
SMCA03-05-0120

1

Abstract— Many enterprise areas such as marketing, variant
design, group technology and cellular manufacturing require
their wide variety of products to be organized into families,
which are clusters of similar products. In this paper, we propose
a similarity metric for finding the distance between existing
products based on bills of materials (BOMs), a class of unordered
trees. We show that existing editing operations for unordered
trees are not consistent for BOMs, and present a similarity
metric based on the symmetric difference. We also provide an
polynomial time algorithm for finding the minimum weighted
symmetric difference between a pair of unordered trees. The
results of the pairwise comparisons are used as a distance metric
for a clustering algorithm that groups the BOM trees into
product families.

Index Terms—bills of material, similarity measure, symmetric
difference, unordered trees.

I. INTRODUCTION
Recent manufacturing paradigms like agile manufacturing

and globalization have resulted in product proliferation, and
mass customization is the order of the day. Consequently, the
number of products and part numbers have increased
exponentially. At the same time, product development lead
times have to be reduced; therefore, companies are eagerly
interested in exploiting similarities among the variants, and
benefiting as much as possible from previously done work.
The historical approach to classification (or grouping) of
individual parts into families is the well-known concept of
Group Technology (GT) ([1], [2], [3], [4], [5]). The practical
acceptance of GT has remained limited due to the enormous
effort involved in developing a “coding system” to summarize
key design, manufacturing, and other attributes, and
translating the legacy part database into this code. This
classification and coding process has largely remained
manual, although some efforts towards automation have also
been made [6]. Today, Data Mining, a growing field, is
providing a credible approach to sifting through terabytes of
data records to identify meaningful, machine learning-based
patterns and relationships between attributes.

This paper is focused in the area of new tree mining
methods that are applicable to industrial product databases.

1 Manuscript received May 30, 2003. This work was supported by the
Engineering Research Program of the Office of Basic Energy Sciences at the
Department of Energy and the National Science Foundation under career grant
DMI-9624309.

Carol J. Romanowski is with the Department of Industrial Engineering,
University at Buffalo, Buffalo, NY 14260 USA (e-mail: cfr@buffalo.edu).

Rakesh Nagi is with the Department of Industrial Engineering, University
at Buffalo, Buffalo, NY 14260 USA (phone: 716-645-2357 ext. 2103; e-mail:
nagi@buffalo.edu).

While products from different domains such as mechanical,
electrical, electronic, civil/infrastructure differ in their key
design and manufacturing attributes, a common data type is
the bill of materials (BOM). A BOM (also called a recipe,
formulation, or specification in other engineering disciplines)
is the hierarchical, structured representation of a product,
containing critical information such as components, raw
materials, quantities, instructions for manufacture, and
consumable items [7]. BOMs capture the make-up, content,
and structure of complex products from these engineering
domains.

The major purpose for BOMs is to define the recursive
parent-child relationships between the end item, its
components or subassemblies, and the raw (or purchased)
materials they contain. These relationships provide the data
needed to efficiently schedule end items for manufacture and
ensure sufficient inventory levels to support their production.

BOMs can be depicted as rooted, unordered trees. The end
item, or finished product, is the root of the tree; manufactured
or assembled components are the nodes; and purchased parts
or raw materials are the leaves. Fig. 1 shows an office chair
BOM structure as a tree.

A. Types of differences in BOMs
Different engineers may build completely identical end

items with very different BOM structures; since there is no
common rule or template to follow, the engineer develops the
BOM based on her understanding of how the product is
manufactured or assembled. Thus, trees representing
otherwise identical end items can have very different
topologies, from relatively flat trees (not much different than
mere parts lists) to highly structured, multi-level trees.

BOM trees may differ in three ways:
1. Structural differences such as the number of

intermediate parts, parts at different levels, and parts
with different parents.

2. Differences in component labels.
3. Differences in both components and structure.
For example, Fig. 2 shows an office chair (A) and a variant

On comparing bills of materials: A
similarity/distance measure for unordered trees

Carol J. Romanowski and Rakesh Nagi1

Fig. 1: Office chair bill of materials

A
Office Chair

E
Seat

B
Under frame

G
Upholstery

I
Back frame

F
Upholstery

G
Seat frame

D
Wheel

C
Standard

J
Elbow rest

H
Back

SMCA03-05-0120

2

(A’). Note the lumbar support (P); in Tree 1, on the left, it
appears as the child of the end item, Office Chair (A). In Tree
2, on the right, the lumbar support is included as part of the
subtree rooted at M, which represents the chair back
subassembly. The change in the subassembly label from I to
M reflects the new part number generated by adding the
lumbar support to the original subassembly.

Therefore, similar BOMs may have the same components
or parts, but have different structure, with some parts
appearing at one level in one tree and at another level – or
with a different parent – in a second tree. Additionally,
BOMs may have similar structure but different components.
These situations are common in actual practice.

BOMs are also unordered - meaning that the order of nodes,
or components, is not significant. For instance, it does not
matter if we say a car has a body, wheels, and transmission or
a car has a transmission, body, and wheels.

B. Motivation and outline of the paper
 The notion of similarity in BOMs is rooted more in content

than in topology; the commonality of content lies in
similarities between the component parts in the two BOMs.
However, we do want to capture the differences in structure.
Quantifying the similarities between BOMs is important in
identifying similar end items whose designs can be re-used in
new products. Research has been done on similarity measures
for ordered trees ([8], [9], [10], [11], [12]), but these methods
are not consistent for unordered trees. Unit cost editing
operations are typically used to determine distance between
unordered trees, but we show in Section II.B that these
operations do not give accurate distances for BOMs. In this
paper, we propose a metric based on the symmetric difference
that calculates accurately the similarity of BOM trees. The
similarity measure results are then input to a k-medoid
algorithm to cluster the similar BOMs.

This paper is organized as follows: in Section II we discuss
existing approaches to matching both ordered and unordered
trees, and show how those approaches give incorrect distance
values for BOM trees. Section III introduces definitions,
notations, and presents the minimum weighted symmetric
difference metric. In Section IV, we propose an algorithm to
find the difference between two trees. Finally, Section V
oncludes the paper, discussing a pilot study and
recommending further work.

II. APPROACHES TO MATCHING TREES

A. Matching ordered and unordered trees
Ordered tree matching is easier than unordered matching

because the order of sibling nodes is fixed. In exact matching,
each node maps precisely from one tree to the other, using the
same labels. Approximate matching allows inexactness in
labeling and topology comparisons between the pattern tree
and the data, or target tree. For example, a node labeled
“*ide” exactly matches “side” but only partially matches
“kids.” The distance between “kids” and “side” is the
number of editing operations needed to transform “kids” into
an exactly matching node.

References [10] and [11] give algorithms for exact
matching of ordered trees; [12] and [13] discuss a PAC
(probably approximately correct) machine learning approach
to learning ordered and unordered tree patterns from queries.
Using an approximate matching approach first proposed by
[14], Reference [15] develops a system that allows users to
build a pattern tree or modify an existing one on screen, then
retrieve similar trees from the database. Reference [16] looks
for similar consensus (largest approximately common
substructures) between ordered trees by using the isolated-
subtree distance metric first proposed by [17].

