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Abstract  
 
This paper addresses strategies for improving delivery performance in a serial supply 
chain when delivery performance is evaluated with respect to a delivery window. 
Contemporary management theories advocate the reduction of variance as a key step in 
improving the overall performance of a system.  Models are developed that incorporate 
the variability found in the individual stages of the supply chain into a financial measure 
that serves as a benchmark for justifying the capital investment required to improve 
delivery performance within the supply chain to meet a targeted goal.  
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Cost Characterizations of Supply Chain Delivery Performance 

 
1. Introduction 
 
In the past three decades, the relationship between customers, manufacturers and 
suppliers has undergone numerous paradigmatic changes.  Modern manufacturing 
paradigms such as the Just-In-Time (JIT) philosophy, Total Quality Management (TQM) 
and agile manufacturing, advocate the elimination of non-value adding activities in 
procurement, production and distribution. The progressive approach espoused by these 
paradigms is to view individual actions as part of an integrated series of business 
functions that span across the entire supply chain.  
 
The goals of supply chain management are to reduce uncertainty and risks in the supply 
chain, thereby positively affecting inventory levels, cycle time, processes, and ultimately, 
end-customer service levels (Chase et al., 1998). Effective supply chain administration 
requires a proactive management style focused on long-term continuous improvement of 
the supply chain. Performance measures that accurately reflect supply chain operations 
are required to support continuous improvement within a supply chain. Doing so requires 
the adoption of performance metrics that accurately measure the supply chain as a whole, 
and that focus on measuring performance in terms of cost and uncertainty. 
 
Several researchers have expressed concern regarding limitations in supply chain 
performance metrics (see for example, Gunasekaran et al., 2004).  These concerns are 
three-fold. First, performance measures are not cost based. Ellram (2002) identified the 
lack of relevant performance measures as a key barrier to successful cost management in 
the supply chain. This view is also shared by Lancioni (2000), who observes that as the 
importance of supply chain management grows, it becomes even more imperative for 
firms to measure the cost performance of their supply chain systems. Lalonde and Pohlen 
(1996) identified a critical need in supply chain management for linking performance 
measurement with cost.  
 
Practicing managers in business would agree that cost analysis is important in the 
management, planning and control of their organizations. Because the metric of cost is 
easily understood and routinely welcomed by management, cost-based performance 
measures are attractive for use in supply chain management. Cost-based performance 
measures are compatible across various processes and stages of the supply chain. Cost-
based measures also provide direct input into the capital budgeting processes used to 
justify investment in supply chain improvement initiatives. 
 
In a case study of five firms Ellram (2002) found: 1) cost consciousness is a way of life in 
the organizations studied, and 2) this philosophy was felt and experienced by all members 
of the corporation, from the chairman of the board, to the administrative staff, even to the 
workers on the manufacturing floor. Ballou et al. (2000) cite the ability to define and 
measure cost among channel members as the first step to analyze the supply chain for 
cost-saving opportunities.  
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Second, performance measures often ignore variability. Variability is inherent in nearly 
all manufacturing and distributions systems. Managing uncertainty is one of the most 
important and challenging problems to effective supply chain management (Blackhurst et 
al., 2004; Sabri and Beamon, 2000).  Johnson and Davis (1998) expressed concern that 
current supply chain performance metrics measure attributes that customarily ignore the 
effects of variability. The reduction of variance is a critical aspect to a methodology 
designed to improve system performance (Johnson and Davis, 1998; Davis, 1993).   
 
Lastly, the adoption of performance metrics that accurately measure the supply chain as a 
whole, and that focus on measuring performance in terms of cost and uncertainty must be 
integrated into chain-wide continuous improvement activities. Walker and Alber (1999) 
note that supply chain performance measures continue to be strictly defined in terms that 
not only optimize local operations, but also reward the individual performance of chain 
members. Van Hoek (1998) concludes that current performance measures are designed 
for single members within the supply chain and do not reach across chain members. 
Cooper et al. (1997) identify that shortcomings in performance measurement limit 
improvement projects between supply chain members.  
 
