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Abstract— Many enterprise areas such as marketing, variant 
design, group technology and cellular manufacturing require 
their wide variety of products to be organized into families, 
which are clusters of similar products. In this paper, we propose 
a similarity metric for finding the distance between existing 
products based on bills of materials (BOMs), a class of unordered 
trees.  We show that existing editing operations for unordered 
trees are not consistent for BOMs, and present a similarity 
metric based on the symmetric difference.  We also provide an 
polynomial time algorithm for finding the minimum weighted 
symmetric difference between a pair of unordered trees.  The 
results of the pairwise comparisons are used as a distance metric 
for a clustering algorithm that groups the BOM trees into 
product families. 
 

Index Terms—bills of material, similarity measure, symmetric 
difference, unordered trees. 

I. INTRODUCTION 
Recent manufacturing paradigms like agile manufacturing 

and globalization have resulted in product proliferation, and 
mass customization is the order of the day. Consequently, the 
number of products and part numbers have increased 
exponentially. At the same time, product development lead 
times have to be reduced; therefore, companies are eagerly 
interested in exploiting similarities among the variants, and 
benefiting as much as possible from previously done work. 
The historical approach to classification (or grouping) of 
individual parts into families is the well-known concept of 
Group Technology (GT) ([1], [2], [3], [4], [5]). The practical 
acceptance of GT has remained limited due to the enormous 
effort involved in developing a “coding system” to summarize 
key design, manufacturing, and other attributes, and 
translating the legacy part database into this code. This 
classification and coding process has largely remained 
manual, although some efforts towards automation have also 
been made [6]. Today, Data Mining, a growing field, is 
providing a credible approach to sifting through terabytes of 
data records to identify meaningful, machine learning-based 
patterns and relationships between attributes. 

This paper is focused in the area of new tree mining 
methods that are applicable to industrial product databases. 
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While products from different domains such as mechanical, 
electrical, electronic, civil/infrastructure differ in their key 
design and manufacturing attributes, a common data type is 
the bill of materials (BOM). A BOM (also called a recipe, 
formulation, or specification in other engineering disciplines) 
is the hierarchical, structured representation of a product, 
containing critical information such as components, raw 
materials, quantities, instructions for manufacture, and 
consumable items [7]. BOMs capture the make-up, content, 
and structure of complex products from these engineering 
domains. 

The major purpose for BOMs is to define the recursive 
parent-child relationships between the end item, its 
components or subassemblies, and the raw (or purchased) 
materials they contain.  These relationships provide the data 
needed to efficiently schedule end items for manufacture and 
ensure sufficient inventory levels to support their production.  

BOMs can be depicted as rooted, unordered trees.  The end 
item, or finished product, is the root of the tree; manufactured 
or assembled components are the nodes; and purchased parts 
or raw materials are the leaves.  Fig. 1 shows an office chair 
BOM structure as a tree. 

A. Types of differences in BOMs 
Different engineers may build completely identical end 

items with very different BOM structures; since there is no 
common rule or template to follow, the engineer develops the 
BOM based on her understanding of how the product is 
manufactured or assembled.  Thus, trees representing 
otherwise identical end items can have very different 
topologies, from relatively flat trees (not much different than 
mere parts lists) to highly structured, multi-level trees.   

BOM trees may differ in three ways: 
1. Structural differences such as the number of 

intermediate parts, parts at different levels, and parts 
with different parents. 

2. Differences in component labels. 
3. Differences in both components and structure. 
For example, Fig. 2 shows an office chair (A) and a variant 
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Fig. 1:  Office chair bill of materials 
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(A’).  Note the lumbar support (P); in Tree 1, on the left, it 
appears as the child of the end item, Office Chair (A).  In Tree 
2, on the right, the lumbar support is included as part of the 
subtree rooted at M, which represents the chair back 
subassembly.  The change in the subassembly label from I to 
M reflects the new part number generated by adding the 
lumbar support to the original subassembly. 

Therefore, similar BOMs may have the same components 
or parts, but have different structure, with some parts 
appearing at one level in one tree and at another level – or 
with a different parent – in a second tree.  Additionally, 
BOMs may have similar structure but different components.  
These situations are common in actual practice. 

BOMs are also unordered - meaning that the order of nodes, 
or components, is not significant.  For instance, it does not 
matter if we say a car has a body, wheels, and transmission or 
a car has a transmission, body, and wheels. 

B. Motivation and outline of the paper    
 The notion of similarity in BOMs is rooted more in content 

than in topology; the commonality of content lies in 
similarities between the component parts in the two BOMs.  
However, we do want to capture the differences in structure.  
Quantifying the similarities between BOMs is important in 
identifying similar end items whose designs can be re-used in 
new products.  Research has been done on similarity measures 
for ordered trees ([8], [9], [10], [11], [12]), but these methods 
are not consistent for unordered trees. Unit cost editing 
operations are typically used to determine distance between 
unordered trees, but we show in Section II.B that these 
operations do not give accurate distances for BOMs.  In this 
paper, we propose a metric based on the symmetric difference 
that calculates accurately the similarity of BOM trees.  The 
similarity measure results are then input to a k-medoid 
algorithm to cluster the similar BOMs. 

This paper is organized as follows:  in Section II we discuss 
existing approaches to matching both ordered and unordered 
trees, and show how those approaches give incorrect distance 
values for BOM trees.  Section III introduces definitions, 
notations, and presents the minimum weighted symmetric 
difference metric.   In Section IV, we propose an algorithm to 
find the difference between two trees.  Finally, Section V 
oncludes the paper, discussing a pilot study and 
recommending further work.   

II. APPROACHES TO MATCHING TREES 

A.  Matching ordered and unordered trees 
Ordered tree matching is easier than unordered matching 

because the order of sibling nodes is fixed.  In exact matching, 
each node maps precisely from one tree to the other, using the 
same labels.  Approximate matching allows inexactness in 
labeling and topology comparisons between the pattern tree 
and the data, or target tree.  For example, a node labeled 
“*ide” exactly matches “side” but only partially matches 
“kids.”   The distance between “kids” and “side” is the 
number of editing operations needed to transform “kids” into 
an exactly matching node. 

References [10] and [11] give algorithms for exact 
matching of ordered trees; [12] and [13] discuss a PAC 
(probably approximately correct) machine learning approach 
to learning ordered and unordered tree patterns from queries. 
Using an approximate matching approach first proposed by 
[14], Reference [15] develops a system that allows users to 
build a pattern tree or modify an existing one on screen, then 
retrieve similar trees from the database.  Reference [16] looks 
for similar consensus (largest approximately common 
substructures) between ordered trees by using the isolated-
subtree distance metric first proposed by [17].   

