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Abstract:  In variant design, the proliferation of bills of materials makes it difficult for designers 
to find previous designs that would aid in completing a new design task.  This research presents a 
novel, data mining approach to forming generic bills of materials (GBOMs), entities that 
represent the different variants in a product family and facilitate the search for similar designs 
and configuration of new variants.  The technical difficulties include: i) developing families or 
categories for products, assemblies, and component parts; ii) generalizing purchased parts and 
quantifying their similarity; iii) performing tree union; and iv) establishing design constraints.  
These challenges are met through data mining methods such as text and tree mining, a new tree 
union procedure, and embodying the GBOM and design constraints in constrained XML.  The 
paper concludes with a case study, using data from a manufacturer of nurse call devices, and 
identifies a new research direction for data mining motivated by the domains of engineering 
design and information.   
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1. Introduction 

Variant design, which accounts for approximately 80% of design tasks (Prebil et al. 1995), 

seeks to solve new design problems by reusing or adapting existing work.  This approach can 

save both time and money, since new products reach the market more quickly.  A variant design 

environment, then, requires an organized library of existing designs, a search capability, and the 

ability to update design information as new products are introduced or old ones become obsolete. 

Three major research methods have been proposed to support the library requirement of 

variant design:  group technology (GT) classification and coding efforts (Opitz 1970); generic 

bills of material (GBOMs) (Hegge and Wortmann, 1991); and product platforms (Farrell and 

Simpson, 2003, Simpson et al., 2003).  Each approach is predicated on some form of 

standardization, whether by forming part families, categorizing configurations, or identifying 

common components.  Each approach also requires large amounts of human expertise to classify 
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and code the many parts, subassemblies, and product families in the company’s records (Koenig, 

1994).   

The realities of implementing these methodologies in legacy databases are often ignored.  

Most small-to-medium manufacturers do not have the resources of time or money for such 

enormous projects.  In environments where no GT coding exists but – as is typical in variant 

design – the design database holds literally thousands of bills of materials (BOMs), more 

automated methods such as artificial intelligence or machine learning can be developed to 

leverage the benefits of current variant design support research.  

In this paper, a novel, systematic, data mining-based methodology for forming generic bills of 

material from legacy databases is presented with two purposes in mind:  first, the GBOMs act as 

a tool for configuring new variants (colloquially referred to as a “product configurator”); and 

second, the GBOMs support a designer’s search for similar parts – and thus the reuse of existing 

designs.  The contributions of this paper are a part family formation methodology for uncoded 

parts databases; automated formation of GBOMs via a tree union algorithm; and the inclusion of 

relevant manufacturing and design information within the GBOM.  The GBOMs, represented in 

constrained eXtensible Markup Language XML (CXML) (McKernon and Jayaraman, 2000), an 

enhancement to XML (www.xml.org) for efficient data exchange in virtual enterprises, are the 

cornerstones of the search for similar parts.  The roles of CXML and XQuery in this search are 

briefly discussed, in order to place this paper in the context of a broader research effort in variant 

design support. 

Section 2 gives the background and environment for the GBOM formation.  Section 3 

identifies relevant issues and solutions, presents the basic unification procedure and applies it to 

a manufacturing BOM database.  Section 4 concludes the paper with a discussion of ongoing and 

future work.   

2. Background 

Variant design presupposes an existing library of similar designs, whether in actual product 

form or in archived versions such as prototypes or concept drawings that were never 

manufactured.  Clearly, the ability to access and use previous work would save time and money 

in the development of new variants.  The following subsections discuss current approaches to the 

legacy design access and similar search problems, and new technologies that can aid in this 

effort.   
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2.1  Group technology approaches 

Most work in the search for similar parts has focused on the historical approach to 

classification (or grouping) of individual parts into families, the well-known concept of Group 

Technology (GT) (Ham et al., 1985; Henderson and Musti, 1988; Harhalakis, Kinsey, and Minis, 

1992; Opitz, 1970; Ham, Marion, and Rubinovich, 1986; Shah and Bhatnagar, 1989). The 

practical acceptance of GT has remained limited due to the enormous effort involved in 

developing a consistent coding system to summarize key design, manufacturing and other 

attributes, and translating the legacy part database into this code (Koenig, 1994).  This 

classification and coding process has largely remained manual, although some efforts towards 

automation of part family formation have been made.  Kao and Moon (1991) use a back-

propagation neural network to form part families, but assume an existing classification and 

coding system.  Iyer and Nagi (1997) propose a two step process of search and sort for similar 

parts, also based on existing GT coding.  Lee-Post (2000) forms part families by employing a 

genetic algorithm to determine the identifying characteristics that maximize part family 

similarities.   Again, this approach requires an existing classification and coding scheme. 