Most tree matching algorithms use a set of editing
operations, derived from string comparison research, to
transform the trees into isomorphisms. These editing
operations, which are constrained to be metrics, include node
insertion, node deletion, and node substitutions (essentially,
label changes). Reference [18] calculates the distance
between two unordered trees as the minimum sum
combination of unit cost node deletions, node insertions, and
node substitutions needed to transform two trees into
isomorphisms. Their algorithm finds this minimum cost by
forming a state space, partitioning each tree into two sets of
strings ending at a leaf node: a set of unmarked strings to be
deleted, and a set of marked strings that are condensed into
single nodes. Each state represents a different combination
and/or number of strings assigned to each set. The reduced
trees resulting from deleting and condensing strings are
compared using level-by-level bipartite matching, where
nodes with a different number of children or on a different
level are considered to be at infinite distance. The minimum
cost marking on two trees is found by examining the cost of
the bipartite matching plus the editing distance between the
deleted strings of both trees.

Reference [8] restricts node operations to deletions only,
removing nodes that are not common to both trees. Reference
[19] aligns the two trees into a single tree, inserting null nodes
where the trees were mismatched. Reference [20] represents
the trees as a bipartite graph, and finds the edge cover that
corresponds to a minimum cost edit sequence, or script. The
authors include an edit operation that allows subtrees to be
moved to a different parent with a unit cost, unlike the more
expensive string-based edit requiring deletion of all children
in the subtree and its root node. Additionally, [20] allows a
label change operation to fail the triangle inequality test for a
metric.

 Tree 1 Tree 2

Fig. 2: Variants of an office chair

A

HB P

FC

I

G

ED

KJ

A’

S

PFN

M

G

ED

KJ

R

Office Chair Office Chair

Elbow restSeat BackLumbar support

Under frame UpholsteryBack frameUpholsterySeat frame UpholsteryBack
frame

UpholsterySeat frame Lumbar
support

Under frame

WheelFootrestStandardWheelStandard

Seat Back

A

HB P

FC

I

G

ED

KJ

A’

S

PFN

M

G

ED

KJ

R

Office Chair Office Chair

Elbow restSeat BackLumbar support

Under frame UpholsteryBack frameUpholsterySeat frame UpholsteryBack
frame

UpholsterySeat frame Lumbar
support

Under frame

WheelFootrestStandardWheelStandard

Seat Back

SMCA03-05-0120

3

Computing the editing distance between unordered labeled
trees is an NP-Complete problem ([8] provides a proof).
Reference [20] shows that the problems of finding the largest
common subtree and the minimum edit distance of two rooted,
unordered trees are both MAX-SNP hard.

In all these approaches, the focus is on a topological
matching based on strings. In BOMs, we are interested
primarily in content; topology is a secondary concern, and
strings do not adequately represent this domain. In fact, the
string editing operations would give a false distance measure
for many BOMs. We show two cases where unit cost editing
operations do not give the correct cost, or distance.

B. Incorrectness of string-based unit cost editing operations
Case 1: Trees with same topology but different content

(see Fig. 3: Case illustrating infeasible transformations). In
this case, editing operations would replace the labels for nodes
V, W, X, and Z even though the nodes are obviously not
similar in content.

Case 2: Trees with identical subtrees that have different
parents (see Fig. 4: Incorrect cost).

Editing operations would delete nodes D, K, and F and
insert the same three nodes as children of the root node A.
The cost for this set of operations would be 6. However, for
BOM trees, a more intuitive way to look at the difference is to
disconnect the entire subtree rooted at F and move it to
become a child of A – at a cost of 2. This operation is
analogous to the move operation of [19].

The addition of move implies the existence of rules for
applying the different operators. For the purposes of
determining a minimum cost edit script, or sequence of editing
operations, such as in [19], the greater accuracy in distance
measurement for certain domains is offset by the greater
number of possible edit scripts that must be considered.

The copy operation used in [20] would actually give a
lower cost for BOMs. Addition of another subtree requires
adding the subtree root node and all its children, resulting in a

cost of unit*(root+children), not a single unit cost.

C. Summary of tree editing operations and costs vs BOM
needs

Editing operations and cost functions should, to be
accurate, reflect the needs of the domain in which they are
applied. Table 1 summarizes tree editing operations, their
restrictions, costs, and their applicability to the BOM domain.
Note: deletion of an internal node means removing a parent
node i that is a child of j; i’s children become the children of j.
Likewise, inserting an internal node means adding a node i as
a child of j; a subset of j’s children become the children of i.
In contrast, changing a subtree’s parent is described in Case 2.

Table 1: Comparison of editing operations and costs

Op
no.

Editing
operations

Description/
Restrictions Metric Cost of operation*

BOM
cost

Leaf nodes Y Unit [SWZ, CGM] Unit

Internal nodes Y Unit [SWZ, CGM] Unit

1

Deletion
Change
subtree parent Y

Unit*(root+children)
[SWZ] Unit

Leaf nodes Y
Unit [SWZ, JWZ,
CGM] Unit

Internal nodes Y
Unit [SWZ, JWZ,
CGM] Unit

2

Insert

Change
subtree parent Y

Unit*(root+children)
[SWZ, JWZ] Unit

No partial
matches Y Unit [SWZ]

Partial,
metric

3

Substitute/
update
(label
change)

Partial
matches
allowed N

Domain dependent
[CGM] NA

4 Move
Change
subtree parent ?

Less than copy
[CGM] Unit

5 Copy
Insert a
subtree ?

Unit; inverse of glue
[CGM] NA

6 Glue
Delete a
subtree ?

Unit; inverse of copy
[CGM] NA

*SWZ = Shasha, Wang, Zhang, Shih 1994; JWZ = Jiang, Wang,
Zhang, 1995; CGM = Chewathe, Garcia-Molina, 1997

From the table, we can see that the BOM cost/distance

model and allowable operations are distinctly different from
previous methods (shaded cells highlight the dissimilarities).
Therefore, we need a different means of finding the distance
between two BOM trees.

D. Definitions and notation
Bill of materials: A structural representation of

subassemblies, components, parts, and their relationships that
make up a particular end item. Level 0, the highest level of an
indented BOM, is occupied by a single entity, the end item,
which has no parent. Levels 1-n are considered to be below
Level 0 and contain subassemblies and purchased items.

End items: Entities that are sold to customers, and
therefore appear in Level 0 of the indented BOM. End items
contain subassemblies and parts, and in practice may contain
other end items. End items may also be purchased and sold to
customers without any value-added manufacturing activity.
These types of end items have no children (lower level
components).

D

A

B C

F G

F

D

A'

M L

H G

K

H K

D

A

B C

F G

F

D

A'

M L

H G

D

A

B C

F G

D

A

B C

F G

F

D

A'

M L

H G

F

D

A'

M L

H G

K

H K

Fig. 4: Case illustrating incorrect cost

Vehicle

G
Car hood

E
Sedan body

D
4Dr BodyWheelsEngine

Vehicle

Z
Pickup bed

W
Cab

V
Truck bodyEngine Wheels

F
Trunk lid

X
Truck hood

Vehicle

G
Car hood

E
Sedan body

D
4Dr BodyWheelsEngine

Vehicle

Z
Pickup bed

W
Cab

V
Truck bodyEngine Wheels

F
Trunk lid

X
Truck hood

Fig. 3: Case illustrating infeasible transformations

SMCA03-05-0120

4

Subassembly: Entities that are generally not sold to
customers, and therefore do not appear in Level 0 of the
indented BOM. Subassemblies are manufactured items that
may contain manufactured or purchased parts or other
subassemblies, and therefore do not appear in the lowest level
of the BOM.

Purchased parts: Entities that are either raw or purchased
materials, and therefore only appear in the BOM tree as leaf
nodes. Purchased parts by definition have no children.

Quantity representation: In bills of materials, repeated
subassemblies or parts are represented by a quantity per value.
This value is the number of the part required per one unit of
the part’s parent.