Most tree matching algorithms use a set of editing 
operations, derived from string comparison research, to 
transform the trees into isomorphisms. These editing 
operations, which are constrained to be metrics, include node 
insertion, node deletion, and node substitutions (essentially, 
label changes).  Reference [18] calculates the distance 
between two unordered trees as the minimum sum 
combination of unit cost node deletions, node insertions, and 
node substitutions needed to transform two trees into 
isomorphisms.  Their algorithm finds this minimum cost by 
forming a state space, partitioning each tree into two sets of 
strings ending at a leaf node: a set of unmarked strings to be 
deleted, and a set of marked strings that are condensed into 
single nodes.  Each state represents a different combination 
and/or number of strings assigned to each set.  The reduced 
trees resulting from deleting and condensing strings are 
compared using level-by-level bipartite matching, where 
nodes with a different number of children or on a different 
level are considered to be at infinite distance.  The minimum 
cost marking on two trees is found by examining the cost of 
the bipartite matching plus the editing distance between the 
deleted strings of both trees. 

Reference [8] restricts node operations to deletions only, 
removing nodes that are not common to both trees.  Reference 
[19] aligns the two trees into a single tree, inserting null nodes 
where the trees were mismatched.  Reference [20] represents 
the trees as a bipartite graph, and finds the edge cover that 
corresponds to a minimum cost edit sequence, or script.  The 
authors include an edit operation that allows subtrees to be 
moved to a different parent with a unit cost, unlike the more 
expensive string-based edit requiring deletion of all children 
in the subtree and its root node. Additionally, [20] allows a 
label change operation to fail the triangle inequality test for a 
metric.  

       Tree 1             Tree 2 
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Computing the editing distance between unordered labeled 
trees is an NP-Complete problem ([8] provides a proof).  
Reference [20] shows that the problems of finding the largest 
common subtree and the minimum edit distance of two rooted, 
unordered trees are both MAX-SNP hard. 

In all these approaches, the focus is on a topological 
matching based on strings.  In BOMs, we are interested 
primarily in content; topology is a secondary concern, and 
strings do not adequately represent this domain.  In fact, the 
string editing operations would give a false distance measure 
for many BOMs.  We show two cases where unit cost editing 
operations do not give the correct cost, or distance. 

B.  Incorrectness of string-based unit cost editing operations 
Case 1:  Trees with same topology but different content 

(see Fig. 3:  Case illustrating infeasible transformations). In 
this case, editing operations would replace the labels for nodes 
V, W, X, and Z even though the nodes are obviously not 
similar in content. 

Case 2:  Trees with identical subtrees that have different 
parents (see Fig. 4:  Incorrect cost).   

Editing operations would delete nodes D, K, and F and 
insert the same three nodes as children of the root node A.  
The cost for this set of operations would be 6.  However, for 
BOM trees, a more intuitive way to look at the difference is to 
disconnect the entire subtree rooted at F and move it to 
become a child of A – at a cost of 2.   This operation is 
analogous to the move operation of [19].    

The addition of move implies the existence of rules for 
applying the different operators. For the purposes of 
determining a minimum cost edit script, or sequence of editing 
operations, such as in [19], the greater accuracy in distance 
measurement for certain domains is offset by the greater 
number of possible edit scripts that must be considered.  

The copy operation used in [20] would actually give a 
lower cost for BOMs.  Addition of another subtree requires 
adding the subtree root node and all its children, resulting in a 

cost of unit*(root+children), not a single unit cost. 

C. Summary of tree editing operations and costs vs BOM 
needs 

Editing operations and cost functions should, to be 
accurate, reflect the needs of the domain in which they are 
applied.  Table 1 summarizes tree editing operations, their 
restrictions, costs, and their applicability to the BOM domain.  
Note:  deletion of an internal node means removing a parent 
node i that is a child of j; i’s children become the children of j.  
Likewise, inserting an internal node means adding a node i as 
a child of j; a subset of j’s children become the children of i.  
In contrast, changing a subtree’s parent is described in Case 2. 

 
Table 1:  Comparison of editing operations and costs 

Op 
no.

Editing 
operations

Description/
Restrictions Metric Cost of operation*

BOM 
cost 

Leaf nodes Y Unit [SWZ, CGM] Unit 

Internal nodes Y Unit [SWZ, CGM] Unit 

1 

Deletion 
Change 
subtree parent Y 

Unit*(root+children) 
[SWZ] Unit 

Leaf nodes Y 
Unit [SWZ, JWZ, 
CGM] Unit 

Internal nodes Y 
Unit [SWZ, JWZ, 
CGM] Unit 

2 

Insert 

Change 
subtree parent Y 

Unit*(root+children) 
[SWZ, JWZ] Unit 

No partial 
matches Y Unit [SWZ] 

Partial, 
metric 

3 

Substitute/ 
update  
(label 
change) 

Partial 
matches 
allowed N 

Domain dependent 
[CGM] NA 

4 Move 
Change 
subtree parent ? 

Less than copy 
[CGM] Unit 

5 Copy 
Insert a 
subtree ? 

Unit; inverse of glue 
[CGM] NA 

6 Glue 
Delete a 
subtree ? 

Unit; inverse of copy 
[CGM] NA 

*SWZ = Shasha, Wang, Zhang, Shih 1994;  JWZ = Jiang, Wang, 
Zhang, 1995; CGM = Chewathe, Garcia-Molina, 1997  

 
From the table, we can see that the BOM cost/distance 

model and allowable operations are distinctly different from 
previous methods (shaded cells highlight the dissimilarities).  
Therefore, we need a different means of finding the distance 
between two BOM trees. 

D. Definitions and notation 
Bill of materials:  A structural representation of 

subassemblies, components, parts, and their relationships that 
make up a particular end item.  Level 0, the highest level of an 
indented BOM, is occupied by a single entity, the end item, 
which has no parent.  Levels 1-n are considered to be below 
Level 0 and contain subassemblies and purchased items. 

End items:  Entities that are sold to customers, and 
therefore appear in Level 0 of the indented BOM.  End items 
contain subassemblies and parts, and in practice may contain 
other end items.  End items may also be purchased and sold to 
customers without any value-added manufacturing activity.  
These types of end items have no children (lower level 
components).     
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Subassembly:  Entities that are generally not sold to 
customers, and therefore do not appear in Level 0 of the 
indented BOM.  Subassemblies are manufactured items that 
may contain manufactured or purchased parts or other 
subassemblies, and therefore do not appear in the lowest level 
of the BOM.   

Purchased parts:  Entities that are either raw or purchased 
materials, and therefore only appear in the BOM tree as leaf 
nodes.  Purchased parts by definition have no children.    

