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Abstract 
Data mining has been making inroads into the engineering design environment – an area that 
generates large amounts of heterogeneous data for which suitable mining methods are not readily 
available.  For instance, an unsupervised data mining task (clustering) requires an accurate 
measure of distance or similarity.  This paper focuses on the development of an accurate 
similarity measure for bills of materials (BOM) that can be used to cluster BOMs into product 
families and subfamilies.  The paper presents a new problem called Tree Bundle Matching 
(TBM) that is identified as a result of the research, gives a non-polynomial formulation, a proof 
that the problem is NP-Hard, and suggests possible heuristic approaches.  
 
Scope and Purpose 
In a typical life cycle of an engineering project or product, enormous amounts of diverse 
engineering data are generated. Some of these include Bills-Of-Materials (BOM), product design 
models in CAD, engineering drawings, manufacturing process plans, quality and test data, and 
warranty records.  Such data contain information crucial for efficient and timely development of 
new products and variants; however, this information is often not available to designers.  Our 
research employs data mining methods to extract this design information and improve its 
accessibility to design engineers.  This paper focuses on one aspect of the overall research 
agenda, clustering BOMs into families and subfamilies.  It extends previous work on a graph-
based similarity measure for BOMs (a class of unordered trees) by presenting a new Tree Bundle 
Matching (TBM) problem, and proves the problem to be NP-hard. The overall contribution of 
this work is to demonstrate the OR applications from graph matching, stochastic methods, 
optimization, and others to data mining in the engineering design environment. 
 
Keywords:   Bills Of Material, unordered trees, similarity measure, clustering, weighted 
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1.  Introduction  

Engineering design is a multi-disciplinary, multi-dimensional, non-linear process.  Once 

performed by a solitary engineer wielding drafting tools and vellums, today’s design and 

development is likely to be a heavily computerized, team process – concurrent engineering – 

performed with CAD programs, computerized optimization and analysis algorithms, word 

processing and spreadsheet software, and e-mail.  With the advent of cheap storage and fast 

computers, the amount of engineering data generated during product design and development 

accumulates beyond the ability of humans to process the data into useful knowledge.   

Yet, accessing and distilling the valuable knowledge hidden in this vast amount of 

information is crucial.  The demands of the current business climate require companies to be 

agile and proactive, moving products quickly from concept to market.  A key element of time-to-

market reduction is the ability to use existing knowledge and designs to generate new variations 

of existing products.   

  Data mining methodologies have been specifically developed for these types of situations, 

where the sheer volume of data is overwhelming for both human and existing methods.  

However, in the case of engineering design, the nature of the data requires modification of 

existing algorithms or creation of new methodologies.  Characteristically, engineering design 

data appear in many forms:  numerical, textual, graphical, imaged, and a mixture of two or more 

of these types.  Therefore, while data mining algorithms have been specifically written to 

effectively analyze large datasets, the engineering data often cannot be simply “plugged in” to 

these programs.   

Operations research formulations and methods, in conjunction with traditional data mining 

statistical and machine learning algorithms, offer new possibilities for characterizing, defining 
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and solving the types of problems posed by design data.  For instance, calculating the similarity 

between two designs for clustering purposes is a matching task; we prove, via OR methods, that 

the true problem is NP-hard.  This application of operations research helps to define the structure 

and complexity of the problem, and to suggest possible heuristic approaches that might not 

otherwise be evident.      

In this paper, we discuss clustering of engineering design data from a data mining and 

operations research perspective.  Section 2 explains the similar design matching problem and an 

algorithm that calculates distances between BOMs, values that will be used in a clustering 

algorithm.  Section 3 presents a new Tree Bundle Matching problem (TBM), gives a proof that 

TBM is NP-hard, and suggests future directions for solutions.  Section 4 concludes the paper. 