2.2  GBOM and combined GT/GBOM approaches 

The GBOM, introduced by Hegge and Wortmann (1991), is a single entity that encompasses 

all design options and alternate parts for a particular family of end products.  Jiao and Tseng 

(1999a) and Jiao et al. (2000) extend the basic GBOM by adding routing information and 

alternate operations.   

The GBOM models of Hegge and Wortmann (1999), Jiao and Tseng (1999a), and Jiao et al. 

(2000) do not allow ranges of parameter values or restrictions on combinations of parameters, 

and assume a common structure among product variants.  The methodology of building a GBOM 

from legacy data is not discussed, nor is the search for similar parts.   

Ramabhatta, Lin, and Nagi (1997) proposed an object-oriented product model combining GT 

technology with generic bill of materials (GBOM) concepts to help virtual enterprises identify 

similar designs.  This approach while incorporating ranges and restrictions, assumes extensive 

user intervention to classify parts and subassemblies, resolve structural differences, and form the 

GBOM.  Their work also includes a search engine that queries on a single attribute value, a set of 

single valued attributes, single attributes within a range of values, mutually exclusive parts, 

multi- and single-level explosions of end-products, and similar designs. 
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2.3  Limitations of previous work 

The previous research in reusable design is based on the assumption that parts and 

subassemblies are already classified and coded.  Because these coding efforts are often user-

intensive, cumbersome, and time-consuming, many smaller companies do not have the resources 

to undertake such a monumental task.  Furthermore, to the best of our knowledge, the literature 

(other than Ramabhatta et al. (1997)) does not specify a methodology for forming a GBOM, 

whether from coded or uncoded part databases.  In Ramabhatta et al. (1997) the methodology is 

quite user-intensive, a drawback when domain knowledge is either unavailable or too expensive 

and time-consuming to acquire.  In addition, the need for a neutral data exchange platform, 

essential to distributed and virtual enterprises, is also not addressed in the current GT and GBOM 

research.   

2.4  A recent data mining-based approach  

Companies occupy one of four states, as shown in Figure 1, in their readiness to support 

variant design and the search for similar parts.  While the methodology presented in this paper 

can be applied to the more complete states, the focus is on companies with no variant design 

support systems in place.    

When no part classification and coding system exists, the information about part 

characteristics and attributes is primarily found in two areas:  CAD drawings and the part 

description field of the item master record.  For some purchased parts (such as resistors, knobs, 

buttons, etc.) even CAD drawings may not exist, and the part description is the only source 

available for coding efforts. 

Data mining techniques such as clustering, classification, text mining, association mining, 

and graph-based data mining offer a viable alternative to manual coding and GBOM formation 

and can also aid in identifying important design rules from the legacy data.  While clustering and 

classification methods are well known and widely used, text mining and association mining 

Parts coded

Families formed

GBOMs built

Level of variant design support

None Complete

Parts coded

Families formed

GBOMs built

Level of variant design support

None Complete

Figure 1:  Four states of readiness for variant design support and the search for similar parts 
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Figure 2:  Office chair bill of materials 
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algorithms are newer approaches.  Text mining is a statistical analysis of natural language text, 

forming concepts and identifying important words or phrases based on frequency and collocation 

of words; this technique can be used to codify parts based on the description field in the item 

master table of a manufacturing resource planning (MRP) system.  Association mining (also 

known as market basket analysis) finds relationships among unordered collections of variables or 

attributes.  Graph-based data mining, developed by Cook and Holder (2000) attempts to identify 

common structures and substructures in CAD and other drawing formats. 

Existing data mining methods may require adaptation to work effectively with engineering 

data, which can be structured, semi-structured, numeric, categorical, graphical, or even made up 

of formulas.  To illustrate the need for this adaptation, consider bills of material; these data 

structures are  rooted, unordered trees.  The end item, or finished product, is the root of the tree; 

manufactured or assembled components are the nodes; and purchased parts or raw materials are 

the leaves.  In an unordered tree the order of nodes, or components, is not significant.  For 

instance, it does not matter if we say a car has a body, wheels, and transmission or a car has a 

transmission, body, and wheels.  Figure 2 shows an office chair BOM structure as a tree. 

Different engineers may build completely 

identical end items with very different BOM 

structures; since there is no common rule or 

template to follow, the engineer develops the 

BOM based on individual understanding of how 

the product is manufactured or assembled.  Thus, 

trees representing otherwise identical end items 

can have very different topologies, from relatively flat trees (not much different than mere parts 

lists) to highly structured, multi-level trees.   

BOM trees may differ in three ways: 

1. Structural differences such as the number of intermediate parts, parts at different levels, 

and parts with different parents. 