Therefore, the performance measures used must be formulated to serve as integrating 
tools for fostering long term, continuous improvement between and within the various 
stages of the supply chain. Aspects of supply chain operation that are not measured in 
understandable performance metrics such as cost will clearly hinder cooperation between 
the various coalitions found within the supply chain structure. 
 
Performance analysis that is based on cost is not an end in itself. When used in 
combination with non-cost based measures, such as those found in the balanced score 
card methodology, cost-based measures, designed to measure processes linking various 
stages of the supply chain, will prove an effective performance measure for long term 
improvement in supply chain operations. Cost-based analysis should be viewed as an 
ongoing initiative incorporated into a framework that connects functional areas and 
organizations within the supply chain into a reward system for never-ending 
improvement.  
 
In this research we concentrate on one aspect of overall supply chain performance, 
delivery timeliness to the final customer in a serial supply chain that is operating under a 
centralized management structure. The objectives of this paper are as follows: 1) develop 
a cost-based performance metric for analyzing delivery performance within a supply 
chain, and ii) develop a framework for integrating delivery accuracy and reliability into 
the continuous improvement of supply chain operations.  
 
In satisfying the first research objective, a cost-based performance metric for evaluating 
delivery performance and reliability will be developed. Delivery lead time is defined to 
be the elapsed time from the receipt of an order by the supplier to the receipt of the 
product ordered by the customer. Delivery lead time is composed of a series of internal 
(manufacturing and processing) lead times and external (distribution and transportation) 
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lead times found at various stages of the supply chain. Variability in the internal and 
external components of delivery lead time is modeled at each stage of the supply chain, 
and the resultant lead time delivery distribution to the final customer is defined. The 
delivery performance measure designed in this research incorporates this uncertainty into 
a cost-based performance measure. Delivery within the supply chain is analyzed with 
regard to the customer’s specification of delivery timeliness as defined by an on-time 
delivery window. 
 
To fulfill the second research objective, a methodology is developed that justifies the 
critical need for organizations to invest capital into the improvement of delivery 
performance. The cost-based delivery performance measure developed herein is 
integrated into a framework that demonstrates the financial benefit of reducing variability 
in delivery performance within the context of a continuous improvement program.  
 
This paper is organized as follows.  In Section 2, an analytical model based on the 
expected costs associated with untimely delivery is developed. In Section 3, propositions 
are introduced to analyze the delivery model in terms of its key structural components. In 
Section 4, Laplace transformations are used to incorporate the time value of money into 
the model framework to provide a minimum bound in the amount of investment required 
to improve delivery performance. 
 
2. Modeling Delivery Performance  
 
In today’s competitive business environment, customers require dependable on-time 
delivery from their suppliers. In the short term, delivery deviations – the earliness and 
lateness from the targeted delivery date - must be analyzed, as both early and late 
deliveries are disruptive to supply chains. Early and late deliveries introduce waste in the 
form of excess cost into the supply chain; early deliveries contribute to excess inventory 
holding costs, while late deliveries may contribute to production stoppages costs and loss 
of goodwill. It is becoming more common for customers to penalize their suppliers for 
early as well as late deliveries (Schneiderman, 1996). Burt (1989) notes that reductions in 
early deliveries reduced inventory holding costs at Hewlett-Packard by $9 million. In the 
automotive industry Saturn levies fines of $500 per minute against suppliers who cause 
production line stoppages (Frame, 1992).  Chrysler fines suppliers $32,000 per hour 
when an order is late (Russell and Taylor, 1998). When delivery is made on time, 
however, the costs incurred by the supplier are considered to be “normal costs” and no 
penalty cost is incurred. Grout (1996) formulates an analytical model wherein contractual 
incentives are used to enhance on time deliveries.   
 