Quantity representation:  In bills of materials, repeated 
subassemblies or parts are represented by a quantity per value.  
This value is the number of the part required per one unit of 
the part’s parent.   

Consider the left BOM tree in Fig. 5.  The node values 
correspond to the quantities of each part per parent.  If we 
were to add another subassembly rooted at B, the result would 
be the right BOM tree.  Note that the child quantities do not 
change, as they reflect only quantity per parent. 

Matrix representation of BOMs:  BOMs can also be 
represented as square adjacency matrices, where aij = the 
quantity of j needed to make one unit of i if j is a child of i, 
and 0 otherwise.  For example, Fig. 6 shows the adjacency 
matrix for the left tree in Fig. 5. 

 

Node:  A node is a vertex in the graph that is connected to 
other nodes or to leaves by directed edges.  The root node of a 
tree is a special node that has no parent, corresponding to an 
end item.  Subassembly nodes have several children; 
purchased parts nodes have no children.  The set of nodes, or 
vertices, in a tree is represented as V. 

Node labels and part numbers:  Part numbers are 
alphanumeric strings that uniquely identify the end items, 
subassemblies, or purchased parts.  Each number corresponds 
to a specific item with specific characteristics.   For instance, 
an oval button would have a different part number than a 
round button.  Some companies use meaningful part numbers 
that provide information about the part, while others use 
arbitrary schemes. 

If we compared two BOMs using part numbers as labels, 
the two BOMs would only match where the part numbers 
were exactly the same.  For instance, suppose Part XYZ-10 is 
a washer with I.D. = 10 mm.  Part XYZ-20 is a washer with 

I.D. = 20 mm.  These two washers would not be matched 
because of the unique part numbers.  However, we are 
interested in finding BOMs of similar – not just exact – 
content and topology.  For this reason, we replace the part 
numbers with general node labels derived from the part 
characteristics and types.  In the case of these two parts, we 
would replace the unique part labels with a single label XYZ 
for the class of washers.    

As we noted previously, this part label generalization 
requires domain knowledge to accomplish effectively, and is 
currently a primarily manual operation. Additionally, the 
contribution of each child to its parent is also a matter of 
domain knowledge.  Some parts are more or less critical than 
others (compare product literature with a circuit board, for 
example), and so contribute proportionally to the distance 
between two parent nodes.  We assume in this paper that the 
criticality of parts is known, the label generalization is 
predetermined, and thus the distances between purchased 
items (leaf nodes) are available in an offline lookup table (see 
[6]; also, [23] and [24] present data mining approaches to part 
number generalization, involving the construction of an 
industry-specific thesaurus and index based on text mining of 
part descriptions).   

Size:  The size of a tree or graph is the total number of 
edges, and is denoted as |E|, where E represents the edge set.  
In a tree, |E| = |V|-1. 

Degree:  The degree of a node is the sum of edges coming 
into (in-degree) and going out of the node (out-degree).  Since 
every node in a BOM has only one parent, we use degree to 
refer to out-degree – the number of children of a node.   

Isomorphism:  Two trees are considered to be isomorphic 
if they contain the same nodes and have the same structure.  

V:  the set of vertices (nodes) in a graph. 
E:  the set of edges (arcs) in a graph. 
G(V,E):  a graph made up of vertices V and edges E. 
∪:  the union operator. 
⊕:  the ring-sum operator (see also Section III). 
{}:  the empty set. 
Parenthesized notation for a tree or directed graph:  nested 

parentheses that denote parent and child nodes.  For example: 
the tree in Fig. 7 would be A(B(E,F),C,D). 

Preorder traversal:  Parent nodes are visited before the 
child nodes, left to right.  In preorder traversal, the nodes of 
the tree shown in Fig. 7 would be visited in the order A-B-E-
F-C-D.  This method corresponds to the order shown in 
parenthesized notation, and is similar to the node order in a 
depth-first search. 

III. GENERAL OVERVIEW OF OUR APPROACH 
Editing operation algorithms focus on topology and 

transformation of one tree into another to find isomorphisms.  

Fig. 7:  Sample tree  

Fig. 5:  Quantity representation in BOMs 
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These algorithms were initially an outgrowth of string 
comparisons, adapted to ordered and unordered tree 
structures.  When comparing BOMs we must consider two 
important factors:  first, BOMs are not a product of nature – 
they are man-made, and thus subject to inconsistencies in 
structure.  Secondly, because of that man-made inconsistency, 
using existing editing algorithms may inflate the 
transformation cost between two otherwise similar BOMs, as 
we have shown in Section II.B.  

To address these problems, we modified a graph difference 
operation (also called the symmetric difference, or ring-sum 
difference) to determine the similarity between two BOM 
trees.  The symmetric difference is the set of edges that appear 
in one graph but not the other.  Since edges in BOMs 
represent parent-child relationships, the symmetric difference 
between two BOM trees is the dissimilarity in both content 
and topology.  

However, in some cases label differences (representing 
content dissimilarities) are not completely orthogonal, and 
partial matching of nodes is needed.  Our modification to the 
“classical” symmetric difference allows these partial matches 
to be made between nodes in the two trees.  In support of 
these matches, the offline lookup table defines the distances 
between purchased parts.  Distances between intermediate, or 
parent, nodes are directly derived from these predefined 
values and “rolled up” through the trees; i.e., the distance 
between parent nodes i and j is the sum of the distances 
between the children of i and j, and so on.  

Sections A through C discuss the classical definition and 
application of symmetric difference; Section D introduces the 
modification that includes partial label matching, and Section 
E gives an illustration of the approach. 

A. Definition of symmetric difference 
Consider two BOM graphs, G1(V1, E1) and G2(V2, E2).  The 

difference between the two BOMs is analogous to a 
symmetric difference (G1 ⊕ G2) of two graphs G1 and G2, 
where 
      ( ) ( ) ( )( )21212121 , EEEEVVGG ∩−∪∪=⊕  (1) 

In other words, the symmetric difference represents the 
edges in G2 not found in the graph G1 and the edges in G1 not 
found in G2.    

B. Definition of sparsity value 
Consider two rooted, directed trees Ga (Va, Ea) and Gb(Vb, 

Eb).  We construct a square adjacency matrix for each BOM, 
where aij = the quantity of j per unit of i if aj is a child of ai 
and 0 otherwise. In the column corresponding to the root node 
every entry is 0, since the root node is never a child of any 
other node. 

If Ga and Gb are not of the same order, we augment the 
adjacency matrix of the smaller G with additional columns 
and rows (whose entries aij are 0) until the two matrices are 
the same size. The augmented adjacency matrix A represents 
the smaller of Ga and Gb.  The adjacency matrix B represents 
the larger of Ga and Gb 

We find the symmetric difference matrix, Dab, by taking the 
absolute difference between the two adjacency matrices.   

