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Abstract

This paper builds upon recent work by Patel et al. [1] who presented a strate-
gic model for clustering sensors in a threat environment. We consider two gen-
eralizations of this strategic model from a tactical perspective. The first gener-
alization is in the modeling of the relocation cost when clusterhead locations are
changed. The second generalization is in the modeling of the limited bandwidth
capacity at clusterheads. Separate column generation heuristics are proposed
for both generalizations. Computational studies are performed to explore the
feasibility of the proposed heuristics and to study the effect of the problem pa-
rameters on the solutions obtained. Results of a case study are reported, based
on a simulation testbed tool under development at the University at Buffalo
(SUNY).
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1 Introduction

Patel, Batta and Nagi [1] present a model to deploy a given number of clusterheads
over a specific time horizon, allowing relocation of clusterheads from one time period to
the next and minimizing the weighted sum of expected demand covered and relocation
cost. Their model is a strategic one in that it assumes a constant threat probability
and relocation cost and also unlimited clusterhead capacity, and is useful for planning
communication protocol for a military mission. When using this model in a tactical
framework e.g. for adjustments in communication protocols during a mission, these
assumptions are restrictive and unrealistic. The aim of this paper is to consider the re-
location cost and clusterhead capacity constraints and show how these can be modeled
and effectively dealt with.

Relocation cost is not a constant. When a clusterhead changes position, it must
perform the following three activities: (i) notify sensors that it will not cover any more
in the new position and disconnect the connections; (ii) establish new connections with
the sensors that it starts covering in the new position; (iii) send updated information
to other clusterheads. The first two activities depend on the number of sensors within
a particular region, while activity three depends on the number of clusterheads and the
size of the updated information. Clusterheads are also subject to bandwidth capacity
constraints. Thus, for sensors which are covered by more than one clusterhead we need
to decide which clusterhead it will be assigned.

To further motivate the need to consider relocation cost and clusterhead capacity
in tactical modeling, we consider a problem instance with 10 sensors and 4 candidate
clusterheads, in which sensor has unit demand, the number of clusterheads to be chosen
is one, and the relocation cost is assumed to be 20 units for all time periods. Each
clusterhead has unlimited bandwidth capacity and is capable of covering sensors within
its coverage radius. Figure 1 represent the optimal solution obtained by solving the
constant relocation cost/unlimited capacity model. The solution is to select candidate
1 as the clusterhead. Inclusion of a capacity constraints of 3 units will force the model
to choose candidate 2 instead, due to capacity restriction. Now consider the effect of
variable relocation cost. If the relocation cost reduces from 20 to 3, in a succeeding
time period we may choose a different clusterhead.

In the first part of the paper, we present the variable relocation cost model, and in
the second, the limited capacity model. Both models focus on the development of a
network topology that maximizes the overall efficiency of the communication system
in a tactical setting – which includes maximizing the expected coverage of sensors and
minimizing the overhead cost of changing clusterhead locations.

2 Literature Review

Ad hoc network is a self organizing multi-hop wireless network that can be rapidly
deployed [2]. All entities (sensors and clusterheads) in an ad hoc network can be mobile
and communication between them is carried over a wireless medium which lacks a fixed
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Figure 1: Motivating example

infrastructure. Sanchez, Evans and Minden [3] discuss some of the issues involved in
ad hoc networks and broadly classify them as network topology, location management
and routing management.

Network topology in ad hoc networks are either hierarchical or flat. Ramanathan
and Steenstrup [4] present three key components, clustering, location management
and virtual circuit management procedures, of Multihop Mobile Wireless Networks
(MMWN) based on a hierarchical structure. Haas and Tabrizi [5] discuss some of the
challenges and choices that need to be made in designing ad hoc network. In particular,
they discuss the flat architecture and its advantages over the hierarchical architecture.
On the other hand, Scachez, Evans and Minden [3] introduced the Highly Dynamic
multi-hop wireless network (HDnet) and determined that the HDnet networking model,
in terms of scalability and location management, offers a more practical and cost-
effective solution to mobile military networks than the classical ad hoc wireless model.

Location Management is the set of mechanisms used to determine where a sensor
is with respect to the network infrastructure, which is a key issue in ad hoc communi-
cation. It provides a time-varying mapping between the sensor identifier and address.
A number of location management strategies have been proposed. Sharony [6] parti-
tioned a mobile network into logically independent subnetworks, where network nodes
are members of physical and virtual subnets and their addresses are based on their
current subnet affiliation. Pei and Gerla [7] considered mobility management in large,
hierarchically organized multihop wireless networks, while using the notion of logical
subnets to handle mobility. The problem with these strategies is that they do not
exploit hierarchy at the network layer to reduce the frequency of location registra-
tion to distant location servers, that is, all events trigger a location update. Li et
al. [8] proposed Grid Location Service (GLS), which relies on a grid-based geographic
hierarchy overlaying the network area. Each node has a set of nodes functioning as
location servers and maintains a table of immediate neighbors as well as second-degree
neighbors.

In ad hoc networks routing has to be determined dynamically. The literature for
routing protocols is divided into Proactive or Table Driven Routing Protocol, Reac-
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tive or On-Demand Routing Protocol and Hybrid Protocol, the last being a combina-
tion of the first two. Some of the protocols cited in the literature are: Destination-
Sequenced Distance-Vector Routing (DSDV) [9], Clusterhead Gateway Switch Routing
(CGSR) [10], and Wireless Routing Protocol (WRP) [11]. In a reactive protocol, routes
are determined on a needs basis; examples are Ad Hoc On-Demand Distance Vector
Routing (AODV) [12], Dynamic Source Routing (DSR) [13], Associativity Based Rout-
ing (ABR) [14] and the Temporally Ordered Routing Algorithm (TORA) [15]. Hybrid
protocols combine the advantages of both reactive and proactive protocols. Haas [16]
proposed Zone Routing Protocol (ZRP), a hybrid protocol based on the notion of
routing zones.