2.  Design similarity based on BOM tree matching 
 

In previous work [1, 2] we introduced a design support system to facilitate the search for 

similar designs and thus reduce the interval between concept and product launch.  The system is 

founded on a library of existing products; companies may, over the course of even a few years, 

generate thousands of designs, most of which are variants of a base product – in short, 

“variations on a theme.”  Our approach is to reduce the search space by using data mining 

methods such as clustering and association mining.  We cluster these designs, represented as bills 

of materials (BOMs), into families and subfamilies; unify each cluster into a single entity (called 

a generic bill of material (GBOM) [3, 4, 5, 6]) that encapsulates the variations in content and 

structure within each family; and use rules induced from association mining to add design rules 

and constraints to the GBOM. 

A BOM is the hierarchical, structured representation of a product, containing critical 

information such as components, raw materials, quantities, instructions for manufacture, and 
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consumable items [7]. BOMs capture the make-up, content, and structure of complex products 

from these engineering domains.  The major purpose for BOMs is to define the recursive parent-

child relationships between the end item, its components or subassemblies, and the raw (or 

purchased) materials they contain. 

BOMs can be depicted as rooted, unordered trees – meaning that the order of nodes, or 

components, is not significant.  The end item, or finished product, is the root of the tree; 

manufactured or assembled components are the nodes; and purchased parts or raw materials are 

the leaves.  Different engineers may build completely identical end items with very different 

BOM structures; since there is no common rule or template to follow, the engineer develops the 

BOM based on individual understanding of how the product is manufactured or assembled.  

Thus, trees representing otherwise identical end items can have very different topologies, from 

relatively flat trees (not much different than mere parts lists) to highly structured, multi-level 

trees.  BOM trees may differ in three ways: (i) structural differences such as the number of 

intermediate parts, parts at different levels, and parts with different parents, (ii) differences in 

component labels, and (iii) differences in both components and structure. 

For example, Figure 1 shows an office chair (A) and a variant (A’).  Note the lumbar support 

(P); in Tree 1, on the left, it appears as the child of the end item, Office Chair (A).  In Tree 2, on 

the right, the lumbar support is included as part of the subtree rooted at M, which represents the 

chair back subassembly (Note:  all arcs in BOMs represent AND relationships).  The change in 

the subassembly label from I to M reflects the new part number generated by adding the lumbar 

support to the original subassembly. 
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Therefore, similar BOMs may have the same components or parts, but have different 

structure, with some parts appearing at one level in one tree and at another level – or with a 

different parent – in a second tree.  Additionally, BOMs may have similar structure but different 

components.  These situations are common in practice. 

The notion of similarity in BOMs is rooted more in content than in topology; the 

commonality of content lies in similarities between the component parts in the two BOMs.  

However, we do want to capture the differences in structure.  Quantifying the similarities 

between BOMs is important in identifying similar end items whose designs can be re-used in 

new products.  Research has been done on similarity measures for ordered trees [8, 9, 10, 11, 

12], but these methods are not consistent for unordered trees. Unit cost editing operations are 

typically used to determine distance between unordered trees [13, 14, 15, 16], but we show in 

[17] that these operations do not give accurate distances for BOMs.   

Also in [17] we present a polynomial time decomposition-reduction algorithm (DeRe) for 

computing the weighted symmetric difference between two BOM trees. Essentially, the 

algorithm compares single level subtrees (SLTs), removes those that match exactly in topology 

and content, and determines the distances between the remaining SLTs using weighted bipartite 

matching.  These distances are “rolled up” to the root node; their sum represents the total 

          Tree 1                      Tree 2 
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distance between the two BOM trees.  In the following subsection, we give a simple example for 

illustrative purposes. 

2.1   Example of the DeRe algorithm 

Consider the trees in Figure 2: 

 
There are two terminal SLTs in Tree A (trees whose children are only leaf nodes):  one 

rooted at C and one rooted at D.  In Tree A’ there are also two terminal SLTs:  one rooted at C 

and one rooted at B’.  The two SLTs rooted at C are exact matches.  Therefore, we can remove 

their children E and F.  Figure 3 shows the reduced tree. 