 Dab = |A-B| (2) 

Dab is a sparse matrix; we then calculate a sparsity value S 
for this matrix by finding the ratio of the sum of non-zero 
entries to the total number of entries in the matrix.  This 
sparsity value represents the similarity between the two BOM 
trees; the smaller the sparsity value, the more similar the tree 
structures. 

 
2

a b
ab

a b

G GS S
V V

⊕
= =

∪
, (3) 

which is equivalent to the normalized sparsity value 
     (4) 

 
 

where Dj is the sum of non-zero entries in Dab and n2 is the 
number of entries in the matrix.  

The symmetric difference and the normalized sparsity value 
are both metrics (see [25] for a proof of symmetric difference, 
and the Appendix for a proof of sparsity value). 

C. Finding the symmetric difference between two trees 
Lemma 1:  |A-B| = A⊕B; i.e., the absolute value difference 

between A and B equals the symmetric difference between A 
and B.   

Proof:  Consider two BOM tree adjacency matrices, A and 
B, each of order n.  Then,  

A⊕ B = (Va ∪Vb, ((Ea ∪Eb)- (Ea ∩Eb)) 
We calculate the entries for the difference matrix Dab as            
                 dij = | aij - bij| 

Four cases can arise from this operation.  For the purpose of 
simplicity, and without loss of generality, we assume the 
maximum quantity of child node j to make parent node i is 1.     

Case 1:  An edge exists between vertices i and j in matrix 
A.  An edge also exists between vertices i and j in matrix B.  
In other words, j is a child of i in both A and B.  Therefore, the 
pair (aij, bij) belong to the sets (Ea∪Eb) and (Ea∩Eb), and       
dij = |aij - bij| = |1-1| = 0. 

Case 2:  No edge exists between vertices i and j in matrix 
A.  No edge exists between vertices i and j in matrix B.  In 
other words, j is a child of i in neither A nor B.     

Therefore, dij = |aij - bij| = |0-0|=0. 
Case 3: An edge exists between vertices i and j in matrix A.  

No edge exists between vertices i and j in matrix B.  In other 
words, j is a child of i in A but not in B. 

Therefore, the pair (aij, bij) belong to the set (Ea∪Eb), and   
dij = |aij - bij| = |1-0|=1 

Case 4:  No edge exists between vertices i and j in matrix 
A.  An edge exists between vertices i and j in matrix B.  In 
other words, j is a child of i in B but not in A. 

This case is similar to Case 3.  Therefore, the pair (aij, bij) 
belong to the set (Ea∪Eb), and dij = |aij - bij| = |0-1|=1 

Thus, the non-zero entries in Dab represent only the edges in 
A that do not exist in B, and the edges in B that do not exist in 
A – the symmetric difference between the two graphs.  □ 

Lemma 2:  |Am-Bm| ≠ |An-Bn|, where A and B are adjacency 
matrices and {m, n} are different orderings of the vertex sets 
Va and Vb.  That is, the symmetric difference between two 
adjacency matrices is dependent on the numbering sequence 
of the vertex sets Va and Vb.   

Proof:  Consider two unordered trees, Ga and Gb, with 
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vertex sets Va and Vb, respectively, consisting of the same 
nodes and internal structure, albeit in different order.  Number 
the vertex sets by any consistent numbering sequence 
(preorder, post order, or level order).  Let Va = {a(b(c, d, e), 
f(g, h))}.  Let Vb = {a(f(h, g), b(e, c, d))}.  Suppose we use 
level order traversal to number the vertex sets (the method of 
numbering is not significant).  Using this numbering 
sequence, we form adjacency matrices for Va and Vb.  Recall 
that aij = 1 if an edge is present between vertices i and j, and 0 
otherwise.  Clearly, |A – B| = 0 only if, ∀ aij and bij, aij = bij. 

The vertex ordering for Va is {a, b, f, c, d, e, g, h}.  The 
vertex ordering for Vb is {a, f, b, h, g, e, c, d}.  The two 
adjacency matrices formed by this numbering sequence are 
shown in Fig. 8. 

Even though the two trees are isomorphic, by inspection we 
can see that the symmetric difference for these adjacency 
matrices is not 0.  In fact, no matter what consistent traversal 
method we use, and no matter how small or large the 
isomorphic trees, the symmetric difference will not equal 0 
unless the trees’ vertices appear in exactly the same order.  □ 

Corollary 3.1:  An ordering of the vertex set Va or Vb exists 
that finds the minimum symmetric difference between two 
graphs Ga and Gb. 

Proof:  Unlike ordered trees, BOM trees do not place 
restrictions on the left-to-right ordering of sibling vertices.   
This property makes finding the similarity between two 
unordered trees more difficult, since we cannot specify a 
consistent vertex traversal convention that will guarantee the 
trees are ordered in the same way. 

However, by permuting the vertex set of one graph, 
swapping rows and columns of the adjacency matrix as in 
Lemma 1, we can find the ordering sequence that minimizes 
the symmetric difference – and thus, the sparsity value – 
between two trees.   

Consider two BOM trees, Ga and Gb both of order n.  Let A 
be the adjacency matrix constructed from Ga, using any vertex 
numbering scheme; likewise, let B be the adjacency matrix 
constructed from Gb.   

We keep A fixed, and generate j = 1,…, n! permutations of 
the rows and columns of B.  We then find the difference 
matrix Dj = |A-Bj|. 

Recall that the sparsity value is Sj = 
2n

Dj , where Dj is the 

sum of non-zero entries and n2 is the number of entries in the 
matrix. 









==⊕

2
minminmin

n

D
SGG j

jjjba
 

It is clear that when Dj is minimum, the quantity Sj is also 
minimum.  Therefore, the permutation vector j corresponding 
to the minimum Dj represents the minimum symmetric 
difference, and thus the minimum topological dissimilarity, 
between Ga and Gb.   □ 

D. Modification of the symmetric difference measure 
The nature of BOMs and their domain requires a 

modification of the symmetric difference measure.  This 
change modifies the edge differences from Cases 3 and 4 in 
Lemma 1 by allowing partially matching nodes.   

Partial matching is accomplished using weights w (0 ≤ w ≤ 
1, where 0 is a perfect match and 1 is no match at all) that 
represent the design, functional, or manufacturing similarities 
between two parts or components.  While it is certainly 
possible to generalize labels in the preprocessing phase so 
there is no similarity whatever between labels, it is not always 
useful to do so.  For instance, we could refer to all engines as 
“engines”; however, we may want to distinguish between 4 
cylinder and 8 cylinder engines.  We assume these weights to 
be given for leaf nodes, which represent purchased items in a 
BOM.  The distances between subtrees whose child nodes are 
also subtree roots are derived from the summing, or “rolling 
up” of child subtree weights.   