Consider the left BOM tree in Fig. 5. The node values
correspond to the quantities of each part per parent. If we
were to add another subassembly rooted at B, the result would
be the right BOM tree. Note that the child quantities do not
change, as they reflect only quantity per parent.

Matrix representation of BOMs: BOMs can also be
represented as square adjacency matrices, where aij = the
quantity of j needed to make one unit of i if j is a child of i,
and 0 otherwise. For example, Fig. 6 shows the adjacency
matrix for the left tree in Fig. 5.

Node: A node is a vertex in the graph that is connected to
other nodes or to leaves by directed edges. The root node of a
tree is a special node that has no parent, corresponding to an
end item. Subassembly nodes have several children;
purchased parts nodes have no children. The set of nodes, or
vertices, in a tree is represented as V.

Node labels and part numbers: Part numbers are
alphanumeric strings that uniquely identify the end items,
subassemblies, or purchased parts. Each number corresponds
to a specific item with specific characteristics. For instance,
an oval button would have a different part number than a
round button. Some companies use meaningful part numbers
that provide information about the part, while others use
arbitrary schemes.

If we compared two BOMs using part numbers as labels,
the two BOMs would only match where the part numbers
were exactly the same. For instance, suppose Part XYZ-10 is
a washer with I.D. = 10 mm. Part XYZ-20 is a washer with

I.D. = 20 mm. These two washers would not be matched
because of the unique part numbers. However, we are
interested in finding BOMs of similar – not just exact –
content and topology. For this reason, we replace the part
numbers with general node labels derived from the part
characteristics and types. In the case of these two parts, we
would replace the unique part labels with a single label XYZ
for the class of washers.

As we noted previously, this part label generalization
requires domain knowledge to accomplish effectively, and is
currently a primarily manual operation. Additionally, the
contribution of each child to its parent is also a matter of
domain knowledge. Some parts are more or less critical than
others (compare product literature with a circuit board, for
example), and so contribute proportionally to the distance
between two parent nodes. We assume in this paper that the
criticality of parts is known, the label generalization is
predetermined, and thus the distances between purchased
items (leaf nodes) are available in an offline lookup table (see
[6]; also, [23] and [24] present data mining approaches to part
number generalization, involving the construction of an
industry-specific thesaurus and index based on text mining of
part descriptions).

Size: The size of a tree or graph is the total number of
edges, and is denoted as |E|, where E represents the edge set.
In a tree, |E| = |V|-1.

Degree: The degree of a node is the sum of edges coming
into (in-degree) and going out of the node (out-degree). Since
every node in a BOM has only one parent, we use degree to
refer to out-degree – the number of children of a node.

Isomorphism: Two trees are considered to be isomorphic
if they contain the same nodes and have the same structure.

V: the set of vertices (nodes) in a graph.
E: the set of edges (arcs) in a graph.
G(V,E): a graph made up of vertices V and edges E.
∪: the union operator.
⊕: the ring-sum operator (see also Section III).
{}: the empty set.
Parenthesized notation for a tree or directed graph: nested

parentheses that denote parent and child nodes. For example:
the tree in Fig. 7 would be A(B(E,F),C,D).

Preorder traversal: Parent nodes are visited before the
child nodes, left to right. In preorder traversal, the nodes of
the tree shown in Fig. 7 would be visited in the order A-B-E-
F-C-D. This method corresponds to the order shown in
parenthesized notation, and is similar to the node order in a
depth-first search.

III. GENERAL OVERVIEW OF OUR APPROACH
Editing operation algorithms focus on topology and

transformation of one tree into another to find isomorphisms.

Fig. 7: Sample tree

Fig. 5: Quantity representation in BOMs

A

D (4)C (1)B (2)

H (2)G (1)F (4)E (2)

A’

D (4)C (1)B (3)

H (2)G (1)F (4)E (2)

A

CB D

FE

Fig. 6: Adjacency matrix for Tree A

A B C D E F G H
A 0 2 1 4 0 0 0 0
B 0 0 0 0 2 4 0 0
C 0 0 0 0 0 0 0 0
D 0 0 0 0 0 0 1 2
E 0 0 0 0 0 0 0 0
F 0 0 0 0 0 0 0 0
G 0 0 0 0 0 0 0 0
H 0 0 0 0 0 0 0 0

SMCA03-05-0120

5

,2n
D

S j=

These algorithms were initially an outgrowth of string
comparisons, adapted to ordered and unordered tree
structures. When comparing BOMs we must consider two
important factors: first, BOMs are not a product of nature –
they are man-made, and thus subject to inconsistencies in
structure. Secondly, because of that man-made inconsistency,
using existing editing algorithms may inflate the
transformation cost between two otherwise similar BOMs, as
we have shown in Section II.B.

To address these problems, we modified a graph difference
operation (also called the symmetric difference, or ring-sum
difference) to determine the similarity between two BOM
trees. The symmetric difference is the set of edges that appear
in one graph but not the other. Since edges in BOMs
represent parent-child relationships, the symmetric difference
between two BOM trees is the dissimilarity in both content
and topology.

However, in some cases label differences (representing
content dissimilarities) are not completely orthogonal, and
partial matching of nodes is needed. Our modification to the
“classical” symmetric difference allows these partial matches
to be made between nodes in the two trees. In support of
these matches, the offline lookup table defines the distances
between purchased parts. Distances between intermediate, or
parent, nodes are directly derived from these predefined
values and “rolled up” through the trees; i.e., the distance
between parent nodes i and j is the sum of the distances
between the children of i and j, and so on.

Sections A through C discuss the classical definition and
application of symmetric difference; Section D introduces the
modification that includes partial label matching, and Section
E gives an illustration of the approach.

A. Definition of symmetric difference
Consider two BOM graphs, G1(V1, E1) and G2(V2, E2). The

difference between the two BOMs is analogous to a
symmetric difference (G1 ⊕ G2) of two graphs G1 and G2,
where
 () () ()()21212121 , EEEEVVGG ∩−∪∪=⊕ (1)

In other words, the symmetric difference represents the
edges in G2 not found in the graph G1 and the edges in G1 not
found in G2.

B. Definition of sparsity value
Consider two rooted, directed trees Ga (Va, Ea) and Gb(Vb,

Eb). We construct a square adjacency matrix for each BOM,
where aij = the quantity of j per unit of i if aj is a child of ai
and 0 otherwise. In the column corresponding to the root node
every entry is 0, since the root node is never a child of any
other node.

If Ga and Gb are not of the same order, we augment the
adjacency matrix of the smaller G with additional columns
and rows (whose entries aij are 0) until the two matrices are
the same size. The augmented adjacency matrix A represents
the smaller of Ga and Gb. The adjacency matrix B represents
the larger of Ga and Gb

We find the symmetric difference matrix, Dab, by taking the
absolute difference between the two adjacency matrices.

 Dab = |A-B| (2)

Dab is a sparse matrix; we then calculate a sparsity value S
for this matrix by finding the ratio of the sum of non-zero
entries to the total number of entries in the matrix. This
sparsity value represents the similarity between the two BOM
trees; the smaller the sparsity value, the more similar the tree
structures.

2

a b
ab

a b

G GS S
V V

⊕
= =

∪
, (3)

which is equivalent to the normalized sparsity value
 (4)

where Dj is the sum of non-zero entries in Dab and n2 is the
number of entries in the matrix.

The symmetric difference and the normalized sparsity value
are both metrics (see [25] for a proof of symmetric difference,
and the Appendix for a proof of sparsity value).

C. Finding the symmetric difference between two trees
Lemma 1: |A-B| = A⊕B; i.e., the absolute value difference

between A and B equals the symmetric difference between A
and B.