Clustering of nodes in ad hoc networks are performed to use the wireless resources
efficiently by reducing congestion and for proper location and routing management.
Clusterhead selection is an NP-hard problem [17] and hence most of the existing so-
lution methodologies available are heuristic based approaches. Most of the clustering
algorithms described in the literature assume that the links between nodes within a
cluster are reliable and data can be communicated between them at all times. In
this paper, a mathematical programming based approach based on a variation of a
maximal expected covering location model due to Daskin [18] is adopted for dynamic
clustering. We therefore review relevant literature on covering location problems. Tore-
gas et al. [19] modeled the location of emergency service facilities as a Set Covering
Location Problem (SCLP) where the objective is to cover all demand with the least
number of facilities. Chapman and White [20] modeled the probabilistic version of
SCLP ensuring that each node is served by a specified reliability level α. Church and
ReVelle [21] proposed the Maximal Covering Location Problem (MCLP) with the ob-
jective to cover maximum demand with a restricted number of facilities. Daskin [18]
introduced a variant of the MCLP that considers the possibility that facilities may
be unable to respond to demands at all times. The resultant model was labeled as
MEXCLP (Maximum Expected Covering Location Problem).

Batta, Dolan and Krishnamurthy [22] attempted to relax three of the assumptions
made in the MEXCLP model. Patel, Batta and Nagi [1] model the sensor network
problem as a covering location problem with the objective of maximizing the expected
demand covered by deploying a given number of clusterheads. In this paper, we gen-
eralize the Dynamic MEXCLP model due to [1] by considering variable relocation cost
and bandwidth capacity constraints, which are pertinent at the tactical level.

3 Problem Formulation

Both Variable relocation cost and Capacity generalization models assume that the clus-
terheads are completely reliable while all links have (identical) steady-state probabili-
ties of failure e.g. jamming in a military situation. Sensors are mobile with known ve-
locity vectors. The clusterheads are also mobile and their potential locations constitute
a set of discrete points. The time horizon is divided into equal time periods and reloca-
tion of clusterheads takes place at the beginning of each time period. Clusterheads are
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identical in all respects and have adequate bandwidth capacity to communicate with
covered sensors. We define the parameters and the corresponding indices used in both
generalizations as follows:

Parameters:
∆ = set of potential clusterhead locations.

Θ = set of sensors.

n = maximum number of clusterheads to be chosen.

T = maximum number of time periods in the horizon under consideration.

U = the distance beyond which a sensor is considered “uncovered”.

Dikt = distance between potential clusterhead location i and
demand node k at time t.

dk = demand per period of node k.
p = probability of a link failure per period (between any facility and

demand node). (0 < p < 1)

rikt =

{
1, if Dikt < U ;
0 otherwise.

3.1 Variable Relocation Cost Model

As stated earlier, in a two-level clustering sensor network, sensors communicate through
the clusterheads and there is a single-hop peer-to-peer topology among clusterheads.
Each clusterhead has information of the sensors covered by every other clusterhead
and positions of the sensors are known at any time instant. Assignments are from a
discrete set of potential clusterhead locations. When a clusterhead changes its position,
it updates its own database and sends the updated information to other clusterheads.
Sending and receiving of updated information incurs some cost, like battery consump-
tion and bandwidth usage. Considering these as components of the relocation cost, we
define:

Constant Cost: Cost to initiate information transfer.

Registration Cost: Cost to register newly covered sensors. It is a function of number
of sensors concerned.

Deregistration Cost: Cost to release sensors that will no longer be covered by the
clusterhead in the new position. It is also a function of the number of sensors
concerned.

Routing Table Updating Cost: Cost incurred in sending the updated routing ta-
ble to other clusterheads. It is a function of both number of clusterheads and the
size of updated information (total number of sensors concerned).
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3.1.1 Model Formulation

We define some additional terms for variable relocation cost generalization as follows:

C = constant relocation cost.
c = registration cost between a sensor and a clus-

terhead.
c̄ = deregistration cost between a sensor and a

clusterhead.
cr = unit cell/element of routing table updating

cost.

wiskt =





1, if sensor k is covered by clusterhead location
s at time t, and not covered by
location i at time t− 1

0, otherwise

w̄iskt =





1, if sensor k is covered by clusterhead location
i at time t− 1, and not covered by
clusterhead location s at time t

0, otherwise.

For any sensor k, if a clusterhead moves from location i at time t − 1to location s at
any time t, wiskt and w̄iskt are given by

wiskt ≥ rskt − rik,t−1,
w̄iskt ≥ rik,t−1 − rist,
wiskt ≥ 0, and
w̄iskt ≥ 0

Then, the relocation cost w′
ist at the beginning of time t is given by:

w′ist = C +
∑

k∈Θ

[wiskt(c + cr) + w̄iskt(c̄ + cr)] (1)

From the definition of w′
ist we can see that the relocation cost is the summation of the

cost incurred in registering, deregistering, updating routing table plus a constant cost.
The decision variables of the problem are:

xit =

{
1, if clusterhead i is chosen at time t,
0, otherwise.

yjkt =





1, if sensor k is covered by at least j
clusterheads at time t,

0, otherwise.

zist =





1, if a clusterhead is reassigned from
location i to location s at the
beginning of time t,

0, otherwise.
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Thus, dynamic MEXCLP with variable relocation cost is formulated as follows:
(P1) Maximize

T∑

t=1

∑

k∈Θ

n∑

j=1

(1− p)pj−1dkyjkt −
T∑

t=1

∑

i∈∆

∑

s∈∆,s 6=i

zistw
′
ist,

subject to:

n∑
j=1

yjkt−
∑
i∈∆

riktxit ≤ 0 ∀ k ∈ Θ, t = 1, . . . , T, (2)