To protect against untimely deliveries, supply chain managers often inflate inventory and 
production flow time buffers. Correcting untimely deliveries in this fashion represents a 
reactive management style that may introduce additional sources of variance into the 
supply chain, and further contribute to the to the bullwhip effect. In the long run, delivery 
performance is an important component in the overall continuous improvement of supply 
chain operations.  
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Recent empirical research has identified delivery performance as a key management 
concern among supply chain practitioners (Lockamy and McCormack, 2004; Vachon and 
Klassen, 2002; Verma and Pullman, 1998). Gunasekaran et al. (2001) presented a 
conceptual framework for defining delivery performance in supply chain management. 
Within the structure, delivery performance is classified as a strategic level supply chain 
performance measure. Delivery reliability is viewed as a tactical level supply chain 
performance measure. The framework advocates that to be effective supply chain 
management tools, delivery performance and delivery reliability need to be measured in 
financial (as well as non-financial) terms. Lockamy and Spencer (1998), and Monczka 
and Morgan (1994) note that evaluation models fail to address delivery performance cost 
measures in relation to continuous improvement efforts within supply chains. Hadavi 
(1996) identified that when costs associated with missed deliveries are not taken into 
account, it is more financially attractive for a manufacturer to hold more inventory in 
reserve. 
 
An analysis of 50 supplier evaluation models found in the open literature by Guiffrida 
(1999) identified a failure of the models to: 1) address early and late deliveries separately, 
2) quantify delivery performance in financial terms, and 3) support supplier development 
and continuous improvement programs designed to improve delivery performance.  
The inability to translate delivery performance into financial terms hinders management’s 
ability to justify capital investment for continuous improvement programs, which are 
designed to improve delivery performance. 
 
Failure to quantify supplier delivery performance in financial terms presents both short-
term and long-term difficulties.  In the short term, the buyer-supplier relationship may be 
negatively impacted.  According to New and Sweeney (1984), a norm value of 
“presumed” performance is established by default when delivery performance is not 
formally measured.  This norm stays constant with time and is generally higher than the 
organization’s actual performance. Carr and Pearson (1999) demonstrate that supplier 
evaluation systems have a positive impact on the buyer-supplier relationship; buyer-
supplier relationships ultimately have a positive impact on financial performance.  In the 
long term, failure to measure supplier delivery performance in financial terms may 
impede the capital budgeting process, which is necessary in order to support the 
improvement of supplier operations within a supply chain. 
 
2.1 Delivery Windows 
 
A delivery window is defined as the difference between the earliest acceptable delivery 
date and the latest acceptable delivery date. When an order is placed, the customer is 
typically given a fixed promise date.  Under the concept of delivery windows, the 
customer supplies an earliest allowable delivery date and a latest allowable delivery date.  
Several researchers advocate the use of delivery windows in supply chain management 
and time-based manufacturing systems (see for example Jaruphongsa et al., 2004; Lee et 
al., 2001; Fawcett and Birou, 1993; Corbett, 1992).  Johnson and Davis (1998) note that 
metrics based on delivery (order) windows capture the most important aspect of the 
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delivery process: reliability.  They argue that modeling delivery reliability, e.g. 
variability, is the key to improving the delivery process.  
 
Within the delivery window, a delivery may be classified as early, on-time, or late.  
Figure 1 illustrates a delivery window for normally distributed delivery.  Delivery lead 
time, X, is a random variable with probability density function ( )xf X .  The on-time 
portion of the delivery window is defined by 12 cc − .  Ideally, 012 =− cc . However, the 
extent to which may be measured in hours, days, or weeks depending on the 
industrial situation. 

012 >− cc

 
<Insert Fig. 1 about here> 

 
2.2 Model Development 
 
Consider a supply chain in operation over a time horizon of length T years, where a 
demand requirement for a single product of D units will be met with a constant delivery 
lot size Q.  A single supplier provides a buyer with the delivery of a make-to-order 
product.  Let X represent the delivery time for Q; the elapsed time from the receipt of an 
order by the supplier to the receipt of the delivery lot size by the buyer.  Hence, the 
delivery time consists of the internal manufacturing lead-time(s) of the supplier, plus the 
external lead time associated with transporting the lot size from supplier to buyer.   
 