We now look at the four SLTs rooted at B, D, B’, and D’.  We assume for this example that 

the distance between differently labeled nodes is 1.  Consider the SLT rooted at B.  The distance 

between B and B’ is 1, since K and L match exactly and C has no match in B’.  The distance 

between B and D’ is 2, since the C nodes match exactly but the remaining nodes do not.  

A

D

C

B

HG

FE

A’

D’

C

B’

HG

FE

LK LK

Figure 2:  Two BOM trees 
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Consider the SLT rooted at D; the distance between D and B’ is 2.  The distance between D and 

D’ is 1, which reflects the parent difference of C.   

The last remaining SLTs are those rooted at A and A’.  The best match for SLT B is B’, at a 

distance of 1; the best match for D is D’, also at a distance of 1.  So, the distance between A and 

A’ is the sum of the distances of the matched pairs (B,B’) and (D,D’) = 1 + 1 = 2.  

2.2.   Limitation of the DeRe algorithm 

As seen above, the weighted bipartite matching approach can overstate the total weighted 

distance between two BOM trees.  For instance, a BOM tree with few intermediate 

subassemblies may have exactly the same raw material or purchased part content, but a flatter 

structure, than another BOM tree (see Figure 4, where Tree 1 is a less structured version of Tree 

2).  Using editing operations, the distance between Tree 1 and Tree 2 is 6 (removing two nodes 

from subtree B, inserting the subtree parent node and the two leaf nodes as siblings of B, and 

changing B’s label).  Using the weighted symmetric difference measure, and matching subtree B 

with subtree C, the distance is 5 (two unmatched nodes from subtree B, the subtree rooted at D 

and its two children).  But, the true distance between Tree 1 and Tree 2 is merely the presence of 

an additional subassembly root node; therefore the DeRe algorithm, while more accurate than 

editing operations, overstates this distance.  A closer value would be obtained if we could match, 

or bundle, subtree B with more than one other subtree.  However, this extended capability 

introduces more complexity to the overall matching problem, which is discussed in Section 3.  
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3. Analysis of the TBM problem 

In this section we present the mathematical formulation for the tree bundle matching problem 

discussed in the previous section, and prove that the problem is NP-hard.   

Let T and R be two trees that are considered for a tree matching problem. Let BT be the set of 

bundles created from tree T, where bundles are SLTs or groups of SLTs of T.   Let T
iB T⊆ be the 

individual bundles of BT so that { }1 2, , ..., , ...,T T T T T
i mB B B B B= . Similarly, let BR be the set of 

bundles created from tree R and R
jB R⊆ be the individual bundles of BR, so that 

{ }1 2, , ..., , ...,R R R R R
j nB B B B B= ).  Let wij represent the “closeness,” or similarity factor, between 

elements i∈BT and elements j∈BR.  We wish to find the matching of elements of BT to elements 

of BR such that the sum of the match elements is maximized (i.e., we maximize the similarity of 

the trees). We also define, for each element t∈T, the set { }1 : T
t iI i m t B= ≤ ≤ ∈ , which 

represents all bundles in BT containing t. Similarly, for each element r∈R we define the 

set { }1 : R
r jI j n r B= ≤ ≤ ∈ , representing all bundles in BR containing r. 

Mathematically, we can represent the Tree Bundle Matching (TBM) problem as follows: 
1
0

. . : 1 (1 )

1 (1 )

1 (2 )

1 (2 )

0 1 ,

T R

R
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R
t

T
r

T R

ij

ij ij
i B j B

T
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j B

R
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i B
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i I j B
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j I i B

T R
ij
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x

otherwise

Max w x

s t x i B a
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∈

∈

∈ ∈

∈ ∈

⎧ ∈ ∈
= ⎨
⎩
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= ∀ ∈ ∀ ∈

∑ ∑

∑

∑

∑∑

∑∑
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Constraints (1a) and (1b) represent the tree matching problem among predefined bundles, 

while constraints (2a) and (2b) allow any element of the two trees being considered to belong to 

at most one bundle. Clearly, if we consider constraints (1a) and (1b) only, the problem becomes 

a Weighted Bipartite Matching problem (WBM) which is polynomially-solvable. So, a natural 

research question is whether, with the addition of constraints (2a) and (2b), TBM remains a 

tractable problem.  Additionally, if the problem is tractable, we would like to know if it can be 

viewed as a different matching structure. 