Proof: Consider two BOM tree adjacency matrices, A and
B, each of order n. Then,

A⊕ B = (Va ∪Vb, ((Ea ∪Eb)- (Ea ∩Eb))
We calculate the entries for the difference matrix Dab as
 dij = | aij - bij|

Four cases can arise from this operation. For the purpose of
simplicity, and without loss of generality, we assume the
maximum quantity of child node j to make parent node i is 1.

Case 1: An edge exists between vertices i and j in matrix
A. An edge also exists between vertices i and j in matrix B.
In other words, j is a child of i in both A and B. Therefore, the
pair (aij, bij) belong to the sets (Ea∪Eb) and (Ea∩Eb), and
dij = |aij - bij| = |1-1| = 0.

Case 2: No edge exists between vertices i and j in matrix
A. No edge exists between vertices i and j in matrix B. In
other words, j is a child of i in neither A nor B.

Therefore, dij = |aij - bij| = |0-0|=0.
Case 3: An edge exists between vertices i and j in matrix A.

No edge exists between vertices i and j in matrix B. In other
words, j is a child of i in A but not in B.

Therefore, the pair (aij, bij) belong to the set (Ea∪Eb), and
dij = |aij - bij| = |1-0|=1

Case 4: No edge exists between vertices i and j in matrix
A. An edge exists between vertices i and j in matrix B. In
other words, j is a child of i in B but not in A.

This case is similar to Case 3. Therefore, the pair (aij, bij)
belong to the set (Ea∪Eb), and dij = |aij - bij| = |0-1|=1

Thus, the non-zero entries in Dab represent only the edges in
A that do not exist in B, and the edges in B that do not exist in
A – the symmetric difference between the two graphs. □

Lemma 2: |Am-Bm| ≠ |An-Bn|, where A and B are adjacency
matrices and {m, n} are different orderings of the vertex sets
Va and Vb. That is, the symmetric difference between two
adjacency matrices is dependent on the numbering sequence
of the vertex sets Va and Vb.

Proof: Consider two unordered trees, Ga and Gb, with

SMCA03-05-0120

6

vertex sets Va and Vb, respectively, consisting of the same
nodes and internal structure, albeit in different order. Number
the vertex sets by any consistent numbering sequence
(preorder, post order, or level order). Let Va = {a(b(c, d, e),
f(g, h))}. Let Vb = {a(f(h, g), b(e, c, d))}. Suppose we use
level order traversal to number the vertex sets (the method of
numbering is not significant). Using this numbering
sequence, we form adjacency matrices for Va and Vb. Recall
that aij = 1 if an edge is present between vertices i and j, and 0
otherwise. Clearly, |A – B| = 0 only if, ∀ aij and bij, aij = bij.

The vertex ordering for Va is {a, b, f, c, d, e, g, h}. The
vertex ordering for Vb is {a, f, b, h, g, e, c, d}. The two
adjacency matrices formed by this numbering sequence are
shown in Fig. 8.

Even though the two trees are isomorphic, by inspection we
can see that the symmetric difference for these adjacency
matrices is not 0. In fact, no matter what consistent traversal
method we use, and no matter how small or large the
isomorphic trees, the symmetric difference will not equal 0
unless the trees’ vertices appear in exactly the same order. □

Corollary 3.1: An ordering of the vertex set Va or Vb exists
that finds the minimum symmetric difference between two
graphs Ga and Gb.

Proof: Unlike ordered trees, BOM trees do not place
restrictions on the left-to-right ordering of sibling vertices.
This property makes finding the similarity between two
unordered trees more difficult, since we cannot specify a
consistent vertex traversal convention that will guarantee the
trees are ordered in the same way.

However, by permuting the vertex set of one graph,
swapping rows and columns of the adjacency matrix as in
Lemma 1, we can find the ordering sequence that minimizes
the symmetric difference – and thus, the sparsity value –
between two trees.

Consider two BOM trees, Ga and Gb both of order n. Let A
be the adjacency matrix constructed from Ga, using any vertex
numbering scheme; likewise, let B be the adjacency matrix
constructed from Gb.

We keep A fixed, and generate j = 1,…, n! permutations of
the rows and columns of B. We then find the difference
matrix Dj = |A-Bj|.

Recall that the sparsity value is Sj =
2n

Dj , where Dj is the

sum of non-zero entries and n2 is the number of entries in the
matrix.









==⊕

2
minminmin

n

D
SGG j

jjjba

It is clear that when Dj is minimum, the quantity Sj is also
minimum. Therefore, the permutation vector j corresponding
to the minimum Dj represents the minimum symmetric
difference, and thus the minimum topological dissimilarity,
between Ga and Gb. □

D. Modification of the symmetric difference measure
The nature of BOMs and their domain requires a

modification of the symmetric difference measure. This
change modifies the edge differences from Cases 3 and 4 in
Lemma 1 by allowing partially matching nodes.

Partial matching is accomplished using weights w (0 ≤ w ≤
1, where 0 is a perfect match and 1 is no match at all) that
represent the design, functional, or manufacturing similarities
between two parts or components. While it is certainly
possible to generalize labels in the preprocessing phase so
there is no similarity whatever between labels, it is not always
useful to do so. For instance, we could refer to all engines as
“engines”; however, we may want to distinguish between 4
cylinder and 8 cylinder engines. We assume these weights to
be given for leaf nodes, which represent purchased items in a
BOM. The distances between subtrees whose child nodes are
also subtree roots are derived from the summing, or “rolling
up” of child subtree weights.

This modification changes the calculation of Dj from the
simple “count” of unmatched edges to a sum of weighted
edges. Using a weighted bipartite matching algorithm that
minimizes the sum of weights of a perfect match, we find a
minimum cost solution that pairs single level subtrees i and j
from the two BOM trees. Dj, then, is the sum of these paired
subtree weights, or distances, wij.

We can define the minimum weighted symmetric difference
between two trees A and B as









== 2minmin),(

n
D

SBAMWSD j

jjj
,

where ∑=
ji

ijijj xwD
,

, which is the objective function of

the weighted bipartite matching problem. Recall that the xij
term is 0 if no match exists between subtree i and j, and 1 if
the two subtrees are matched.

E. Illustration of the minimum weighted symmetric
difference metric (MWSD)

In Table 1 we showed that existing edit operations did not
accurately measure the difference between two BOMs. Table
2 lists the various ways BOM trees differ, their analogous edit
operation number from Table 1, BOM cost, and a sample
calculation of the symmetric difference. The last column
refers to figures that accompany examples of the weighted
symmetric difference metric application.

Fig. 8: Adjacency matrices for two trees

Tree A
a b c d e f g h

a 0 1 1 0 0 0 0 0
b 0 0 0 1 1 1 0 0
c 0 0 0 0 0 0 1 1
d 0 0 0 0 0 0 0 0
e 0 0 0 0 0 0 0 0
f 0 0 0 0 0 0 0 0
g 0 0 0 0 0 0 0 0
h 0 0 0 0 0 0 0 0

Tree B
a f b h g e c d

a 0 1 1 0 0 0 0 0
f 0 0 0 1 1 0 0 0
b 0 0 0 0 0 1 1 1
h 0 0 0 0 0 0 0 0
g 0 0 0 0 0 0 0 0
e 0 0 0 0 0 0 0 0
c 0 0 0 0 0 0 0 0
d 0 0 0 0 0 0 0 0

SMCA03-05-0120

7

Figs. 9-13 show the graphical and matrix calculation of
these operations. In Fig. 9, the subtree rooted at C has a
different parent in each tree. The adjacency matrices for these
trees are shown in Fig. 10. The shaded entries in these
matrices are exactly matching edges that result in zero entry
values in the difference matrix. Clearly we can see that the
difference matrix will consist of 2 non-zero entries: A(2,3)
corresponding to the edge between B and C; and A’(4,3)
corresponding to the edge between D’and C. The sparsity
value for this difference matrix is (2/64) = 0.03125. In
contrast, using unit cost edit operations would yield a sparsity
value of (6/64) = .09375.