∑
i∈∆

xit≤ n ∀ t = 1, . . . , T, (3)

∑

s∈∆,s 6=i

zist ≥ xi,t−1 − xit ∀ i ∈ ∆, t = 1, . . . , T, (4)

∑

i∈∆,i6=s

zist ≥ xs,t − xs,t−1 ∀ s ∈ ∆, t = 1, . . . , T, (5)

∑
s∈∆

zist ≤ 1 ∀ i ∈ ∆, t = 1, . . . , T, (6)

zist ∈ {0, 1} ∀ i, s ∈ ∆, s 6= i, t = 1, . . . , T, (7)

xit ∈ {0, 1} ∀ i ∈ ∆, t = 1, . . . , T, (8)

yjkt ≤ 1 ∀ j = 1, . . . , n, k ∈ Θ, t = 1, . . . , T. (9)

Here, the objective function maximizes the expected demand covered while considering
relocation, registration and routing table updating cost. If node k is covered by m
clusterheads at time t, Constraint (2) assigns each of the variables y1kt, y2kt, . . . , ymkt a
value of 1 since the objective function is a maximization function containing the term
yjkt. Constraint (3) restricts the maximum number of clusterheads to be chosen to n
for any time t. Constraint (4) ensures that at least one clusterhead at location i moves
to another location if the number of clusterheads at time t − 1 is greater than the
number of clusterheads at time t at location i. Constraint (5) is same as (4), but in a
reverse sense. Constraint (6) ensures that there is only one clusterhead at each location
after the relocation. Constraints (7) and (8) are binary constraints. Constraint (9) is
a non-negativity constraint.

3.1.2 Column Generation Heuristic

Column generation (CG) is a widely used technique to solve large-scale combinatorial
optimization problems in the context of scheduling, set-partitioning, and vehicle rout-
ing. It is typically used in a multi-period model when the number of solutions available
for each period is very large. The reader is referred to the following papers for a descrip-
tion of the technique in a variety of different applications: [23] solve the fleet routing
and scheduling problem using a CG based approach. [24] solve set-partitioning problem
encountered in the context of traffic assignment in satellite communication using a CG
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heuristic. [25] adopt a CG heuristic to develop conflict-free routes on a bi-directional
network for automated guided vehicles. [26] solve a linear multi-commodity flow prob-
lem using an iterative partial pricing scheme that is motivated by the CG approach of
Dantzig-Wolfe decomposition.

CG is an iterative scheme where a sub-problem generates feasible solutions and a
master problem evaluates and selects these feasible solutions. The sub-problems in our
scheme are time separable and generate the optimal clusterhead assignment for each
time period (based on the current dual multipliers). The master problem picks the best
solution for each time period. We define some additional parameters and variables used
in the master problem and sub-problem for the CG approach:

Ft = set of feasible solutions for time t.
xqit = value of xit in solution q for time t.
yqjkt = value of yjkt in solution q for time t.

The decision variables of the problem are:

Fqt =

{
1, if solution q is selected at time t,
0, otherwise.

3.1.3 Master Problem

The master problem evaluates the set of solutions available for each time period and
selects one for each period such that the objective value is maximized. It is stated as
follows:
Maximize

T∑

t=1

∑

k∈Θ

n∑

j=1

∑

s∈Ft

(1− p) pj−1dkFqtyqjkt −
T∑

t=1

∑

i∈∆

∑

s∈∆,s6=i

zistw
′
ist

subject to:

∑

s∈∆,s 6=i

zist ≥
∑

q∈Ft−1

Fq,t−1xqi,t−1 −
∑

q∈Ft

Fqtxqit

∀ t = 1, . . . , T, i ∈ ∆ (10)∑

i∈∆,i6=s

zist ≥
∑

q∈Ft

Fqtxqst −
∑

q∈Ft−1

Fq,t−1xqs,t−1

∀ t = 1, . . . , T, s ∈ ∆ (11)∑

q∈Ft

Fqt = 1 ∀ t = 1, . . . , T, (12)

∑

s∈∆

zist ≤ 1 ∀ i ∈ ∆, t = 1, . . . , T, (13)

Fqt ∈ {0, 1} ∀ q, t = 1, . . . , T, (14)
zist ≥ 0 ∀ t = 1, . . . , T, ∀ i, s ∈ ∆, s 6= i. (15)
zist ≤ 1 ∀ t = 1, . . . , T, ∀ i, s ∈ ∆, s 6= i. (16)
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The master problem is solved as a relaxed linear program with no binary constraint
on the Fqt variables. This is referred to as the relaxed master problem (RMP). The
problem starts with an initial basic feasible solution. Constraints (10) and (11) are
similar to the Constraints (4) and (5) except that the decision variables are Fq,t and
Fq,t−1 instead of xit or xst. Constraint (12) ensure that only one solution can be selected
for each time period. Let β, γ, δ be the dual multipliers generated after solving the
relaxed master problem for Constraints (10), (11) and (12) respectively. The sub-
problem generates the feasible solutions using these dual multipliers.

3.1.4 Sub-Problem

The sub-problem is formulated to generate a new column that has a favorable reduced
cost to enter the basis of the master problem. It is solved for each time period t
separately. The sub-problem for time periods t = 1 to t = T − 1 is stated as below:

∑

k∈Θ

n∑
j=1

(1− p)pj−1dkyjkt +
∑
i∈∆

[βit − βit+1 + γit+1 − γit]xit − δt

subject to:

n∑
j=1

yjkt −
∑
i∈∆

riktxit ≤ 0 ∀ k ∈ Θ, (17)

∑
i∈∆

xit ≤ n (18)

xit ∈ {0, 1} ∀ i ∈ ∆, (19)

yjkt ≤ 1 ∀ j = 1, . . . , n, k ∈ Θ. (20)

Since the dual multipliers α are available only for t = 1 to t = T − 1, the sub-problem
for t = T has different objective function. The objective function for t=T is:
Maximize ∑

k∈Θ

n∑

j=1

(1− p) pj−1dkyjkt +
∑

i∈∆

xit (αit − βit)− γt

The solution for the sub-problem is a new variable Fst for the master problem. Thus
for each time period an MILP is solved to get the new solution for that time period.