For a two-stage supply chain the expected penalty cost per period for untimely delivery, 
Y, is 

                                                      (1) ( ) ( )dxxfcxKdxxfxcQHY X

b

c
X

c

a
∫∫ −+−=
2

1

21 )()(

where     Q =  constant delivery lot size 
               H = supplier’s inventory holding cost per unit per unit time 
               K = penalty cost per time unit late (levied by the buyer). 
 a, b, , = parameters defining the delivery window 1c 2c
               delivery lead time component at stage=iW ( )2,1=i  
          = density function of delivery time X. ( )

21 WWX fxf +=
 
The individual lead time components at each stage of the supply chain are modeled using 
the normal distribution and independence between stages is assumed. Normality and 
independence among stages is often assumed in the literature (see for example 
Erlebacher and Singh, 1999; Tyworth and O’Neill, 1997). It is further assumed that 
delivery performance is stable enough so that the modal delivery time is within the on- 
time portion of the delivery window. For situations necessitating the need to truncate the 
normal density to prevent nonnegative delivery times or select other density functions 
defined for only positive values of the delivery time see Guiffrida (1999).  
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The penalty cost, K, is an opportunity cost due to lost production. Dion et al. (1991) 
reported that purchasing managers view the production disruptions caused by delivery 
stockouts to be more widespread and more costly than the lost sales that stockouts cause. 

ence, K has been defined as an opportunity cost due to lost production as described by H
Frame (1992), and Russell and Taylor (1998).  
 
Simplifying (1) and introducing ( )⋅φ and ( )⋅Φ  as the standard normal density and 
umulative distribution functions respectively, yields the total expected penalty cost for 

ally distributed delivery time  
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an 
ill 

e distribution. The 
ext section examines the dynamics of these three approaches on the expected penalty 

ry distribution is normally distributed.  

 is 

e 

he potential problem associated with reducing the on-time portion of the 
elivery window, when no action is taken to alter the mean and variance of the delivery 

roposition 1. For a fixed mean and variance, reducing the on-time portion of the 
 window increases the expected penalty cost. 

f. 
ith no loss of generality, let the on-time portion of the delivery window be defined such 

that 

 

3. Strategies for Improving Delivery Performance 
 

There are three specific aspects of the expected penalty cost model that management c
use to determine the potential for improvement in delivery performance. Propositions w
be presented to provide an analytical analysis of the expected penalty cost model as a 
function of: 1) the width of the on-time portion of the delivery window, 2) the mean of 
the delivery time distribution, and 3) the variance of the delivery tim
n
cost model when the delive
 
3.1 The Delivery Window 
 
Reducing early and late deliveries is a desirable improvement goal.  This objective
only achievable when management has not only identified the cause(s) of untimely 
delivery, but also has taken subsequent action to remove these causes of untimely 
delivery from the supply chain.  Often, by management decree, the on-time portion of th
delivery window is reduced in order to induce more timely delivery. Proposition 1 
demonstrates t
d
distribution.   
 
P
delivery
 
Proo
W

( ) δµµ =−−=− 12 cc . Redefining (2) and differentiating with respect toδ gives 
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v
KQHY δδ .                                                          (3)                                 
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Examining (3), ( ) 0<′ δY  for all 0≥δ .  Hence, for a constant mean and variance, 
arbitrarily reducing the width of the on-time portion of delivery window will result in an 

crease in the expected penalty cost.   

 
r reducing the width of the on-time portion of the delivery window by 

in
 
For a constant mean and variance, the percentage increase in the expected penalty cost 

αfo  percent is  
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Remark 1. For 10 <<α , the maximum increase in the expected penalty cost for 

ducing the width of the on-time portion of the delivery window is bounded by 
 

                            

re

( ) 1
1max − xxR

2exp 2

−<Ψ
x                                                                              (5) 

herew  vx δ=  and = Mill’s Ratio.  