Fig. 11 shows the operation of adding a subtree that exists

in one tree and not the other. Tree A contains a subtree
rooted at E that does not appear in Tree A’. In this case, we
need to augment the matrix for Tree A’ so the two matrices are
the same size (see Fig. 12: du1 – du4 are the dummy entries
for matrix A’). The shaded cells correspond to zero entries in
the difference matrix; the sparsity value for these trees is
(4/121) = 0.033.

 The next case shows the result of partially matching two
nodes. In Fig. 13, subtree B is made up of items K and P;
subtree B’ is made up of items K and L. Topologically, these
trees are identical, and a difference matrix will have no non-
zero entries. However, in comparing the set of nodes with a
lookup table, we can find the partial match for P and L;
suppose these two items match with a value of 0.8; then, the
sparsity value for these two trees is (0.8/49) = 0.016.

Table 2: Weighted symmetric difference calculations

Fig. 9: Illustrating subtree move

A

D

C

B

HG

FE

A’

D’

C

B’

HG

FE

LK LK

Fig. 10: Adjacency matrices for Fig. 9 trees

Figure 11: Illustrating added subtree

A

E

GF YXH

W

DC

B

A’

DC

B

YX

W

Fig. 12: Adjacency and different matrices for
 Fig. 11 trees

WSDM Calculation Example

Tree Differences
Analogous

Edit Operation BOM Distance

Element in
Tree A
matrix

Element in
Tree B
matrix WSDM cost

Subtree/node parent difference

 Tree A (h child of i) aih = 1 bih = 0

 Tree B (h child of g)

1, 2, 4 Unit per tree

agh = 0 bgh = 1 Cost = 2

Node difference Unit

 Tree A (h child of i) aih = 1 bih = 0

 Tree B (no h)

1, 2

 Cost = 1

Repeated existing subtree (same parent) |x-y|, where
 Tree A (h child of i), qty per = 2 x=QtyPer(TreeA)
 Tree B (h child of i), qty per = 1

2, 5

y=QtyPer(TreeB)
aih = 3 bih = 1

Cost = 2

Add subtree

 Tree A (h child of i, j and k children of h) aih = 1 bih = 0
 Tree B (no h, j, k) ahj = 1 bhj = 0

2, 5 Unit per added node

ahk = 1 bhk = 0 Cost = 3

Label match

 Tree A (h child of i) aih = 1 bih = 0

 Tree B (k child of i) aik = 0 bik = 1

 Match (h,k) = .8

3 0 <= Match <= 1

Cost = Match Cost = 0.8

A B C D E F G H K L
A 0 1 0 1 0 0 0 0 0 0
B 0 0 1 0 0 0 0 0 1 1
C 0 0 0 0 1 1 0 0 0 0
D 0 0 0 0 0 0 1 1 0 0
E 0 0 0 0 0 0 0 0 0 0
F 0 0 0 0 0 0 0 0 0 0
G 0 0 0 0 0 0 0 0 0 0
H 0 0 0 0 0 0 0 0 0 0
K 0 0 0 0 0 0 0 0 0 0
L 0 0 0 0 0 0 0 0 0 0

A' B' C D' E F G H K L
A' 0 1 0 1 0 0 0 0 0 0
B' 0 0 0 0 0 0 0 0 1 1
C 0 0 0 0 1 1 0 0 0 0
D' 0 0 1 0 0 0 1 1 0 0
E 0 0 0 0 0 0 0 0 0 0
F 0 0 0 0 0 0 0 0 0 0
G 0 0 0 0 0 0 0 0 0 0
H 0 0 0 0 0 0 0 0 0 0
K 0 0 0 0 0 0 0 0 0 0
L 0 0 0 0 0 0 0 0 0 0

A B C D E F G H W X Y
A 0 1 0 0 1 0 0 0 1 0 0
B 0 0 1 1 0 0 0 0 0 0 0
C 0 0 0 0 0 0 0 0 0 0 0
D 0 0 0 0 0 0 0 0 0 0 0
E 0 0 0 0 0 1 1 1 0 0 0
F 0 0 0 0 0 0 0 0 0 0 0
G 0 0 0 0 0 0 0 0 0 0 0
H 0 0 0 0 0 0 0 0 0 0 0
W 0 0 0 0 0 0 0 0 0 1 1
X 0 0 0 0 0 0 0 0 0 0 0
Y 0 0 0 0 0 0 0 0 0 0 0

A' B C D du1du2du3du4 W X Y
A' 0 1 0 0 0 0 0 0 1 0 0
B 0 0 1 1 0 0 0 0 0 0 0
C 0 0 0 0 0 0 0 0 0 0 0
D 0 0 0 0 0 0 0 0 0 0 0

du1 0 0 0 0 0 0 0 0 0 0 0
du2 0 0 0 0 0 0 0 0 0 0 0
du3 0 0 0 0 0 0 0 0 0 0 0
du4 0 0 0 0 0 0 0 0 0 0 0
W 0 0 0 0 0 0 0 0 0 0 0
X 0 0 0 0 0 0 0 0 0 1 1
Y 0 0 0 0 0 0 0 0 0 0 0

Difference
Root B C D E F G H W X Y

Root 0 0 0 0 1 0 0 0 0 0 0
B 0 0 0 0 0 0 0 0 0 0 0
C 0 0 0 0 0 0 0 0 0 0 0
D 0 0 0 0 0 0 0 0 0 0 0
E 0 0 0 0 0 1 1 1 0 0 0
F 0 0 0 0 0 0 0 0 0 0 0
G 0 0 0 0 0 0 0 0 0 0 0
H 0 0 0 0 0 0 0 0 0 0 0
W 0 0 0 0 0 0 0 0 0 0 0
X 0 0 0 0 0 0 0 0 0 0 0
Y 0 0 0 0 0 0 0 0 0 0 0

SMCA03-05-0120

8

IV. AN ALGORITHM TO FIND THE MINIMUM WEIGHTED
SYMMETRIC DIFFERENCE

We could find the minimum topological symmetric
difference between the adjacency matrices A and B by
permuting the matrices and evaluating their absolute value
difference, but there are n! possible permutations to compare.
Clearly, as n increases, the number of comparisons soon
becomes too large for brute force enumeration.

This problem, when disregarding weighted label matches,
can be characterized as finding the maximum common
subforest between two trees. The nature of BOMs, where
structural differences mean less than content dissimilarity,
allows us to solve the problem in polynomial time. We
present a bottom-up approach similar to the maximum
common subtree approach by [26] that compares the topology
and content of the trees at the subtree level and uses bipartite
matching to find the minimum difference between individual
subtrees.

Before we describe this method, we must establish some
definitions.
Single-level subtree: a parent node and its children; the
children of these subtrees may or may not be leaf nodes.
Terminal subtree: a parent node and its children who are all
leaf nodes.

Consider two trees, Ta and Tb.
We choose a single-level subtree ta, with root node n and

children C(ai, … , an) from Ta and a single-level subtree tb,
with root node m and children D(bj, … , bm) from Tb.