This modification changes the calculation of Dj from the 
simple “count” of unmatched edges to a sum of weighted 
edges.  Using a weighted bipartite matching algorithm that 
minimizes the sum of weights of a perfect match, we find a 
minimum cost solution that pairs single level subtrees i and j 
from the two BOM trees.  Dj, then, is the sum of these paired 
subtree weights, or distances, wij.   

We can define the minimum weighted symmetric difference 
between two trees A and B as 









== 2minmin),(

n
D

SBAMWSD j

jjj
, 

where ∑=
ji

ijijj xwD
,

, which is the objective function of 

the weighted bipartite matching problem.   Recall that the xij 
term is 0 if no match exists between subtree i and j, and 1 if 
the two subtrees are matched. 

E. Illustration of the minimum weighted symmetric 
difference metric (MWSD) 

In Table 1 we showed that existing edit operations did not 
accurately measure the difference between two BOMs.  Table 
2 lists the various ways BOM trees differ, their analogous edit 
operation number from Table 1, BOM cost, and a sample 
calculation of the symmetric difference.  The last column 
refers to figures that accompany examples of the weighted 
symmetric difference metric application.  

Fig. 8:  Adjacency matrices for two trees

Tree A
a b c d e f g h

a 0 1 1 0 0 0 0 0
b 0 0 0 1 1 1 0 0
c 0 0 0 0 0 0 1 1
d 0 0 0 0 0 0 0 0
e 0 0 0 0 0 0 0 0
f 0 0 0 0 0 0 0 0
g 0 0 0 0 0 0 0 0
h 0 0 0 0 0 0 0 0

Tree B
a f b h g e c d

a 0 1 1 0 0 0 0 0
f 0 0 0 1 1 0 0 0
b 0 0 0 0 0 1 1 1
h 0 0 0 0 0 0 0 0
g 0 0 0 0 0 0 0 0
e 0 0 0 0 0 0 0 0
c 0 0 0 0 0 0 0 0
d 0 0 0 0 0 0 0 0
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Figs. 9-13 show the graphical and matrix calculation of 
these operations.  In Fig. 9, the subtree rooted at C has a 
different parent in each tree.  The adjacency matrices for these 
trees are shown in Fig. 10. The shaded entries in these 
matrices are exactly matching edges that result in zero entry 
values in the difference matrix.  Clearly we can see that the 
difference matrix will consist of 2 non-zero entries: A(2,3) 
corresponding to the edge between B and C; and A’(4,3) 
corresponding to the edge between D’and C.  The sparsity 
value for this difference matrix is (2/64) = 0.03125.  In 
contrast, using unit cost edit operations would yield a sparsity 
value of (6/64) = .09375. 
    

 
Fig. 11 shows the operation of adding a subtree that exists 

in one tree and not the other.  Tree  A contains a subtree 
rooted at E that does not appear in Tree A’. In this case, we 
need to augment the matrix for Tree A’ so the two matrices are 
the same size (see Fig. 12: du1 – du4 are the dummy entries 
for matrix A’).  The shaded cells correspond to zero entries in 
the difference matrix; the sparsity value for these trees is 
(4/121) = 0.033. 

 
 

 The next case shows the result of partially matching two 
nodes.  In Fig. 13, subtree B is made up of items K and P;  
subtree B’ is made up of items K and L.  Topologically, these 
trees are identical, and a difference matrix will have no non-
zero entries.  However, in comparing the set of nodes with a 
lookup table, we can find the partial match for P and L; 
suppose these two items match with a value of 0.8; then, the 
sparsity value for these two trees is (0.8/49) = 0.016.   
 

Table 2:  Weighted symmetric difference calculations

Fig. 9:  Illustrating subtree move 

A

D

C

B

HG

FE

A’

D’

C

B’

HG

FE

LK LK

Fig. 10:  Adjacency matrices for Fig. 9 trees

Figure 11:  Illustrating added subtree 

A

E

GF YXH

W

DC

B

A’

DC

B

YX

W

Fig. 12:  Adjacency and different matrices for 
         Fig. 11 trees 

WSDM Calculation Example 

Tree Differences 
Analogous 

Edit Operation BOM Distance 

Element in 
Tree  A 
matrix 

Element in 
Tree B 
matrix WSDM cost

Subtree/node parent difference       

  Tree A (h child of i) aih  = 1 bih = 0   

  Tree B (h child of g) 

1, 2, 4 Unit per tree 

agh = 0 bgh = 1 Cost = 2

Node difference  Unit       

  Tree A (h child of i)   aih = 1 bih = 0 

  Tree B (no h) 

1, 2 

      Cost = 1

Repeated existing subtree (same parent) |x-y|, where       
  Tree A (h child of i), qty per = 2 x=QtyPer(TreeA) 
  Tree B (h child of i), qty per = 1 

2, 5 

y=QtyPer(TreeB) 
aih = 3 bih = 1 

Cost = 2

Add subtree       

   Tree A (h child of i, j and k children of h) aih = 1 bih = 0   
   Tree B (no h, j, k) ahj = 1 bhj = 0   
  

2, 5 Unit per added node 

ahk = 1 bhk = 0 Cost = 3

Label match       

  Tree A (h child of i) aih = 1 bih = 0   

  Tree B (k child of i) aik = 0 bik = 1   

  Match (h,k) = .8   

  

3  0 <= Match <= 1 

Cost = Match Cost = 0.8

 

A B C D E F G H K L
A 0 1 0 1 0 0 0 0 0 0
B 0 0 1 0 0 0 0 0 1 1
C 0 0 0 0 1 1 0 0 0 0
D 0 0 0 0 0 0 1 1 0 0
E 0 0 0 0 0 0 0 0 0 0
F 0 0 0 0 0 0 0 0 0 0
G 0 0 0 0 0 0 0 0 0 0
H 0 0 0 0 0 0 0 0 0 0
K 0 0 0 0 0 0 0 0 0 0
L 0 0 0 0 0 0 0 0 0 0

A' B' C D' E F G H K L
A' 0 1 0 1 0 0 0 0 0 0
B' 0 0 0 0 0 0 0 0 1 1
C 0 0 0 0 1 1 0 0 0 0
D' 0 0 1 0 0 0 1 1 0 0
E 0 0 0 0 0 0 0 0 0 0
F 0 0 0 0 0 0 0 0 0 0
G 0 0 0 0 0 0 0 0 0 0
H 0 0 0 0 0 0 0 0 0 0
K 0 0 0 0 0 0 0 0 0 0
L 0 0 0 0 0 0 0 0 0 0