3.2 Limited Clusterhead Capacity

In order to incorporate the capacity constraint, each sensor needs to be assigned to one
of the clusterheads that is “covering” it. However, we still have link failure probabil-
ities and correspondingly, need multiple coverage of sensors. Thus multiple coverage
still remains while preferential assignment, representing value of assigning a primary
clusterhead to a sensor, is incorporated. Due to the mobility of sensors, the optimal
selection of clusterheads for one time period may not be optimal for the entire horizon.
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Thus the tradeoff now is between multiple coverage and preferential assignment on one
side and relocation cost on the other. Model parameters are defined as follows:

Parameters:
cik = value of preference of assignment of sensor k to clusterhead i
Qit = capacity of clusterhead i during time period t
C = cost per unit change in the number of clusterheads at any location i

(one-half of relocation cost).

The decision variables are:

xit =

{
1, if clusterhead i is chosen at time t,
0 otherwise.

zikt =





1, if sensor k is assigned to clusterhead i
during time period t,

0 otherwise.

yjkt =





1, if sensor k is covered by at least j
clusterheads at time t,

0 otherwise.

wit = positive difference in the number of clusterheads at
location i between time t− 1 and time t.

The capacitated dynamic MEXCLP can be formulated as follows:

Formulation:

(P2) Maximize

T∑

t=1

∑

k∈Θ

n∑

j=1

(1− p)pj−1dkyjkt +
∑

i∈∆

∑

k∈Θ

cikzikt −
T∑

t=1

∑

i∈∆

Cwit,

subject to
n∑

j=1

yjkt −
∑

i∈∆

riktxit ≤ 0 ∀ k ∈ Θ, t = 1, . . . , T, (21)

∑

i∈∆

xit ≤ n ∀ t = 1, . . . , T, (22)

wit ≥ xit−1 − xit ∀ i ∈ ∆, t = 1, . . . , T, (23)
wit ≥ xit − xit−1 ∀ i ∈ ∆, t = 1, . . . , T, (24)

zikt ≤ riktxit ∀i ∈ ∆, k ∈ Θ, t = 1, . . . , T, (25)∑

i∈∆

zikt ≤ 1 ∀ k ∈ Θ, t = 1, . . . , T, (26)

∑

k∈Θ

dkzikt ≤ Qit ∀ i ∈ ∆, t = 1, . . . , T, (27)
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xit ∈ {0, 1} ∀ i ∈ ∆, t = 1, . . . , T, (28)
wit ≥ 0 ∀ i ∈ ∆, t = 1, . . . , T, (29)

yjkt ≤ 1 ∀j = 1, . . . , n, k ∈ Θ, t = 1, . . . , T, (30)
zikt ∈ {0, 1} , ∀ i ∈ ∆, k ∈ Θ, t = 1, . . . , T. (31)

The objective function is similar to the dynamic MEXCLP [1] with an additional term
which represents preferred assignment of sensors to clusterheads. Thus the objective
function maximizes demand covered and preferential assignment while allowing for
relocation of clusterheads over a time horizon. Constraints (21) to (24) are same as in
variable relocation generalization. Constraint (25) ensures that sensor k is assigned to
clusterhead location i only if location i is occupied by a clusterhead and sensor k can
be covered from location i. Constraint (26) ensures that a sensor is assigned to only
one clusterhead during a time period. Constraint (27) is the capacity constraint for
each clusterhead for each time period. Constraints (28), (29), (30) and (31) are binary
constraints.

An alternative formulation of (P2) can also be given. The variables and their in-
dices for this formulation are same as (P2) except for Qit, which is replaced by Qi

representing the capacity of clusterhead location i over the entire time horizon (note
again that all the clusterheads are assumed to be identical). It can easily be shown
that for an optimal solution of (P2) the wit variables will take on 0− 1 binary values.
Furthermore, for an optimal solution of (P2) the yjkt variables will also take on 0 − 1

binary values. This is because the term
∑
i∈∆

Riktxit will be integral since Rikt are 0− 1

binary constants and variables xit assume only 0− 1 binary values. The zikt variables
need not take 0 − 1 values unless defined to do so. It might also be noted here that
the preferential assignment is an attempt to capture capacity restrictions and is not
completely accurate. Because it only considers first order link failures and does not
take subsequent assignments into consideration. In other words, if the link between
a sensor and its most preferred clusterhead location breaks down, subsequent link as-
signments are not accounted for.

3.2.1 Column Generation Formulation

Similar to dynamic MEXCLP with relocation cost model, we can apply column gener-
ation heuristic approach to capacitated dynamic MEXCLP. We define some additional
parameters and variables used in the master problem and sub-problem for the CG ap-
proach:
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Ft = index set representing the available solutions for
time t.

Xsit = value of xit in solution s ∈ Ft for
time t.

Ysjkt = value of yjkt in solution s for time t.

The decision variables of the problem are:

fst =

{
1 if solution s ∈ Ft is selected at time t,
0 otherwise.