.2 Mean of the Delivery Distribution 

very distribution when the delivery window and variability of delivery are held 
onstant. 

 the mean of 
the delivery distribution will decrease the total expected penalty cost when 

 xR
 
3
 
This section will outline an analysis of the expected penalty cost with respect to the mean 
of the deli
c
 
Proposition 2. For a fixed delivery window and constant variance, reducing

( ) ( ).µµ lateearly YY ′>′  

ess components of the 
xpected penalty cost with respect to the mean are, respectively 
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n of the  the total expected 
enalty cost when

                                                     
Decreasing the mea delivery distribution leads to a decrease in

 ( ) 0<′ µY . This condition is achievable only when ( ) ( ).µµ lateearly YY ′>′  p
 
Remark 1. For a fixed delivery window and constant variance, reducing the mean of the 
delivery distribution will increase the total expected penalty cost when 

( ) ( ).µµ lateearly YY ′<′  
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Proof. Decreasing the mean of the delivery distribution leads to an increase in the total 
expected penalty cost when ( ) 0>′ µY . This condition is achievable only when 

( ) ( ).µµ lateearly YY ′<′  
 
3.3 Variance of the Delivery Distribution 
 
This section will investigate the effects of variability on the expected penalty cost when 
mean of the delivery distribution and the delivery window are held fixed.  
 
Proposition 3. The total expected penalty cost is a monotonically increasing non-convex 
function of the variance for normally distributed delivery.  
 
Proof. 
The first and second derivatives of Y with respect to the variance are  
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Examining (7), the total expected penalty cost is an increasing function of the variance 
since  for positive values of Q, H, K and v.  The total expected penalty cost is 
not a convex function of the variance since the sign of 

( ) 0>′ vY
( )vY ′′  changes.  Examining (8), we 

note that  when( ) 0>′′ vY ( ) ( ){ }2
2

2
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ci µ for i = 1,2 and ( ) 0.04 ≅φ .     

Similarly, . Direct substitution of these values of the ordinate and 
cumulative distribution function into (2) yields 
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( ) 0.0≅vY . 

  
Remark 2. The expected penalty cost is a monotonically increasing convex function of 
the variance provided min<v ( ) ( ){ }2

2
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Proof. Examining (8),  when ( ) 0>′′ vY << v0 min ( ) ( ){ }2
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1 , µµ −− cc . 
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3.4 Joint Optimization of the Expected Penalty Cost Based on the Mean and Variance of 
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Proposition 4. The expected penalty cost is
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Remark 1. ( vY , )δ  is minimized when +∞=
v
δ .  

Proof. The optimal ( )∗∗ v,δ  pair that minimizes ( )vY ,δ  must satisfy the first order 
conditions 
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                             ( ) 0
2 2/1 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛+
vv

KQH δφ .                                                                       (12) 

 

When +∞=
v
δ , ( ) 0=∞+φ and ( ) 0.1=∞+Φ , and the first order conditions and 

convexity requirements for minimizing ( )vY ,δ  are satisfied.  
 

These results support intuitive judgment. For a fixed level of the variance, ∞→
v
δ  as 

the width of the on-time delivery window increases. Widening the symmetric delivery 
window for a fixed variance leads to lower expected penalty costs due to untimely 

delivery.  Conversely, for a fixed on-time delivery window, ∞→
v
δ  as the variance 

approaches zero.  Decreasing the variance when the delivery window is fixed will also 
reduce expected penalty costs.  
 
 3.5 A Summary of Delivery Improvement Strategies                                                      
 
Figure 3 summarizes three “pure” management options for reducing the cost of untimely 
delivery. In addition, several “mixed” strategies are also definable, based on 
combinations of the three pure strategies.  
 