Some of the other matching problems that we can consider in understanding the solvability of 

TBM are: 

• Weighted Matching (WM) problem (not necessarily bipartite), and 

• Weighted Perfect Matching (WPM) problem (every vertex has to be incident to a matched 

edge). 

Even though these problems are polynomially equivalent (they can be transformed to each 

other in polynomial number of steps and size), their structures might give us some insights on the 

behavior of TBM.  Moreover, given that WBM is a relaxation of TBM and a special case of WM 

and WPM, it might allow us to obtain tighter bounds. Finally, both WM and WPM are two of the 

few structures having discrete phenomena that can be solved in polynomial time, and that do not 

have the Integrality Property (i.e., the convex hull of the linear programming relaxation has 

integer extreme points). 

When determining the existence of an efficient (polynomial-time) algorithm for TBM, we 

need to first investigate the possibility that such an algorithm cannot exist. For this proof we will 

study the relation of TBM to another related problem, 3-Dimensional Matching (3DM), which is 

NP-Complete.  In the 3-Dimensional Matching (3DM) problem, where the input is a graph, we 
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are trying to find a set of disjoint triples covering all vertices. The problem can be written as an 

integer program: 

1 1 1

1 1

1 1

1 1

. . : 1 1,..., (3)

1 1,..., (4)

1 1,..., (5)

0 1 , ,

n n n

ijk ijk
i j k

n n

ijk
j k

n n

ijk
i k
n n

ijk
i j

ijk

Max c x

s t x i n

x j n

x k n

x or i j k

= = =

= =

= =

= =

≤ =

≤ =

≤ =
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∑∑∑

∑∑

∑∑

∑∑

 

To understand the relationship between 3DM and TBM, we introduce a special case of the 

problem in which the two elements of the two trees to be considered can be defined as 
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n n n

i j k

T i and R j k
= = =
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Intuitively, BT represents bundles of singletons of one of the sets to be matched, while BR 

represents bundles of all possible pairs of the other two sets and the problem, referred to 

hereafter as TBM3, can be written as: 
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Theorem 1:  3DM can be polynomially reduced to TBM3 

Proof: The size of TBM3 is polynomial in the size of 3DM, since the sizes of the trees (n and 2n) 

as well as the bundles (n and n2) are polynomial on the input of the 3DM problem. Given the 

definition of the bundles, the objective function of TBM3 can be shown to be identical to the 

3DM problem: 

{1,..., } { , } {{1.1},...,{ , }} 1 1 1 1 1 1{ , }

ijk ijk

T R

n n n n n n
c w

ijk ijk ijk ijk ijk ijk ijk ijk
i n j k n n i j k i j ki B j k B

w x w x w x c x=

∈ ∈ = = = = = =∈ ∈

= = ←⎯⎯⎯→∑ ∑ ∑ ∑ ∑∑∑ ∑∑∑  

So, to finalize this transformation, it suffices to show that the feasible regions are also identical. 

Consider constraint (6a) of TBM3, which can be shown to be equivalent to constraint (3) of 

3DM: 

{ , } {{1,1},...,{ , }} 1 1{ , }

1, 1, {1,..., } 1, 1,...,
R

n n
T

ijk ijk ijk
j k n n j kj k B

x i B x i n x i n
∈ = =∈

≤ ∀ ∈ ⇔ ≤ ∀ ∈ ⇔ ≤ =∑ ∑ ∑∑  

Any feasible solution satisfying constraints (3) and (4) in 3DM will also satisfy constraint (6b) in 