A B C D E F G H W X Y
A 0 1 0 0 1 0 0 0 1 0 0
B 0 0 1 1 0 0 0 0 0 0 0
C 0 0 0 0 0 0 0 0 0 0 0
D 0 0 0 0 0 0 0 0 0 0 0
E 0 0 0 0 0 1 1 1 0 0 0
F 0 0 0 0 0 0 0 0 0 0 0
G 0 0 0 0 0 0 0 0 0 0 0
H 0 0 0 0 0 0 0 0 0 0 0
W 0 0 0 0 0 0 0 0 0 1 1
X 0 0 0 0 0 0 0 0 0 0 0
Y 0 0 0 0 0 0 0 0 0 0 0

A' B C D du1du2du3du4 W X Y
A' 0 1 0 0 0 0 0 0 1 0 0
B 0 0 1 1 0 0 0 0 0 0 0
C 0 0 0 0 0 0 0 0 0 0 0
D 0 0 0 0 0 0 0 0 0 0 0

du1 0 0 0 0 0 0 0 0 0 0 0
du2 0 0 0 0 0 0 0 0 0 0 0
du3 0 0 0 0 0 0 0 0 0 0 0
du4 0 0 0 0 0 0 0 0 0 0 0
W 0 0 0 0 0 0 0 0 0 0 0
X 0 0 0 0 0 0 0 0 0 1 1
Y 0 0 0 0 0 0 0 0 0 0 0

Difference
Root B C D E F G H W X Y

Root 0 0 0 0 1 0 0 0 0 0 0
B 0 0 0 0 0 0 0 0 0 0 0
C 0 0 0 0 0 0 0 0 0 0 0
D 0 0 0 0 0 0 0 0 0 0 0
E 0 0 0 0 0 1 1 1 0 0 0
F 0 0 0 0 0 0 0 0 0 0 0
G 0 0 0 0 0 0 0 0 0 0 0
H 0 0 0 0 0 0 0 0 0 0 0
W 0 0 0 0 0 0 0 0 0 0 0
X 0 0 0 0 0 0 0 0 0 0 0
Y 0 0 0 0 0 0 0 0 0 0 0
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IV. AN ALGORITHM TO FIND THE MINIMUM WEIGHTED 
SYMMETRIC DIFFERENCE 

We could find the minimum topological symmetric 
difference between the adjacency matrices A and B by 
permuting the matrices and evaluating their absolute value 
difference, but there are n! possible permutations to compare. 
Clearly, as n increases, the number of comparisons soon 
becomes too large for brute force enumeration.   

This problem, when disregarding weighted label matches, 
can be characterized as finding the maximum common 
subforest between two trees.   The nature of BOMs, where 
structural differences mean less than content dissimilarity, 
allows us to solve the problem in polynomial time.  We 
present a bottom-up approach similar to the maximum 
common subtree approach by [26] that compares the topology 
and content of the trees at the subtree level and uses bipartite 
matching to find the minimum difference between individual 
subtrees. 

Before we describe this method, we must establish some 
definitions. 
Single-level subtree: a parent node and its children; the 
children of these subtrees may or may not be leaf nodes. 
Terminal subtree:  a parent node and its children who are all 
leaf nodes. 

Consider two trees, Ta and Tb. 
We choose a single-level subtree ta, with root node n and 

children C(ai, … , an) from Ta and a single-level subtree tb, 
with root node m and children D(bj, … , bm) from Tb.    

The subtrees ta and tb are exactly matching subtrees if n = m 
and C = D. 

In this approach, we form the adjacency matrices using 
preorder traversal.  The matrices built using this method have 
the root node at the left side of the matrix, and group subtree 
root nodes with their child nodes, making it simple to find the 
rows and columns corresponding to terminal subtrees. We 
first calculate the minimum possible sparsity value, Sl, which 

is 2

B A
n
−

; this value is 0 if both trees are the same size.  We 
decompose the trees into single-level subtrees, starting with 
terminal subtrees and moving up the levels of the trees. We 
then find the distances between subtrees, comparing every 
node in each subtree in Tree A with every node in each 
subtree in Tree B.  Child nodes that match exactly (same label, 
same parent) are removed from the subtrees.  Then, we 
perform a weighted matching (function LabelMatch) to 
determine the minimum distance between labels of the 
remaining nodes.  Label distances between nodes are found in 
the lookup table, SubTreeDist.  Previously calculated subtree 
distances are also stored in SubTreeDist. 

We next find the minimum distance matching over all 
subtrees using function TreeMatch.  The result of this 
function is a set of paired subtrees with a distance, or weight, 
wij. The distance between the entire trees A and B is the sum of 
these weights divided by n2, where n is the number of nodes in 
the larger tree.   

We first present the algorithm and then prove that it finds 
the minimum weighted symmetric difference between two 
unordered trees.   

A. The decomposition-reduction (DeRe) algorithm: 
Input:  Unordered BOM trees Ta and Tb, |Ta| ≤ |Tb| 
Output:  Sparsity metric denoting the minimum normalized weighted 
symmetric difference between Ta and Tb. 
1.   Form adjacency matrices A and B using preorder traversal. 

2.  Calculate the lower bound Sl = 2

B A
n
−

 where n is the number of 
columns in B  

3.   If |B| > |A|, then augment A with (|B| - |A|) rows and columns of 
zeros at the right end and bottom of the matrix. 

4.   Calculate Sab = 
2n

D , the initial sparsity value 

 If Sab == Sl then set Smin = Sab  
5.   Find exactly matching subtrees 
 For i = 1 to m, where m is the number of subtrees in B 
 Beginning at the right side of matrix B and moving left toward the 

root, 
 Find the first terminal subtree tbi rooted at n    
  Search A for an exactly matching terminal subtree ta with 

root n 
  If ta and tbi are exactly matching subtrees, then reduce 

both A and B by removing the rows and columns 
corresponding to the child nodes of ta and tbi.  