<Insert Fig. 3 about here> 
 
As shown in proposition 1, reducing the on-time portion of the delivery window without 
altering the mean and/or variance of the delivery distribution is not a cost feasible 
strategy. Increasing the width of the on-time delivery window will lower the expected 
penalty cost; however, this tactic leads to a decreased control over the delivery process    
– a result that any company is surely to be dissatisfied with. As illustrated by proposition 
2, shifting the mean of the delivery distribution changes the magnitude of both the 
earliness as well as the lateness cost components, which behave inversely to a mean shift. 
Decreasing the mean will increase expected earliness cost and decrease expected lateness 
cost; increasing the mean will decrease expected earliness cost and increase expected 
lateness cost.  The inverse relationship between the direction of the mean shift and the 
resultant effect on the magnitude of the earliness and lateness cost components would 
tend to make a pure mean shift strategy difficult to implement.  
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As indicated in proposition 4, the expected penalty cost is, under certain conditions, a 
convex function of both the width of the on-time delivery window and variance of the 
delivery process. Minimizing the expected penalty cost is dependent on the ratio of the 
width of the delivery window and the variance. The ratio of the width of the on-time 
delivery window to the standard deviation of delivery can never actually equal positive  
infinity.  This suggests that a sequential (as opposed to a simultaneous) strategy involving 
joint reduction of the delivery window and variance may be useful.  
 
4. Modeling Improvement in Delivery Performance 
 
Ideally the expected penalty cost for untimely delivery, Y, should be equal to zero.   
This implies that, for the currently defined delivery window, all deliveries are within the 
specified delivery window, and that waste in the form of early and late deliveries has 
been eliminated from the system.  Initiating improvements in supply chain delivery 
performance requires capital investment. The expected penalty cost model developed 
herein will provide a useful tool for assessing the financial investment required to 
improve delivery performance.  
 
The present worth of the cost stream ( )tY  over time horizon T, provides an estimate in 
current dollars of costs incurred due to untimely deliveries. The present worth estimate 
provides a benchmark from which management can justify the capital investment 
required to improve delivery performance.  The present worth of an investment in a 
program to improve delivery performance should not exceed the present worth of ( )tY . 
 
Let Ω  represent the set containing the parameters in the expected penalty cost model that 
are changed by management in an improvement program to reduce untimely delivery. 
Model parameters not included in Ω  are assumed fixed. The expected penalty cost model 
under the improvement program is defined by ( )tY ,Ω .  For any specific model 
parameter Ω∈ω , improvement over time is assumed to take a functional form 
where ( ) 0, <′ tf ω and ( ) 0, >′′ tf ω . This form implies that, when improvements in 
delivery timeliness are implemented, the parameter will decrease at a diminishing rate. 
This functional form has intuitive appeal since it generally becomes harder to gain 
additional, incremental process improvements once such enhancements have already 
been made.  This form has been widely adopted in several process improvement studies 
(see for example, Tubino and Suri, 2000; Choi, 1994; Gerchak and Parlar, 1991). 
 
 
4.1 Delivery Variance Reduction 
 
In this section the expected penalty cost is modeled as a decreasing, time-dependent 
function of the delivery variance, { }v=Ω . Hyperbolic and exponential forms are used to 
represent a decreasing time-dependent delivery variance. The cumulative time period 
where the expected penalty cost equals zero under each variance form is also defined. 
The results presented in this section are derived in Appendix A.  
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Hyperbolic Delivery Variance Reduction 
 

Hyperbolic reduction in the variance of delivery is defined as ( ) tMtvf =, , where the 
parameter M represents the level of variance in the delivery distribution prior to the 
adoption of an improvement program to reduce delivery variance. The expected penalty 
cost under hyperbolic variance reduction is 
 

        ( ) ( ) ( ) ( )( ) +⎥
⎦

⎤
⎢
⎣

⎡
Φ−+−= tzctk

t
MQHtvY 11111exp
2

, µ
π

                                              (13)                               

                               ( ) ( ) ( )( )( )⎥
⎦

⎤
⎢
⎣

⎡
Φ−−−− tzctk

t
MK 21221 1exp
2

µ
π

 

 

       where: 
( )

M
c

k i
i 2

2

1
µ−

= and ( ) ( )
M
tctz ii µ−=1    for i = 1,2. 

 
The cumulative time period when the expected penalty cost equals zero, , can be found 
by setting  and solving for t. Let

∗t
( ) 0, =tvf { }µµτ −−= 21 ,min cc .  For hyperbolic 

variance reduction 
24
⎟
⎠
⎞

⎜
⎝
⎛=∗

τ
Mt . 