TBM3. Consider summing constraint (6b) over k; then, the resulting set of constraints are 

{ , } {{1. },...,{ , }} 1 1

, 1, ..., , 1, ...,
T

n n

ijk ijk
j k k n k i ji B

x n k n x n k n
∈ = =∈

≤ ∀ = ⇔ ≤ ∀ =∑ ∑ ∑∑ . Similarly, summing 

constraint (6b) over j gives a resulting set of constraints 

{ , } {{ .1},...,{ , }} 1 1

, 1, ..., , 1, ...,
T

n n

ijk ijk
j k j j n i ki B

x n j n x n j n
∈ = =∈

≤ ∀ = ⇔ ≤ ∀ =∑ ∑ ∑∑ . 

Constraint (7a) is redundant to constraint (6a) for this special case: 

{ }

{ } 1 1 1 1{ , }

1, , , {1,..., }i

R
t

n n n n
I i

ijk ijk ijk
i I i i j k j kj k B

x t T x i T x i n=
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≤ ∀ ∈ ←⎯⎯→ ∀ ∈ ⇔ ∀ =∑ ∑ ∑∑∑ ∑∑  
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Finally, we need to consider constraint (7b).  Let R be divided in two disjoint sets 

RJ={1,…,j,…,n} and RK={1,…,k,…,n}, such that R=RJ∪RK.  Then, we can divide the set of 

constraints into two sets: 

{{ , }: 1,..., }

{ , } 1 1

{{ , }: 1,..., }

{ , } 1 1

1, 1, 1,..., (7 )

1, 1, 1,..., (7 )

r

T
r

r

T
r

n n
I j k j r and k nJ

ij irk
j k I k ii B

n n
I j k k r and j nK

ij irj
j k I j ii B

x r R x r n bJ

x r R x r n bK

= = =

∈ = =∈

= = =

∈ = =∈

≤ ∀ ∈ ←⎯⎯⎯⎯⎯⎯⎯→ ≤ ∀ =

≤ ∀ ∈ ←⎯⎯⎯⎯⎯⎯⎯→ ≤ ∀ =

∑ ∑ ∑∑

∑ ∑ ∑∑
 

If we compare (7bJ) and (7bK) with (4) and (5) respectively, we see that the constraints are 

identical, showing that 3DM polynomially reduces to TBM3. 

A direct result from Theorem 1 is that TBM is NP-Hard. Moreover, given that the special 

structure of TBM3 only includes bundles with singletons or pairs, there will be no simpler 

version of the problem for which we can hope to find a polynomial-time algorithm.  Therefore, 

our research will concentrate in finding fast heuristic optimization procedures, such as inexact 

graph matching approaches, that perform efficiently.  

3.1 A numerical example 

Prior to developing an efficient heuristic our interest is to determine the solvability of the 

TBM using a standard mixed integer solver.  We present the details of a small numerical 

example in Figure 5 (showing the trees and the distance matrix).  The TBM was formulated and 

solved using CPLEX 7.1 on an SGI Platform running IRIX 6.3.  This problem was able to solve 

in a fraction of a second.  The optimal match resulted in a match of b with 2, c with bundle 

{3,4}, d with 5, e with 6, and f with 7, providing an objective value of 4.75.  In the SLT 

matching approach of Section 2, the best one could do is match c with either 3 or 4, providing an 

objective value of 4.5. This simple example illustrates the efficacy of the TBM to more 

accurately represent the similarity between two BOMs. It also indicates that small size problems 
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can be solved using a standard solver. It is noted that for this example, constraints (1a) and (1b) 

are redundant. 

3.2 Potential heuristic approaches 

While small-dimensioned problems can be solved to optimality using standard solvers, for 

complex BOM trees it is desirable to seek heuristic approaches.  The objective of this brief paper 

is to introduce some ideas along which such heuristics can be developed. Specific algorithm 

development and performance evaluation are recommended for further study.   