3.2.2 Master Problem

The master problem in this case is stated as follows:
Maximize

T∑

t=1

∑

k∈Θ

n∑

j=1

∑

s∈Ft

(1− p)pj−1dkfstysjkt +
T∑

t=1

∑

i∈∆

∑

k∈Θ

∑

s∈Ft

cikzsiktfst −
T∑

t=1

∑

i∈∆

Cwit

subject to

−wit +
∑

s∈Ft−1

fst−1xsit−1 −
∑
s∈Ft

fstxsit ≤ 0,

∀ i ∈ ∆, t = 1, . . . , T, (32)

−wit +
∑
s∈Ft

fstxsit −
∑

s∈Ft−1

fst−1xsit−1 ≤ 0,

∀ i ∈ ∆, t = 1, . . . , T, (33)∑
s∈Ft

fst = 1, ∀ t = 1, . . . , T, (34)

fst ∈ {0, 1} , ∀s, t = 1, . . . , T, (35)

wit ≥ 0, ∀ i ∈ ∆, t = 1, . . . , T. (36)

The master problem is solved as relaxed linear program with no binary constraint
on the variables. Constraints (32) and (33) are same as in (P2) except that we have
variable fst replacing xit and yjkt, whereas xit and yjkt are constants. Variable fst rep-
resents a feasible solutions (column). Let β, γ, δ be the dual multipliers corresponding
to constraints (32), (33) and (34), respectively. The sub-problem generates the feasible
solutions using these dual multipliers.

3.2.3 Sub-problem for Period t

The objective of the sub-problem is precisely the reduced cost of an entering column
to the master problem. Similar to the variable relocation cost model, the sub-problem
is solved for each time period t separately. The sub-problem for time periods t = 1 to
t = T − 1 is as follows:
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Maximize

∑

k∈Θ

n∑
j=1

(1− p)pj−1dkyjkt +
∑
i∈∆

[βit − βit+1 + γit+1 − γit]xit +
∑
i∈∆

∑

k∈θ

cikzikt − δt

subject to

n∑

j=1

yjkt −
∑

i∈∆

riktxit ≤ 0, ∀k ∈ Θ, (37)

∑

i∈∆

xit ≤ n, ∀ t = 1, . . . , T, (38)

zikt ≤ riktxit, ∀ i ∈ ∆, k ∈ Θ, t = 1, . . . , T, (39)∑

i∈∆

zikt ≤ 1 ∀k ∈ Θ, t = 1, . . . , T, (40)

∑

k∈Θ

dkzikt ≤ Qit ∀ i ∈ ∆, t = 1, . . . , T, (41)

zikt ∈ {0, 1} , ∀ i ∈ ∆, k ∈ Θ, t = 1, . . . , T. (42)
yjkt ≤ 1, ∀ j = 1, . . . , n, k ∈ Θ (43)

xit ∈ {0, 1} , ∀ i ∈ ∆. (44)

Due the non-availability of the dual multipliers β and γ for t = T , the objective func-
tion has a different form for t = T :

∑

k∈Θ

n∑
j=1

(1− p)pj−1dkyjkt +
∑
i∈∆

[βit − γit]xit +
∑
i∈∆

∑

k∈θ

cikzikt − δt

The solution of sub-problem (SPt) is a set of xit, yjkt and zikt values. These coef-
ficient values are said to represent a solution fst, which is added to the index set of
solution Ft for period t in the master problem. If the sub-problem for every period
t fails to produce a solution with strictly positive reduced cost, then the procedure
terminates.

3.3 Initial Basic Feasible Solution

The Column Generation(CG) approach works in the feasible domain. The CG heuristic
requires an initial basic feasible solution to start with. It starts with this solution and
keeps on improving the objective function value by generating new solutions termed
as “columns” and selecting the one that improves the objective function the most.
The effectiveness of the CG approach is enhanced by the quality of the initial basic
feasible solution. Hence it is important to develop a good heuristic for obtaining
an initial basic feasible solution. [1] proposed Relocation and No-relocation heuristics
for Dynamic MEXCLP. In our case, for both variable relocation cost and capacitated
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model, we use the modified version of these two heuristics. We start CG with two basic
feasible solutions for each time period generated by the Modified Relocation Heuristic
(MRH) and Modified No-Relocation Heuristic (MNRH). The modified versions differ
from [1]: Since, for variable relocation cost model, the relocation cost is different
for every possible clusterhead relocation during each time interval, we use average
relocation cost for each time interval while applying (RH). The average relocation cost
is calculated by summing all relocation costs for a particular time interval and dividing
them by the total number of possible relocations during that time interval. This might
affect the solution quality of RH, but can still provide us a good initial feasible solution
for CG heuristic. Similarly, for limited clusterhead capacity case, the demand covered
by each potential is substituted by the sum of the demand covered and the preferred
assignment for each potential location (refer [2] for details).

MRH is a greedy heuristic, which picks the best n locations, one at a time, for each
time period. The heuristic takes into consideration the link failure probabilities and
later adds relocation cost incurred in switching clusterheads locations in two successive
time periods. MNRH is also a greedy heuristic in which the strategy is to place clus-
terheads at locations which cover maximum demand for all time periods assuming that
relocation is not permitted. The heuristic also accounts for link failure probabilities in
a similar manner to MRH, but does not reassign clusterheads.

Our results showed that in most randomly generated scenarios, the solution quality
of the heuristics is good. However, particular examples can be contrived where each
heuristic can perform very poorly. We therefore use solutions from both MRH and
MNRH simultaneously as the initial columns (feasible solutions) of the CG procedure.

3.4 Solution Approach

We adopt the following solution approach for both the generalizations. At each itera-
tion we solve RMP and then solve the sub-problems for time periods t=1 through t=T .
The solutions with favorable reduced cost are simultaneously added to the master prob-
lem. Iterations are continued till the termination criterion is reached. We terminate
CG iterations if none of the sub-problems give a solution of favorable reduced cost. In
certain cases, the CG heuristic will keep on iterating with a very small increase in the
objective function of the RMP. In such cases, other termination criteria can be utilized
by a user: (i) a threshold time within which a solution is required, and (ii) a bound on
the number of iterations.