The subtrees ta and tb are exactly matching subtrees if n = m
and C = D.

In this approach, we form the adjacency matrices using
preorder traversal. The matrices built using this method have
the root node at the left side of the matrix, and group subtree
root nodes with their child nodes, making it simple to find the
rows and columns corresponding to terminal subtrees. We
first calculate the minimum possible sparsity value, Sl, which

is 2

B A
n
−

; this value is 0 if both trees are the same size. We
decompose the trees into single-level subtrees, starting with
terminal subtrees and moving up the levels of the trees. We
then find the distances between subtrees, comparing every
node in each subtree in Tree A with every node in each
subtree in Tree B. Child nodes that match exactly (same label,
same parent) are removed from the subtrees. Then, we
perform a weighted matching (function LabelMatch) to
determine the minimum distance between labels of the
remaining nodes. Label distances between nodes are found in
the lookup table, SubTreeDist. Previously calculated subtree
distances are also stored in SubTreeDist.

We next find the minimum distance matching over all
subtrees using function TreeMatch. The result of this
function is a set of paired subtrees with a distance, or weight,
wij. The distance between the entire trees A and B is the sum of
these weights divided by n2, where n is the number of nodes in
the larger tree.

We first present the algorithm and then prove that it finds
the minimum weighted symmetric difference between two
unordered trees.

A. The decomposition-reduction (DeRe) algorithm:
Input: Unordered BOM trees Ta and Tb, |Ta| ≤ |Tb|
Output: Sparsity metric denoting the minimum normalized weighted
symmetric difference between Ta and Tb.
1. Form adjacency matrices A and B using preorder traversal.

2. Calculate the lower bound Sl = 2

B A
n
−

 where n is the number of
columns in B

3. If |B| > |A|, then augment A with (|B| - |A|) rows and columns of
zeros at the right end and bottom of the matrix.

4. Calculate Sab =
2n

D , the initial sparsity value

 If Sab == Sl then set Smin = Sab
5. Find exactly matching subtrees
 For i = 1 to m, where m is the number of subtrees in B
 Beginning at the right side of matrix B and moving left toward the

root,
 Find the first terminal subtree tbi rooted at n
 Search A for an exactly matching terminal subtree ta with

root n
 If ta and tbi are exactly matching subtrees, then reduce

both A and B by removing the rows and columns
corresponding to the child nodes of ta and tbi.

 Next i
 Repeat for single-level subtrees in A and B. If no more exact

matches remain, continue.
6. Find paired subtrees
 For j=1 to r, where r is the number of remaining subtrees in B,
 For k=1 to s, where s is the number of remaining subtrees in A,
 For each subtree tbj find the distance to tak using table

SubTreeDist and function LabelMatch(tbj, tak)
 Find the paired subtrees using function TreeMatch (Ta, Tb) .
7. Calculate Sab =

2n
D

8. Return Sab

Function LabelMatch (tbj, tak)
 For nodes i to m in subtree tak,
 For nodes j to n in subtree tbj
 Perform weighted bipartite match to find best matching of

subtree nodes
 Dsub(i,j) = Σwij from weighted bipartite matching
 Store Dsub for all subtree pairs in SubTreeDist

Function TreeMatch (Ta, Tb)
 For trees Ta and Tb with subtree sets {ta} and {tb}
 Using Dsub(a,b) from SubTreeDist, perform weighted bipartite

match to find best matchings of subtree pairs
 D = Σ min Dsub (ta, tb) for all subtree pairs from {ta}, {tb}
Return D

B. An illustration of the DeRe algorithm
Consider the trees from Fig. 9, repeated in Fig. 14:
The first step in the algorithm is to form the matrices A and

A’ using preorder traversal. Because these two trees are of
identical size, we do not need to augment either matrix. The
lower bound Sl = 0.

Next, we calculate the sparsity value Sab. Fig. 15 shows the

Fig. 13: Illustrating partial matching

A

D B

H G

A’

D B’

HG P K L K

SMCA03-05-0120

9

matrices for A, A’, and the difference matrix. Sab for these two
trees is 8/100 =.08.

There are two terminal subtrees in Tree A: one rooted at C
and one rooted at D. In Tree A’ there are also two terminal
subtrees: one rooted at C and one rooted at B’. The two
subtrees rooted at C are exact matches. Therefore, we can
remove their children E and F. Fig. 16 shows the reduced
tree.

We cannot evaluate the distance between the single-level
subtrees rooted at A and A’ because their children are also
subtrees, and have not yet been evaluated.

Next, we look at the four subtrees rooted at B, D, B’, and
D’. We assume for this example that the distance between
differently labeled nodes is 1. Consider the subtree rooted at
B. The distance between B and B’ is 1, since K and L match
exactly and C has no match in B’. The distance between B
and D’ is 2, since the C nodes match exactly but the

remaining nodes do not. Consider the subtree rooted at D;
the minimum distance between D and B’ is 2. The distance
between D and D’ is 1, which represents the parent
difference of C. We store these subtree pair distances in
SubTreeDist.

The last remaining subtrees are those rooted at A and A’.
We have already calculated the distances between their
children and stored them in SubTreeDist, so we use the values
to find the best match for the child nodes of A and A’. The
best match for subtree B is subtree B’, at a distance of 1; the
best match for D is D’, at a distance of 1. so Sab for A and A’
= Dsub (B,B’) + Dsub (D,D’) = 1 + 1 = 2/100 = 0.02. This result
is the same as the result in Case 2 (Section II.B.).

C. Proof of the DeRe algorithm
Theorem 1: The DeRe algorithm finds the minimum

weighted symmetric difference between two unordered trees
Ta and Tb.

Proof:
Consider two unordered trees Ta and Tb and their respective

adjacency matrices A and B. We decompose the trees into two
sets of single-level subtrees (ta1,…,tan) and (tb1,…,tbm). Let C
be the set of child nodes of single-level subtree tai, found in
Ta, and rooted at p. Let D be the set of child nodes of single-
level subtree tj, found in Tb, and rooted at q. We define Γ(a,b)
as the set of children in all exactly matching single-level
subtrees in Ta and Tb. Then, {C(ti, p), D(tj,,q)} ⊃ Γ(a,b) if p=q
and (C∪D) – (C∩D))={}.

Therefore, the elements of Γ(a,b) correspond to Case 1 in
Lemma 1, and represent zero-valued elements in |A – B|.

We remove the elements in Γ(a,b) from T1 and T2 to form the
reduced trees T1r and T2r. Again, we decompose the trees into
two sets of single-level subtrees Ta(ti,…,tn) and Tb(tj,…,tm).
The function LabelMatch, as a weighted bipartite matching
of individual subtree nodes, provides the minimum distance
values between subtrees. These distances (wij) are used in
another weighted bipartite matching (the function
TreeMatch) of the single level subtrees Ta(ti,…,tn) and
Tb(tj,…,tm).

By definition, weighted bipartite matching gives a
minimum cost matching of the reduced subtrees.

Clearly,

()
()()221

,
21

,max
,

TT

xw
TTMWSD ji

ijij∑
= ,

where the numerator is the resulting minimum cost objective
function from the weighted bipartite matching problem.

Therefore, the algorithm finds the minimum weighted
symmetric difference between two unordered trees.

V. CONCLUSION
In this paper, we have discussed the motivation for finding

similar BOM trees, and shown that calculating the distance
between these unordered trees requires a different approach
than those prevalent in recent literature. We consider these
properties in proposing a minimum weighted symmetric
difference metric that accurately computes the distance
between two BOM trees, as the domain requires.