We first note that the complication of the TBM comes from two sources: (i) combinatorial 

number of bundles of single level trees (SLTs) to be considered in the matching, and (ii) 

constraints (2a) and (2b) that require an elemental SLT to be matched in at most one bundle. The 

former increases the dimension of the problem, while the latter results in NP-hardness.   

Therefore, our first idea is to reduce the state space of the bundles to be matched. This draws 

from the observation that in the domain of BOMs, a SLT in one BOM is likely to match (with 

strictly positive value) very few SLTs in the other BOM because matching requires similar child 

components.  Further, there is no advantage to bundling one or more non-matching SLTs with 

Figure 5:  A numerical example of TBM

2 3 4 5 6 7 23 24 25 26 27 34 35 37 45 46 56 57
Equivalent B D E F BC2 BC2 BD BE BF C C2D C2F C2D C2E DE DF
B 1 0 0 0 0 0 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0
C 0 0.5 0.5 0 0 0 0.25 0.25 0 0 0 0.75 0 0 0.25 0 0 0
D 0 0 0 1 0 0 0 0 0.5 0 0 0 0 0 0.5 0.5
E 0 0 0 0 1 0 0 0 0 0.5 0 0 0 0 0 0.5 0.5 0
F 0 0 0 0 0 1 0 0 0 0 0.5 0 0 0.5 0 0 0 0.5
BC 0.5 0.25 0.25 0 0 0 0.5 0.5 0.5 0 0 0.5 0.5 0.25 0.25 0.25 0.25 0.25
BD 0.5 0 0 0.5 0 0 0.5 0.5 0.75 0.5 0.5 0 0.5 0 0.5 0 0.5 0.5
BE 0.5 0 0 0 0.5 0 0.5 0.5 0.5 0.75 0.5 0.25 0 0 0 0.5 0.5 0
BF 0.5 0 0 0 0 0.5 0.5 0.5 0.5 0.5 0.75 0.25 0 0.5 0 0 0 0.5
CD 0 0.25 0.25 0.5 0 0 0.25 0.25 0.5 0 0 0.5 0.5 0.25 0.5 0.25 0.5 0.5
DE 0 0 0 0.5 0.5 0 0 0 0.5 0.5 0 0.25 0.5 0 0.5 0.5 0.75 0.5
DF 0 0 0 0.5 0 0.5 0 0 0.5 0 0.5 0.25 0.5 0.5 0.5 0 0.5 0.75
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partially matching SLT(s) because they only “dilute” the weight associated with the resulting 

match.  Therefore, we can reduce the problem dimension by creating only bundles of strictly 

positively matched element SLTs for a target SLT or bundle.  An appropriate threshold match 

value can also be selected for further reduction in number of bundles created.  

The second idea is to solve the TBM without constraints (2) using a weighted bipartite 

matching algorithm. If an elemental SLT is matched in more than one bundle, constraint 

resolution can be performed along standard optimization techniques.  Alternately, we introduce a 

dummy node with perfect 1-match to the pair of bundles that violate constraints (2), retaining the 

bipartite structure. A high arc weight ensures that the perfect-1 match is achieved and the WBM 

algorithm is rerun. This process can be repeated until constraints (2) are respected.  Further effort 

needs to be invested in algorithm development and rigorous performance studies.  

4.  Conclusion 

In this paper, we discussed the search for similar designs and identified a new OR problem, 

the tree bundle matching problem, and provided a proof that the problem is NP hard.  We 

presented a numerical example to show the problem is solvable for small-sized problems using a 

standard solver. Ideas for heuristic development are also presented. 

The synergy between OR and data mining is clearly evident, as shown by the contribution 

OR methods make to the development of the distance measure used in this research.  The 

outcome of the overall data mining task is critically dependent on the accuracy of the distances 

that are inputs to the clustering algorithm. 

The field of data mining, as it matures, must draw not only from its statistics and machine 

learning roots, but also incorporate knowledge and approaches from related fields.  The resulting 

merger makes it possible to solve old problems better and new ones for the first time.     
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