4 Computational Results

Based on the solution methodologies proposed in Section 3, we present numerical results
for the variable relocation cost model and limited capacity model. The Greedy and
the CG heuristics for both models were implemented using the programming language
C and the CPLEX 9.0 callable library. Solution times are reported in CPU seconds on
an Intel Pentium IV processor, 3.2 GHz, 1 GB RAM workstation operating Red Hat
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Linux 9.0 platform. First we present the results for the variable relocation cost model
and then the limited clusterhead capacity model. Note that, for both the models, we
do not present test results comparing the performance of the CG heuristic with the
CPLEX MIP solver since CPLEX could not find a feasible solution within the CG
solution time even for the small problem instances.

4.1 Variable relocation cost case

In this, we compare our model with Patel et al. [1] model which considers constant
relocation cost. Note that in [1] the relocation cost is defined as one half of the actual
relocation cost because it is double counted: for the clusterhead assigned as well as
the one unassigned, so in our case it is double of the actual value. First, we solve
the variable relocation cost model using column generation (CG) heuristic. The CG
procedure is terminated when the Relaxed Master Problem solution is within 2% of
LP relaxation of (P1) and the objective function value, average variable relocation cost
and the solution time are noted down. Then, we solve Patel et al. [1] model using their
CG procedure with similar stopping criteria. While solving [1], the constant relocation
cost (C) is set to one half of the average variable relocation cost in an attempt to obtain
a fair comparison. After the [1] solution is obtained, it is evaluated using the tactical
model criterion. Table 1 shows the results of the test run for the small and the medium
size problems and Table 2 shows results for the large size problems. The results show
that at the expense of significantly increased computation time (on average 83%) we
can get a 1-3% improvement in objective function value. Whether or not this increased
time is justifiable depends on the time available to deliver a tactical solution.

Next, we perform some test runs to determine the effect of various cost parameters
on the solution quality of our model. We generate a random scenario for the test. First,
we find the CG solution by setting constant relocation, registration, deregistration and
routing table updating cost to one. Then, we increase these cost parameters in each
run and note down the solution value. The results indicate that, as the constant cost
increases, the objective function value decreases. It is also observed that the routing
table updating cost has greater influence on the solution value than the registration
and the deregistration cost.

4.2 Limited clusterhead capacity case

In this case too, we start of by comparing the Capacitated DMEXCLP with Uncapac-
itated DMEXCLP. First, we solve Patel et al. [1] model using their CG heuristic. The
CG procedure is terminated when the Relaxed Master Problem solution is within 2%
of LP relaxation. Then, using the elected clusterhead (fixing the xit variables) values
as input, we solve the Capacitated DMEXCLP (P2) model using the CG heuristic.
Here, the CG procedure is terminated when the Relaxed Master Problem solution is
within 5% of LP relaxation of (P2). Thus, the Uncapacitated model results are ob-
tained by solving DMEXCLP model [1] and evaluating this solution using the tactical
criterion. Next, we solve the capacitated DMEXCLP model independently. Table 3
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Table 1: Model Comparison Results - Small and Medium Size Problems

Potential Ch/Sensor = 0-500, Displacement = 0-40, Demand = 10-20,

Delta = 100-250, Theta = 100-250, Time Period = 5-15,

Link Failure Probability = 0.2-0.5, Const Relocation Cost = 3-10,

Max No of Ch Chosen Range = 5-15, Coverage Radius = 40,

Routing Table Updating Cost = 1, Registration Cost = 1,

Deregistration Cost = 1

Constant Relocation Variable Relocation % Gain

No in Obj.

CG CG CG CG Value

Solution Time Solution Time

1 17145.1 8.71 17543.47 107.04 2.32

2 9948.72 11.65 10213.6 56.44 2.66

3 4814.32 7.17 4882.88 11.41 1.42

4 10456.75 8.16 10664.36 110.84 1.99

5 9883.76 8.11 10087.29 56.96 2.06

6 6132.72 6.72 6295.48 59.15 2.65

7 5729.36 3.08 5863.912 52.43 2.35

8 7597.552 3.84 7828 55.93 3.03

9 3605.76 2.43 3705.6 3.38 2.77

10 6445.07 7.76 6611.09 16.36 2.58

shows the results of the comparison for small and medium size problems. Table 4
shows the same information for large size problems. The increase in computational
effort (average 87%) is about the same as that for the relocation cost case. However,
the improvement in objective function value is smaller (in 1-2% range). Again, whether
or not this increased computational effort is desirable depends upon the time available
to deliver a tactical solution and importance of the associated benefit.

We also conducted tests to study the Capacitated DMEXCLP model behavior with
respect to the change in parameters p and C. We considered a problem instance with
300 clusterheads, 200 sensors 11 time slots and 5 clusterheads to be chosen. It was
observed that as p increases the objective function value decreases and the solution time
increases. In case of the relocation cost model, the objective function value decreases
with increase in C up to a threshold value. Further increase has no effect on the
solution value. Similar behavior can be observed in solution time also, except that it
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Table 2: Model Comparison Results - Large Size Problems

CH Location = 0-1000, Sensor Location = 0-500, Displacement = 0-30,

Demand = 10-20, Delta = 200-500, Theta = 200-500,

Time Period = 5-15, Link Failure Probability = 0.2-0.5,

Const Relocation Cost = 1-5, Max No of Ch Chosen = 5-15,

Coverage Radius = 50, Routing Table Updating Cost = 1,

Registration Cost = 1, Deregistration Cost = 1

Constant Relocation Variable Relocation % Gain

No in Obj.