 
Exponential Delivery Variance Reduction 
 
Exponential reduction in the variance of delivery is defined as ( ) rtPetvf −=, , where the 
parameters P and r represent the level of variance in the delivery distribution prior to the 
adoption of an improvement program to reduce delivery variance and the variance decay 
rate respectively.  The expected penalty cost under exponential variance reduction is 
 

          ( ) ( )( ) ( ) ( )( ) +⎥
⎦

⎤
⎢
⎣

⎡
Φ−++−= tzcekrtPQHtvY rt

121122
1exp

2
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                             (14) 
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⎤
⎢
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⎡
Φ−−−+− tzcekrtPK rt

222222
1 1exp

2
µ

π
 

                 

where: ( )
P

c
k i

i

2

2
µ−

= and ( ) ( )
P
ectz

rt

ii µ−=2    for i = 1,2. 

 
Under exponential variance reduction, the cumulative time period when the expected 

penalty cost equals zero is 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
−=∗

2

4
ln1

Pr
t τ .  
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4.2 Delivery Window Reduction 
 
In this section the expected penalty cost is modeled as a decreasing function of the width 
of the on-time portion of the delivery window, { }µδ −==Ω ii c  for i = 1,2. Hyperbolic 
and exponential forms are used to represent a decreasing on-time delivery window as a 
function of time. The results presented in this section are derived in Appendix B.  
 
Hyperbolic Delivery Window Reduction 
 
Hyperbolic reduction in the width of the on-time portion of the delivery window is 

defined as ( )
t

c
tf i

i
µ

δ
−

=,  for i = 1,2. The expected penalty cost under hyperbolic 

delivery window reduction is 
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Exponential Delivery Window Reduction 
 
Exponential reduction in the width of the on-time portion of the delivery window is 
defined for decay rate r as ( ) ( ) rt

ii ectf −−= µδ , for i = 1,2. The expected penalty cost 
under hyperbolic delivery window reduction is 
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4.3 Joint Reduction in Variance and Delivery Window 
 
In this section hyperbolic and exponential models are presented for joint reduction of the 
variance of delivery and the width of the on-time portion of the delivery window, 

{ iv }δ,=Ω  for i = 1,2. 
 
Joint Hyperbolic Variance and Delivery Window Reduction 
 
An expression for joint hyperbolic reduction in the delivery variance and the width of the 
on-time portion of the delivery window is found by substituting the hyperbolic form into 
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(A-2) and (A-3). The expected penalty cost for joint hyperbolic reduction in delivery 
variance and width of the on-time portion of the delivery window is 
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Joint Exponential Variance and Delivery Window Reduction 
 
An expression for joint exponential reduction in the delivery variance and the width of 
the on-time portion of the delivery window is found by substituting the exponential form 
into (A-4) and (A-5). The expected penalty cost for joint exponential reduction in 
delivery variance and width of the on-time portion of the delivery window is 
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where: = decay rate of variance, = decay rate of on-time window and 1r 2r µδ −= ii c  for 
i = 1,2. 
 
4.5 Financially Justifying Investment for Delivery Improvement 
 
The present worth of  provides management with a benchmark for justifying capital 
investment for improving supply chain delivery performance. Under continuous 
compounding, the present worth of the continuous cost flow 

( )tY

( )tY  can be evaluated using 
Laplace transformations (Grubbström, 1967; Buck and Hill, 1975). The Laplace 
transformation maps the cost flow function that is continuous in the time domain to a 
present worth function continuous in the interest rate (s) domain. The Laplace 
transformation of the expected penalty cost for a continuous improvement program 
defined over a finite time horizon Tt ≤≤0  is  
                                                                                                                    

                     .                                                                         (19) ( )[ ] ( ) dtetYtYL st
T

−∫ Ω=Ω
0

,,

 
An analysis of the present worth of ( )tY  using (19) is presented for the case of time-
dependent reduction in delivery variance, { }v=Ω .  Expressions for ( )[ ]tvYL ,  under 
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hyperbolic and exponential forms of time-dependent variance reduction are derived in 
Appendix C.  
 

