francis (Eds.), Discrete Location Theory, pp. 1–54. John Wiley, New

York.

Lee, C. Y. (1991). An optimal algorithm for the multiproduct capacitated facility location

problem with a choice of facility type. Computers and Operations Research 20, 527–

540.

Lowe, T. J., R. L. Francis, and E. W. Reinhardt (1979). A greedy network flow algorithm

for a warehouse leasing problem. AIIE Transactions 11, 170–182.

Mazzola, J. B. and A. W. Neebe (1999). Lagrangian-relaxation-based solution procedures

for a multiproduct capacitated facility location problem with choice of facility type.

European Journal of Operational Research 115, 285–299.

Shen, Z. M., C. Coullard, and M. S. Daskin (2003). A joint location-inventory model.

Transportation Science 37, 40–55.

25

Sung, C. S. and Y. H. Han (1992). Determination of automated storage/retrieval system

size. Engineering Optimization 19, 269–286.

White, J. A. and R. L. Francis (1971). Normative models for some warehouse sizing

problems. AIIE Transactions 3, 185–190.

26

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