 Next i 
      Repeat for single-level subtrees in A and B.  If no more exact 

matches remain, continue. 
6.   Find paired subtrees 
 For j=1 to r, where r is the number of remaining subtrees in B,  
 For k=1 to s, where s is the number of remaining subtrees in A,  
          For each subtree tbj find the distance to tak using table 

SubTreeDist and function LabelMatch(tbj, tak) 
 Find the paired subtrees using function TreeMatch (Ta, Tb) .   
7.   Calculate Sab =  

2n
D   

8.  Return Sab 
 
Function LabelMatch (tbj, tak) 
    For nodes i to m in subtree tak, 
        For nodes j to n in subtree tbj 
            Perform weighted bipartite match to find best matching of 

subtree nodes 
       Dsub(i,j) = Σwij  from weighted bipartite matching 
        Store Dsub for all subtree pairs in SubTreeDist 
 
Function TreeMatch (Ta, Tb) 
 For trees Ta and Tb with subtree sets {ta} and {tb} 
         Using Dsub(a,b)  from SubTreeDist, perform weighted bipartite 

match to find best matchings of subtree pairs 
      D = Σ min Dsub (ta, tb) for all subtree pairs from {ta}, {tb}     
Return D 

B. An illustration of the DeRe algorithm 
Consider the trees from Fig. 9, repeated in Fig. 14: 
The first step in the algorithm is to form the matrices A and 

A’ using preorder traversal.  Because these two trees are of 
identical size, we do not need to augment either matrix.  The 
lower bound Sl = 0.  

Next, we calculate the sparsity value Sab.  Fig. 15 shows the 

Fig. 13:  Illustrating partial matching

 

  

A 

D B 

H G 

A’ 

D B’ 

HG P K L K 
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matrices for A, A’, and the difference matrix.  Sab for these two 
trees is 8/100 =.08. 

 
 

 

There are two terminal subtrees in Tree A:  one rooted at C 
and one rooted at D.  In Tree A’ there are also two terminal 
subtrees:  one rooted at C and one rooted at B’.  The two 
subtrees rooted at C are exact matches.  Therefore, we can 
remove their children E and F.  Fig. 16 shows the reduced 
tree. 

We cannot evaluate the distance between the single-level 
subtrees rooted at A and A’ because their children are also 
subtrees, and have not yet been evaluated.  

Next, we look at the four subtrees rooted at B, D, B’, and 
D’.  We assume for this example that the distance between 
differently labeled nodes is 1.  Consider the subtree rooted at 
B.  The distance between B and B’ is 1, since K and L match 
exactly and C has no match in B’.  The distance between B 
and D’ is 2, since the C nodes match exactly but the 

remaining nodes do not.  Consider the subtree rooted at D; 
the minimum distance between D and B’ is 2.  The distance 
between D and D’ is 1, which represents the parent 
difference of C.  We store these subtree pair distances in 
SubTreeDist. 

The last remaining subtrees are those rooted at A and A’.  
We have already calculated the distances between their 
children and stored them in SubTreeDist, so we use the values 
to find the best match for the child nodes of A and A’.  The 
best match for subtree B is subtree B’, at a distance of 1; the 
best match for D is D’, at a distance of 1.  so Sab for A and A’ 
= Dsub (B,B’) + Dsub (D,D’) = 1 + 1 = 2/100 = 0.02.  This result 
is the same as the result in Case 2 (Section II.B.).  

C. Proof of the DeRe algorithm 
Theorem 1:  The DeRe algorithm finds the minimum 

weighted symmetric difference between two unordered trees 
Ta and Tb. 

Proof:   
Consider two unordered trees Ta and Tb and their respective 

adjacency matrices A and B.  We decompose the trees into two 
sets of single-level subtrees (ta1,…,tan) and (tb1,…,tbm).  Let C 
be the set of child nodes of single-level subtree tai, found in 
Ta, and rooted at p.  Let D be the set of child nodes of single-
level subtree tj, found in Tb, and rooted at q.  We define Γ(a,b) 
as the set of children in all exactly matching single-level 
subtrees in Ta and Tb.  Then, {C(ti, p), D(tj,,q)} ⊃ Γ(a,b) if p=q 
and (C∪D) – (C∩D))={}. 

Therefore, the elements of Γ(a,b) correspond to Case 1 in 
Lemma 1, and represent zero-valued elements in |A – B|. 

We remove the elements in Γ(a,b) from T1 and T2 to form the 
reduced trees T1r and T2r.  Again, we decompose the trees into 
two sets of single-level subtrees Ta(ti,…,tn) and Tb(tj,…,tm).   
The function LabelMatch, as a weighted bipartite matching 
of individual subtree nodes, provides the minimum distance 
values between subtrees.  These distances (wij) are used in 
another weighted bipartite matching (the function 
TreeMatch) of the single level subtrees Ta(ti,…,tn) and 
Tb(tj,…,tm).    

By definition, weighted bipartite matching gives a 
minimum cost matching of the reduced subtrees. 

Clearly, 

( )
( )( )221

,
21

,max
,

TT

xw
TTMWSD ji

ijij∑
= , 

where the numerator is the resulting minimum cost objective 
function from the weighted bipartite matching problem. 

Therefore, the algorithm finds the minimum weighted 
symmetric difference between two unordered trees. 

V. CONCLUSION 
In this paper, we have discussed the motivation for finding 

similar BOM trees, and shown that calculating the distance 
between these unordered trees requires a different approach 
than those prevalent in recent literature.  We consider these 
properties in proposing a minimum weighted symmetric 
difference metric that accurately computes the distance 
between two BOM trees, as the domain requires.   

A 

D 

C 

B 

H G 

A’ 

D’

C 

B’ 

HGL K L K 

A

D

C

B

HG

FE

A’

D’

C

B’

HG

FE

LK LK

Fig. 14:  Illustrating DeRe algorithm 

  

Fig. 15:  Matrices for DeRe example 

Figure 16:  Trees after removing exact matches 

A B K L C E F D G H
A 0 1 0 0 0 0 0 1 0 0
B 0 0 1 1 1 0 0 0 0 0
K 0 0 0 0 0 0 0 0 0 0
L 0 0 0 0 0 0 0 0 0 0
C 0 0 0 0 0 1 1 0 0 0
E 0 0 0 0 0 0 0 0 0 0
F 0 0 0 0 0 0 0 0 0 0
D 0 0 0 0 0 0 0 0 1 1
G 0 0 0 0 0 0 0 0 0 0
H 0 0 0 0 0 0 0 0 0 0

A' B K L D' C E F G H
A' 0 1 0 0 1 0 0 1 0 0
B 0 0 1 1 0 0 0 0 0 0
K 0 0 0 0 0 0 0 0 0 0
L 0 0 0 0 0 0 0 0 0 0
D' 0 0 0 0 0 1 0 0 0 0
C 0 0 0 0 0 0 1 1 0 0
E 0 0 0 0 0 0 0 0 0 0
F 0 0 0 0 0 0 0 0 0 0
G 0 0 0 0 0 0 0 0 0 0
H 0 0 0 0 0 0 0 0 0 0