CG CG CG CG Value

Solution Time Solution Time

1 55683.19 41.29 55953.42 275.59 0.49

2 16770.43 28.01 16866.23 98.04 0.57

3 35578.48 18.48 35792.9 117.71 0.60

4 25202.56 12.7 25393.85 188.88 0.76

5 23906.63 8.83 24153.14 126.18 1.03

6 37584.21 53.79 38113.4 228.99 1.41

7 31169.1 39.07 31682.32 212.53 1.65

8 19284.65 24.72 19622.68 145.69 1.75

9 16451.84 29.67 16711.71 139.09 1.58

10 20105.18 23.11 20489.37 147.93 1.91

increases with the increase in C (refer to Figures 2 and 3).
Finally, Analysis of Variance (ANOVA) test was carried out using the results ob-

tained from CG heuristic to determine the factors affecting the solution quality (%
expected coverage). We consider p, C, n, number of clusterheads, number of sensors,
T , sensor demand, displacement, coverage radius and clusterhead capacity as the rele-
vant factors governing the response variable. From the results of ANOVA, number of
clusterheads chosen, number of sensors, time period, sensor demand, coverage radius
and clusterhead capacity were found to have an effect on coverage either directly or
through second level interaction.
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Table 3: Model Comparison Results - Small and Medium Size Problems

CH/Sensor Location = 0-500, Displacement = 0-30,

Demand = 10-20, Delta = 100-250, Theta = 100-250,

Time Period = 5-15, Link Failure Probability = 0.2-0.5,

Const Relocation Cost = 3-10, Max No of Ch Chosen = 5-15,

Coverage Radius = 40, Bandwidth Capacity = 70

Preferential Assignment Cost = 20

Uncapacitated Model Capacitated Model % Gain

No in

CG CG CG CG Obj. Value

Solution Time Solution Time

1 9239.04 60.72 9381.28 370.71 1.54

2 9193.32 47.38 9346.20 318.68 1.66

3 10840.36 58.72 11059.00 217.21 2.02

4 21513.92 43.95 22036.89 178.60 2.43

5 15313.44 36.14 15564.74 310.29 1.64

6 18364.96 19.88 18697.65 84.88 1.81

7 15227.04 16.97 15430.56 106.81 1.34

8 6508.96 18.33 6696.32 83.50 2.88

9 15313.44 36.14 15564.74 310.29 1.64

10 11227.46 33.61 11394.63 171.32 1.49

5 Case Study

We present a case study to demonstrate how the capacitated DMEXCLP model pro-
posed in Section 3.2 can be employed and used for tactical decision making in the
military environment. For our case study, we consider a scenario with 15 clusterheads
(10 air, 5 ground), 20 sensors (5 ground and 15 air) and 20 enemy targets (10 air and 10
ground). The scenario is generated using the simulation testbed tool developed at the
University at Buffalo1. The testbed is a prototypical simulation tool built to provide
“common operating picture (COP)” for friendly commanders and facilitate them to
have a shared understanding in decision making. The tool allows the user to design

1Refer to http:
www.eng.buffalo.edu/∼nagi for more details about the project
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Table 4: Model Comparison Results - Large Size Problems

CH/Sensor Location = 0-500, Displacement = 0-30,

Demand = 10-20, Delta = 200-400, Theta = 200-400,

Time Period = 5-15, Link Failure Probability = 0.2-0.5,

Const Relocation Cost = 5-20, Max No of Ch Chosen = 10-25,

Coverage Radius = 50, Bandwidth Capacity = 100

Preferential Assignment Cost = 20

Uncapacitated Model Capacitated Model % Gain

No in

CG CG CG CG Obj. Value

Solution Time Solution Time

1 59179.91 494.61 59685.17 11166.37 0.85

2 22395.95 165.76 22487.90 8368.80 0.41

3 38297.78 180.40 38519.20 981.02 0.58

4 33792.61 92.89 34133.28 2581.80 1.01

5 18951.84 158.76 19011.04 672.73 0.31

6 28820.72 702.16 29051.44 14893.66 0.80

7 28425.60 408.41 28604.32 12142.64 0.63

8 17413.44 398.19 17491.36 4541.48 0.45

9 18960.32 219.25 19213.84 4474.50 1.34

10 21564.56 241.74 21631.24 4013.10 0.31

range of scenarios (battlefield) and evaluate and test algorithms to perform network
topology management, sensor simulation, target tracking and fusion in a battlefield
environment. One of the major components of this testbed is network topology man-
agement scheme. It utilizes the capacitated DMEXCLP model described in Section 3.2
to determine the suitable network topology for distributed fusion. For the simulation
case, we consider Buffalo east region map of 108 Km2 area. The topography is gen-
erated using the terrain data (digital elevation model format) and vector map data
(digital line graph format). The entities (sensors, clusterheads and targets) are ran-
domly located in the theater and travel with the velocity range of 300-400 kmph. The
other model parameters chosen for the study are as follows. The coverage radius (U)
range is 15-25 km, link failure probability (p) is 0.2-0.5, constant relocation cost range
is 5-10, clusterhead bandwidth capacity is 200 Mbps, maximum number of clusterhead
to be chosen is 5, preferential assignment cost is 4 and sensor demand range is 10-15
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Figure 2: Effect on varying parameters p and C on solution time

Figure 3: Effect on varying parameters p and C on solution value

Mbps. The simulation is allowed to run for 120 seconds. The waypoints for all the
entities are generated for every 1/10th of a second. Therefore the total time period
under consideration is 1200 time steps (i.e. T = 1200).