A

D

C

B

H G

A’

D’

C

B’

HGL K L K

A

D

C

B

HG

FE

A’

D’

C

B’

HG

FE

LK LK

Fig. 14: Illustrating DeRe algorithm

Fig. 15: Matrices for DeRe example

Figure 16: Trees after removing exact matches

A B K L C E F D G H
A 0 1 0 0 0 0 0 1 0 0
B 0 0 1 1 1 0 0 0 0 0
K 0 0 0 0 0 0 0 0 0 0
L 0 0 0 0 0 0 0 0 0 0
C 0 0 0 0 0 1 1 0 0 0
E 0 0 0 0 0 0 0 0 0 0
F 0 0 0 0 0 0 0 0 0 0
D 0 0 0 0 0 0 0 0 1 1
G 0 0 0 0 0 0 0 0 0 0
H 0 0 0 0 0 0 0 0 0 0

A' B K L D' C E F G H
A' 0 1 0 0 1 0 0 1 0 0
B 0 0 1 1 0 0 0 0 0 0
K 0 0 0 0 0 0 0 0 0 0
L 0 0 0 0 0 0 0 0 0 0
D' 0 0 0 0 0 1 0 0 0 0
C 0 0 0 0 0 0 1 1 0 0
E 0 0 0 0 0 0 0 0 0 0
F 0 0 0 0 0 0 0 0 0 0
G 0 0 0 0 0 0 0 0 0 0
H 0 0 0 0 0 0 0 0 0 0

Difference A B K L C E F D G H
A 0 0 0 0 1 0 0 0 0 0
B 0 0 0 0 1 0 0 0 0 0
K 0 0 0 0 0 0 0 0 0 0
L 0 0 0 0 0 0 0 0 0 0
C 0 0 0 0 0 0 1 0 0 0
E 0 0 0 0 0 0 1 1 0 0
F 0 0 0 0 0 0 0 0 0 0
D 0 0 0 0 0 0 0 0 1 1
G 0 0 0 0 0 0 0 0 0 0
H 0 0 0 0 0 0 0 0 0 0

SMCA03-05-0120

10

We employed the minimum weighted symmetric difference
metric between two trees as the distance measure in a k-
medoid clustering algorithm [22] to group similar bills of
materials into product families. 75 bills of materials with
known product family classifications were collected from an
electronics manufacturer and the DeRe algorithm used to
calculate the pairwise distances between them. The resulting
distance matrix was input to the clustering algorithm, which
correctly placed the BOMs in the appropriate families. This
preliminary result shows the metric accurately represents the
difference between BOM trees. We intend to expand the
study to over 5000 BOMs and a finer cluster granularity,
searching for subgroups within the different product families.

The DeRe algorithm as presented could “double count”
parts with different parents. For instance, a tree with few
intermediate subassemblies may have exactly the same raw
material or purchased part content but a flatter structure than
another tree (see Figure 17, where Tree 1 is a less structured
version of Tree 2). Using editing operations, the distance
between Tree 1 and Tree 2 (or Tree 3) is 6 (removing two
nodes from subtree B, inserting the subtree parent node and
the two leaf nodes as siblings of B, and changing B’s label).
Using the weighted symmetric difference measure, and
supposing we match subtree B with subtree C, the distance is
5 (two unmatched nodes from subtree B, the subtree rooted at
D and its two children). In that case, the DeRe algorithm gives
a higher weighted symmetric difference than some designers
might prefer.

We are investing future work on refining the DeRe
algorithm further by allowing nodes with different parents to
be counted only once in the difference calculation.

In manufacturing applications, being able to quantify the
differences between BOMs allows engineers to find existing
products and reuse proven designs. This research provides an
accurate, fast alternative to GT coding and other efforts to find
similar parts and subassemblies.

APPENDIX
Lemma A.1: The normalized weighted symmetric

difference S is a metric if the cost matrix for the weighted
bipartite problem is constrained to be a metric.

Proof: A metric must satisfy three properties:
x-x = 0 (positivity)
x-y = y-x (symmetry)
x-z ≤ (x-y) + (y-z) (triangle inequality)
The first two properties have trivial proofs. We prove the

triangle inequality property as follows:

 Consider three single level trees L, M, and N, each with n
leaves. The given leaf node distances are constrained to be
metrics. We assume, without loss of generality, that the
weighted bipartite matching has paired leaf nodes with the
same index number; i.e., L1 is paired with M1, L2 is paired with
M2, etc. Likewise, L1 is paired with N1, M1 is paired with N1,
and so on.
 Since the distance between subtrees is the summed
distances between the pairs of leaf nodes, we can say that

()∑
=

=
n

i
iNodeiNodeTreeTree TreeTreeDD

1
2,1 2,1 .

Therefore, we can write
D(L,M) ≤ D(L,N) + D(M,N)

as

() () ().,,,
1 11
∑ ∑∑
= ==

+≤
n

i

n

i
iiii

n

i
ii NMDNLDMLD

By the triangle inequality, the distance D(Tree1Node i,
Tree2Node i) between paired nodes is

D(L1,M1) ≤ D(L1,N1) + D(M1,N1)
D(L2,M2) ≤ D(L2,N2) + D(M2,N2)
D(L3,M3) ≤ D(L3,N3) + D(M3,N3)

…
D(Ln,Mn) ≤ D(Ln,Nn) + D(Mn,Nn).

Clearly, the sum of the terms on the left side of these

equations is less than or equal to the sum of the terms on the
right side of these equations. Therefore, the triangle
inequality holds.

However, if the underlying cost matrix is not metric, then
the triangle inequality does not hold. For instance, suppose
we have three single level subtrees as in Fig. 18. The distance
between these subtrees relies on the relationships between leaf
nodes G, H, and K. If the distances between these nodes are
not a metric, then the distances D between the subtrees will
not be a metric either. We see in our distance table that the
distance between G and H is 0.5; between G and K is 0.1, and
between H and K is 0.3.

 By the triangle inequality,

DCC’ ≤ DCC’’ + DC’C’’.
Since the distances between these subtrees are the

distances between nodes G, H, and K, we can rewrite the
equation as:

DGH ≤ DGK + DHK.
 Substituting the values from the lookup table, we have:

0.5 ≤ 0.1 + 0.3
which is obviously not true.

Complexity analysis of the DeRe algorithm
There are three basic steps to the DeRe algorithm:

A

H

B

FE G

A

H

C

FE G

D

Tree 1 Tree 2

Figure 18: Two similar trees

A

H

B

FE G

A

H

C

FE G

D

Tree 1 Tree 2

Figure 17: Two similar trees

C C’ C’’

F FFG KH

C C’ C’’

F FFG KH

Figure 18: Three single level subtrees

SMCA03-05-0120

11

1. Find exactly matching subtrees and reduce the
matrices accordingly

2. Find paired subtrees and reduce the matrices
accordingly

3. Calculate the weighted symmetric difference of the
remaining root node subtree.

 To find the overall complexity of the DeRe algorithm,
we find first the complexity of the three steps.

Step 1: In this step, we scan the A matrix m times for
exactly matching subtrees. Only the first p (p ≥1) scans
involve all n nodes; once the children of exactly matching
subtree t are removed, the number of nodes in both matrices
are reduced to (n – c) nodes, where c (c ≥ 1) is the number of
children in t. We can say, then, that this step is O(n2) at worst.

Step 2: This step begins with (n-C) nodes, where C is the
total number of children removed during Step 1. We find the
minimum distances between nodes, working from known
label distances found in the lookup table and derived distances
found in the SubTreeDist table. The next major procedure is
two sequential bipartite matchings, one at the node level and
one at the subtree level. These matchings are each O(n2)
operations and dominate the running time for this step.