 
5. Conclusions 
 
This paper addressed one aspect of supply chain planning by modeling delivery 
performance using a cost-based measure. A model has been presented that financially 
evaluates the effects of untimely delivery. The model provides a framework for modeling 
the continuous improvement of delivery performance with a serial supply chain. The 
model incorporates the time value of money into the evaluation process and provides a 
means for justifying the resources required for investing in a continuous improvement 
program for supplier delivery performance. The model has been demonstrated under 
hyperbolic and exponential functions of delivery variance. Other cases can be explored in 
a similar manner.  
 
There are several aspects of this research that could be expanded. An optimization model 
could be used to determine and allocate variance reduction throughout the component 
stages of the supply chain subject to an investment constraint. Second, other reproductive 
and non-reproductive density functions could be used to model the individual component 
times of the various stages in the supply chain. Lastly, the assumption of independence 
among the stages could be investigated.  
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Appendix A. Hyperbolic and Exponential Reduction of Delivery Variance. 
 
The expected penalty cost can be expressed as a time-dependent function of the variance 
as  
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Under a hyperbolic reduction of delivery variance, ( ) tMtvf =, . Substituting the 
hyperbolic form into (A-1) and simplifying yields (13).  Two key steps of the derivation 
are:  
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Under exponential reduction of delivery variance, ( ) rtPetvf −=, . Substituting the 
exponential form into (A-1) and simplifying yields (14).  Two key steps of the derivation 
are:  
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Appendix B. Hyperbolic and Exponential Variance Delivery Window Reduction. 
 
The expected penalty cost under time-dependent reduction of the on-time portion of the 
delivery window is 
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where: µδ −= ii c  for i = 1,2. 

Substituting the hyperbolic form ( )
t

c
tf i

i
µ

δ
−

=,  for i = 1,2 into (B-1) and simplifying 

yields (15). Similarly, substituting the exponential form ( ) ( ) rt
ii ectf −−= µδ ,  into (B-1) 

and simplifying yields (16). 
 
 
Appendix C. Present Worth Expressions for Time-Dependent Delivery Variance 
Reduction. 
 
Hyperbolic Variance Reduction  
 
The present worth of  over the planning horizon ranging from t = 0 to t = T under 
hyperbolic variance reduction is  
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There are two key terms in (C-1) which lead to the evaluation of ( )[ ]tvYL , . For term 1 (for 
i = 1,2) the Laplace transformation takes the form  
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Gradshteyn and Ryzhik, 1980, 3.381:1, p.317). 
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For term 2 (for i = 1,2) the Laplace transform takes the form .  The 

Laplace identity 
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When i = 1,  and the nonnegative restriction in the Laplace identity can be 
maintained due to the symmetry defined by

012 <z
( ) ( )1212 1 zz Φ−=−Φ . The result is identical 

to that of (C-3) with used in place of . 11k 21k
 
Using the key steps outlined above, the present worth of the expected penalty cost under 
hyperbolic delivery variance reduction is 
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Exponential Variance Reduction  
 
The present worth of  over the planning horizon ranging from t = 0 to t = T under 
exponential variance reduction is  

( tvY , )
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Evaluating the integrals defined in (C-7) yields 
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(see Gradshteyn and Ryzhik, 1980, 3.381:3, p.317). 
 
The structure of the second term in (C-5) is similar to term 2 of the hyperbolic case and it 
follows directly from the steps outlined in (C-3) that for i = 1, 2 
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The integral in (C-9) can be evaluating using the substitutions defined in the evaluation of 
(C-6).  This yields 
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Using the key steps outlined above, the present worth of the expected penalty cost under 
exponential delivery variance reduction is 
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 a = earliest delivery time 
                   = beginning of on-time delivery 1c
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Fig. 1 Normally Distributed Delivery Window. 
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             v = variance of delivery distribution 
 

 
 
 

Fig. 2. The Ratio of Delivery Window Width and Delivery Variance as a Function of  
           Early and Late Delivery Cost. 
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Note: OTW = on-time portion of the delivery window. 
 
 

Fig. 3. Management Options for Reducing the Expected Penalty Cost. 
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