Due to the complexity of the problem, it is impractical to simulate for the entire
time period under consideration. Therefore, we divide the entire time period into
a sequence of smaller horizons and solve the network calculation problem over their
periods. But this has its downside. If we solve the problem for every time interval
separately the solution obtained, though optimal for that time interval, is sub-optimal
at the global level. Moreover, it does not capture and utilize the events from the
previous time periods. To overcome this problem we adopt a rolling horizon approach
and overlap the intervals in the sequence. The length of the overlap and time interval
(T ) are specified by the user and in our case it is 30 time steps (3 seconds) and 15 time
steps (1.5 seconds) respectively. However, this method requires the network calculation
model to be invoked several times (80 invokes in this case). With these modifications
to the model, we simulate the scenario for the stipulated simulation duration of 1200
seconds. Figures (4), (5), and (6) show the snapshots of the simulation results during
different stages. For instance, Figure 4 shows the chosen clusterheads (large circles)
and the sensors assigned to them during the first 3 seconds of the simulation. The
dotted line represents the communication link between a clusterhead and a sensor.
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Apart from the clusterhead and sensor level information the model also provides the
user with various performance measures (% of expected coverage during each time
period and over the interval, number of single, double and triple coverage, etc.) at the
global level. These measures to can be used to evaluate the effectiveness of various
networking algorithms (Greedy, CG) and compare them with the other algorithms
(MOBIC and Geographical based). This demonstrate the utility value of the tactical
models proposed and their ease of use under a practical application.

Figure 4: Sensors communicating with the clusterheads during time period 1-30

Figure 5: Sensors communicating with ground clusterhead during time period 46-75

6 Conclusion

In this work we proposed two tactical models for managing communications between
sensors in a threat environment, while using clusterheads. The first model incorporates
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Figure 6: Sensors communicating with air clusterhead during time period 181-210

a variable relocation cost (includes constant relocation, registration, deregistration and
routing table updating costs) and the second model considers limited bandwidth ca-
pacity of a clusterhead.

A CG heuristic is developed for each of the proposed models. In both cases, it
was found that the complexity of the problem increased significantly compared to
dynamic MEXCLP model [1]. This is evident from the significantly increased solution
times for similar problem sizes for the dynamic MEXCLP model. However, the CG
heuristic was found to perform better for large practical size problems. The following
improvements can be done to the proposed models to address practical situations in a
military context: The assumption that the sensor locations are known in advance for
every time period can be relaxed to consider uncertainty of location with respect to
time. Also, the uniform link failure probability assumption can be relaxed and time
varying link failure probabilities can be used.

Acknowledgment

This research was performed under the sponsorship of Rosettex Technology and Ven-
tures Group. The authors gratefully acknowledge their support.

References

[1] D. J. Patel, R. Batta, and R.Nagi. Clustering sensors in wireless ad hocnetwork
operating in a threat environment. Operations Research, 53(3):432–442, May-June
2005.

[2] N. Mishra. Capacity and non-steady state generalizations to the dynamic mexclp
model for distributed sensing networks. Master’s thesis, Department of Industrial

22



Engineering, 438 Bell Hall, University at Buffalo (SUNY), Buffalo, NY 14260,
2003.

[3] R. Sanchez, J. Evans, and G. Minden. Networking on the battlefield: Challenges
in highly dynamic multi-hop wireless networks. In IEEE Military Communications
Conference (MILCOM ’99), Atlantic City, NJ, Oct. 1999.

[4] R. Ramanathan and M. Steenstrup. Hierarchically organized, multihop mobile
wireless networks for quality-of-service support. Mobile Networks and Applica-
tions, 3(1):101–119, 1998.

[5] Z. J. Haas and S. Tabrizi. On some challenges and design choices in ad hoc commu-
nications. Proceedings of IEEE Military Communications Conference, MIILCOM
’98, Oct. 1998.

[6] J. Sharony. An architecture for mobile radio networks with dynamically changing
topology using virtual subnets. Mobile Networks and Applications, 1(1):75–86,
1996.

[7] G. Pei and M. Gerla. Mobility management in hierarchial multi-hop mobile wire-
less networks. In Proceedings of IEEE ICCCN 99, pages 324–329, Boston, MA,
Oct 1999.

[8] J. Li, J Jannotti, D. D. Couto, D. Karger, and R. Morris. A scalable location
service for geographic ad-hoc routing. In MobiCom ’00: Proceedings of the 6th
annual international conference on Mobile computing and networking, pages 120–
130, Boston, MA, Aug. 2000. ACM Press.

[9] C. Perkins and P. Bhagwat. Highly dynamic destination-sequenced distance-vector
routing (DSDV) for mobile computers. pages 234–244, 1994.

[10] C-C. Chiang, H-K. Wu, W. Liu, and M. Gerla. Routing in clustered multihop,
mobile wireless networks with fading channel. In IEEE Singapore International
Conference on Networks, SICON’97, pages 197–211, Singapore, Apr. 1997.

[11] S. Murthy and J. J. Garcia-Luna-Aceves. An efficient routing protocol for wireless
networks. Mobile Networks and Applications, 1(2):183–197, 1996.

[12] E. M. Royer and C. E. Perkins. Multicast Operation of the Ad-Hoc On-Demand
Distance Vector Routing Protocol. In Mobile Computing and Networking, pages
207–218, 1999.

[13] D. B. Johnson and D. A. Maltz. The dynamic source routing protocol for mobile ad
hoc networks. In Tomasz Imielinski and Hank Korth, editors, Mobile Computing,
volume 353. Kluwer Academic Publishers, 1996.

23



[14] C-K. Toh. A novel distributed routing protocol to support ad hoc mobile com-
puting. In Proceedings, IEEE 15th Annual International Phoenix Conference on
Computers and Communication, pages 480–486, Phoenix, AZ, USA, March 1996.

[15] V. D. Park and M. S. Corson. A highly adaptive distributed routing algorithm
for mobile wireless networks. In IEEE INFOCOM (3), pages 1405–1413, 1997.

[16] Z. Haas. A new routing protocol for the reconfigurable wireless networks. In
Proceedings of the IEEE International Conference on Universal Personal Com-
munications, Oct.

[17] S. Basagni, I. Chlamtac, and A. Faragó. A generalized clustering algorithm for
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