Step 3: As the tree root node subtrees are the only
subtrees remaining, this step is simply the sum of the distances
from matched subtrees determined in Step 2.

Therefore, the algorithm takes O(n2) time.

REFERENCES
[1] M. Henderson and S. Musti, “Automated Group

Technology Part Coding from a Three-Dimensional CAD
Database,” Journal of Engineering for Industry, vol. 110,
no. 3, pp. 278-287, 1988.

[2] G. Harhalakis, A. Kinsey, and I. Minis, “Automated
Group Technology Code Generation Using PDES,” in
Proc. 3rd Int. Conf. Computer Integrated Manufacturing,
Rensselaer Polytechnic Institute, Troy NY, 1992.

[3] H. Opitz, A Classification System to Describe Workpieces
(translated by A. Taylor). New York: Pergamon Press,
1970.

[4] I. Ham, D. Marion, and J. Rubinovich, “Developing a
Group Technology Coding and Classification Scheme,”
Industrial Engineering, vol. 18, no. 7, pp. 90-97, 1986.

[5] J. Shah and A. Bhatnagar, “Group Technology
Classification from Feature-Based Geometric Models,”
Manufacturing Review, vol. 2, no. 3, pp. 204-213, 1989.

[6] S. Iyer and R. Nagi, "Automated Retrieval and Ranking
of Similar Parts in Agile Manufacturing," IIE Trans.
Design and Manufacturing, special issue on Agile
Manufacturing, vol. 29, no. 10, pp. 859-876, 1997.

[7] J. Clement, A. Coldrick, and J. Sari, Manufacturing Data
Structures. Essex Junction, VT: Oliver Wight Ltd.
Publications, Inc., 1992.

[8] P. Kilpelainen and H. Mannila, “Ordered and Unordered
Tree Inclusion,” SIAM Journal on Computing, vol. 24,
pp. 340-356, Apr. 1995.

[9] D. Shasha and K. Zhang, “Tree Pattern Matching,” in
Pattern Matching Algorithms, A. Apostolico, Ed.
London: Oxford University Press, 1998, pp. 341-369.

[10] K. C. Tai, “The tree-to-tree correction problem.” Journal
of the ACM, vol. 26, no. 3, pp. 422-433, July 1979.

[11] C. M. Hoffmann and M. J. O'Donnell, “Pattern Matching
in Trees,” Journal of the ACM vol. 29, no. 1, pp. 68-95,
1982.

[12] T. R. Amoth, P. Cull, and P. Tadepalli, “Exact Learning
of Tree Patterns from Queries and Counterexamples,” in
Proc. 12th Annual ACM Conference on Computational
Learning Theory (COLT), Santa Cruz CA, July 1999, pp.
323-332.

[13] T. R. Amoth, P. Cull, and P. Tadepalli, “Exact Learning
of Unordered Tree Patterns from Queries,” Proc. of the
11th Annual ACM Conference on Computational Learning
Theory (COLT), Madison WI, July 1998, pp. 175-186.

[14] K. Zhang, D. Shasha and J. T. -L. Wang, “Approximate
Tree Matching in the Presence of Variable Length Don't
Cares,” Journal of Algorithms, vol. 16, no.1, pp. 33-66,
January 1994.

[15] J. T. -L. Wang, K. Zhang, K. Jeong, and D. Shasha, “A
System for Approximate Tree Matching.” IEEE
Transactions on Knowledge & Data Engineering, vol. 6,
no. 4, pp. 559-571, August 1994.

[16] J. T. -L.Wang and K. Zhang, “Finding similar consensus
between trees: an algorithm and a distance hierarchy,”
Pattern Recognition, vol. 34, no. 1, pp. 127-137, Jan.
2001.

[17] E. Tanaka and K. Tanaka, “The tree-to-tree editing
problem,” International Journal of Pattern Recognition
and Artificial Intelligence, vol. 2, no. 2, pp. 221-240, June
1988.

[18] D. Shasha, J. T.-L. Wang, K. Zhang, and F. Shih, “Exact
and Approximate Algorithms for Unordered Tree
Matching,” IEEE Transactions on Systems, Man and
Cybernetics, vol. 24, pp. 668-678, Apr. 1994.

[19] T. Jiang, L. Wang, and K. Zhang, “Alignment of trees -
an alternative to tree edit,” Theoretical Computer Science
vol. 143, pp. 137-148, May 1995.

[20] S. Chawathe and H. Garcia-Molina, “Meaningful Change
Detection in Structured Data,” in Proc. ACM SIGMOD
Int. Conf. Management of Data, Tucson AZ, May 1997,
pp. 26-37.

[21] K. Zhang and T. Jiang, “Some MAX SNP-hard results
concerning unordered labeled trees,” Information
Processing Letters, vol 49, pp. 249-254, March 1994.

[22] R. Ng and J. Han, “CLARANS: A method for clustering
objects for spatial data mining,” IEEE Trans. Knowledge
and Data Engineering, vol. 14, pp. 1003-1016, Sept.
2002.

[23] C. J. Romanowski and R. Nagi, “A Data Mining And
Graph Theoretic Approach To Building Generic Bills Of
Materials,” in Proc. 11th Industrial Engineering
Research Conference, Orlando FL, May 2002.

[24] C. J. Romanowski and R. Nagi, “A Data Mining-Based
Engineering Design Support System: A Research
Agenda,” in Data Mining for Design and Manufacturing:
Methods and Applications, D. Braha, Ed. Dordrecht:
Kluwer Academic Publishers, pp. 235-254, 2001.

SMCA03-05-0120

12

[25] W. D. Wallis, P. Shoubridge, M. Kraetz, and D. Ray,
“Graph distances using graph union,” Pattern
Recognition Letters, vol. 22, pp. 701-704, 2001.

[26] G. Valiente, Algorithms on Trees and Graphs. Berlin:
Springer-Verlag, 2002.

Carol Romanowski is a doctoral candidate in the Department
of Industrial Engineering at the University at Buffalo
(SUNY). She also received her B.S. (1996) and M.S. (1999)
degrees at the University at Buffalo. She is a 1999 recipient
of the U.S. Department of Energy’s Integrated Manufacturing
Predoctoral Fellowship. Her research interests are in
production systems, preventive maintenance, engineering
design, and data mining.

Rakesh Nagi is an Associate
Professor of Industrial Engineering
at the University at Buffalo (SUNY).
He received his Ph.D. (1991) and
M.S. (1989) degrees in Mechanical
Engineering from the University of
Maryland at College Park, while he
worked at the Institute for Systems
Research and INRIA, France, and
B.E. (1987) degree in Mechanical

Engineering from University of Roorkee (now IIT-R),
Roorkee, India. He is a recipient of SME's Milton C. Shaw
Outstanding Young Manufacturing Engineer Award (1999),
IIE's Outstanding Young Industrial Engineer Award in
Academia (1999), and National Science Foundation's
CAREER Award (1996). His papers have been published in
journals including IIE Transactions, International Journal of
Production Research, Journal of Manufacturing Systems,
International Journal of Flexible Manufacturing Systems,
Journal of Intelligent Manufacturing, Computers in Industry,
Computer Integrated Manufacturing Systems, Operations
Research, Annals of Operations Research, Computers and
Operations Research, and Computers and Industrial
Engineering. Dr. Nagi's major research thrust is in the area of
production systems. His research interests are in Location
theoretic approaches to Facilities Design, Agile Enterprises
and Information-Based Manufacturing, and Just-In-Time
production of assemblies.