Difference A B K L C E F D G H
A 0 0 0 0 1 0 0 0 0 0
B 0 0 0 0 1 0 0 0 0 0
K 0 0 0 0 0 0 0 0 0 0
L 0 0 0 0 0 0 0 0 0 0
C 0 0 0 0 0 0 1 0 0 0
E 0 0 0 0 0 0 1 1 0 0
F 0 0 0 0 0 0 0 0 0 0
D 0 0 0 0 0 0 0 0 1 1
G 0 0 0 0 0 0 0 0 0 0
H 0 0 0 0 0 0 0 0 0 0
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We employed the minimum weighted symmetric difference 
metric between two trees as the distance measure in a k-
medoid clustering algorithm [22] to group similar bills of 
materials into product families.  75 bills of materials with 
known product family classifications were collected from an 
electronics manufacturer and the DeRe algorithm used to 
calculate the pairwise distances between them.  The resulting 
distance matrix was input to the clustering algorithm, which 
correctly placed the BOMs in the appropriate families.  This 
preliminary result shows the metric accurately represents the 
difference between BOM trees.  We intend to expand the 
study to over 5000 BOMs and a finer cluster granularity, 
searching for subgroups within the different product families. 

The DeRe algorithm as presented could “double count” 
parts with different parents.   For instance, a tree with few 
intermediate subassemblies may have exactly the same raw 
material or purchased part content but a flatter structure than 
another tree (see Figure 17, where Tree 1 is a less structured 
version of Tree 2).  Using editing operations, the distance 
between Tree 1 and Tree 2 (or Tree 3) is 6 (removing two 
nodes from subtree B, inserting the subtree parent node and 
the two leaf nodes as siblings of B, and changing B’s label).  
Using the weighted symmetric difference measure, and 
supposing we match subtree B with subtree C, the distance is 
5 (two unmatched nodes from subtree B,  the subtree rooted at 
D and its two children). In that case, the DeRe algorithm gives 
a higher weighted symmetric difference than some designers 
might prefer.   

We are investing future work on refining the DeRe 
algorithm further by allowing nodes with different parents to 
be counted only once in the difference calculation. 

In manufacturing applications, being able to quantify the 
differences between BOMs allows engineers to find existing 
products and reuse proven designs.  This research provides an 
accurate, fast alternative to GT coding and other efforts to find 
similar parts and subassemblies.     

APPENDIX 
Lemma A.1:  The normalized weighted symmetric 

difference S is a metric if the cost matrix for the weighted 
bipartite problem is constrained to be a metric. 

Proof:  A metric must satisfy three properties: 
x-x = 0  (positivity) 
x-y = y-x  (symmetry) 
x-z ≤ (x-y) + (y-z) (triangle inequality) 
The first two properties have trivial proofs.  We prove the 

triangle inequality property as follows: 

 Consider three single level trees L, M, and N, each with n 
leaves.  The given leaf node distances are constrained to be 
metrics.  We assume, without loss of generality, that the 
weighted bipartite matching has paired leaf nodes with the 
same index number; i.e., L1 is paired with M1, L2 is paired with 
M2, etc.  Likewise, L1 is paired with N1, M1 is paired with N1, 
and so on. 
 Since the distance between subtrees is the summed 
distances between the pairs of leaf nodes, we can say that   

( )∑
=

=
n

i
iNodeiNodeTreeTree TreeTreeDD

1
2,1 2,1 . 

Therefore, we can write 
D(L,M) ≤ D(L,N) + D(M,N) 

as 

( ) ( ) ( ).,,,
1 11
∑ ∑∑
= ==

+≤
n

i

n

i
iiii

n

i
ii NMDNLDMLD  

By the triangle inequality, the distance D(Tree1Node i, 
Tree2Node i) between paired nodes is 

D(L1,M1) ≤ D(L1,N1) + D(M1,N1) 
D(L2,M2) ≤ D(L2,N2) + D(M2,N2) 
D(L3,M3) ≤ D(L3,N3) + D(M3,N3) 

… 
D(Ln,Mn) ≤ D(Ln,Nn) + D(Mn,Nn). 

 
Clearly, the sum of the terms on the left side of these 

equations is less than or equal to the sum of the terms on the 
right side of these equations.  Therefore, the triangle 
inequality holds. 

However, if the underlying cost matrix is not metric, then 
the triangle inequality does not hold.  For instance, suppose 
we have three single level subtrees as in Fig. 18.  The distance 
between these subtrees relies on the relationships between leaf 
nodes G, H, and K.  If the distances between these nodes are 
not a metric, then the distances D between the subtrees will 
not be a metric either.  We see in our distance table that the 
distance between G and H is 0.5; between G and K is 0.1, and 
between H and K is 0.3.   

 By the triangle inequality,  

DCC’ ≤ DCC’’ + DC’C’’. 
Since the distances between these subtrees are the 

distances between nodes G, H, and K, we can rewrite the 
equation as: 

DGH ≤ DGK + DHK. 
 Substituting the values from the lookup table, we have: 

0.5 ≤  0.1 + 0.3 
which is obviously not true. 
 
Complexity analysis of the DeRe algorithm 
There are three basic steps to the DeRe algorithm:   

A

H

B

FE G

A

H

C

FE G

D

Tree 1 Tree 2

Figure 18:  Two similar trees 

A

H

B

FE G

A

H

C

FE G

D

Tree 1 Tree 2

Figure 17:  Two similar trees 

C C’ C’’

F FFG KH

C C’ C’’

F FFG KH

Figure 18:  Three single level subtrees 
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1. Find exactly matching subtrees and reduce the 
matrices accordingly 

2. Find paired subtrees and reduce the matrices 
accordingly 

3. Calculate the weighted symmetric difference of the 
remaining root node subtree. 

 To find the overall complexity of the DeRe algorithm, 
we find first the complexity of the three steps.   

Step 1:  In this step, we scan the A matrix m times for 
exactly matching subtrees.  Only the first p (p ≥1) scans 
involve all n nodes; once the children of exactly matching 
subtree t are removed, the number of nodes in both matrices 
are reduced to (n – c) nodes, where c (c  ≥ 1) is the number of 
children in t.  We can say, then, that this step is O(n2) at worst. 

Step 2:  This step begins with (n-C) nodes, where C is the 
total number of children removed during Step 1.  We find the 
minimum distances between nodes, working from known 
label distances found in the lookup table and derived distances 
found in the SubTreeDist table.  The next major procedure is 
two sequential bipartite matchings, one at the node level and 
one at the subtree level.  These matchings are each O(n2) 
operations and dominate the running time for this step. 

Step 3:  As the tree root node subtrees are the only 
subtrees remaining, this step is simply the sum of the distances 
from matched subtrees determined in Step 2. 

Therefore, the algorithm takes O(n2) time. 
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