2. Differences in component labels. 

3. Differences in both components and structure. 

For example, Fig. 3 shows an office chair (A) and a variant (A’).  Note the lumbar support 

(P); in Tree 1, on the left, it appears as the child of the end item, Office Chair (A).  In Tree 2, on 

the right, the lumbar support is included as part of the subtree rooted at M, which represents the 
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chair back subassembly.  The change in the subassembly label from I to M reflects the new part 

number generated by adding the lumbar support to the original subassembly. 

Therefore, similar BOMs may have the 

same components or parts, but have different 

structure, with some parts appearing at one 

level in one tree and at another level – or with 

a different parent – in a second tree.  

Additionally, BOMs may have similar 

structure but different components.  These 

situations are common in practice.  The notion 

of similarity in BOMs is rooted more in content than in topology; however, capturing differences 

in structure is still important. 

Existing tree comparison methods could not accurately measure these BOM similarities, and 

a new method of calculating distance is proposed in Romanowski and Nagi (2003).  The 

similarity between two BOM trees is calculated using the following procedure:  

• decomposing the trees into single level subtrees (representing subassemblies), 

• finding the minimum distances between pairs of single level subtrees by weighted 

bipartite matching of subtree child nodes, 

• using these minimum distances as input to another weighted bipartite matching, this time 

of all subtree root nodes, and 

• defining the similarity between the two BOM trees as the result from this second instance 

of weighted bipartite matching.   

The similarity calculation algorithm of Romanowski and Nagi (2003) assumes that purchased 

part families are already formed and similarity values for these part family groups are provided.  

The methodology for building a table of similarity values is developed in this paper in Section 

3.2.  Once the similarity calculation is completed for all BOM pairs in the database, the values 

are input to a k-medoid clustering algorithm, CLARANS (Ng and Han, 1994) to form product 

family clusters.  Cluster quality, which directly affects the quality of the resulting GBOM, is 

measured using a silhouette coefficient, which evaluates the inter- and intra-cluster distances for 

each cluster object (Ng and Han, 1994); further details on using the silhouette coefficient to 

monitor cluster quality can be found in Ng and Han (1994) and in Romanowski and Nagi (2004).  

       Tree 1                                     Tree 2 
 

Fig. 3:  Variants of an office chair 
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These clusters are unified to obtain the GBOM; the unification process, which is the main 

contribution of this paper, is discussed in Section 3.3 of this paper. 

2.5  XML-based representation 

In an agile enterprise, especially a virtual one, a portable, platform-independent means of data 

exchange is extremely important.  XML (EXtensible Markup Language) is an increasingly 

popular method for neutral data exchange, and provides the portability needed for virtual 

enterprises.  XML is a richer, more structured language than HTML, requiring a more rigorous 

adherence to syntax and allowing users to specify and define elements in the XML document.   

Constrained XML (CXML) is an extension of the XML language that combines the user-

defined tags of XML with the ability to define constraints governing how the various elements of 

an XML document interact with each other (McKernon and Jayaraman, 2000).  The addition of 

constraints provides both an intuitive way of expressing relationships between the different 

components of an XML document and a method to check that constraints are satisfied within the 

document itself.   For example, a patient record document type definition (DTD) might include 

the constraint that an adult must be at least 18 years of age.  The CXML parser would check that 

any patient record containing the tag “adult” satisfies the constraint.  

These constraints are included in the DTD file that defines the elements of an XML file, their 

attributes, and their relationships.  Individual XML files are parsed first for compliance with the 

DTD and second for compliance with the constraints.  Unsatisfied constraints are listed by the 

parser (see Appendix for examples of a constrained XML DTD file and the results generated by 

the CMXL parser).    

A GBOM represented in CXML contains constraints common to all bills of material, such as: 

• restrictions on the quantity per field (for instance, a four cylinder reciprocating engine 

should have four pistons), 

• restrictions on the number of children (purchased parts do not, by definition, have 

children), 

• restrictions on node relationships (for instance, a node may not be a descendent of itself), 

• checks on correctness (for instance, the cost of a parent item should equal the cost of its 

children multiplied by their respective quantities, plus added labor costs of 

assembling/processing the parent), and 

• checks on validity of part numbers. 



8 

The methodology employed in this paper generates specific constraints which apply to a 

particular domain, maintaining completeness, consistency, and correctness of BOM files.  

Discussed in more detail in Section 3.4, these specific constraints may include: 

• restrictions on which parts can be substituted, 

• restrictions on vendor choice, 

• restrictions on configuration (for example, which parts can be used together in an 

assembly, and which are incompatible), and 

• validation of BOM contents (for example, ensuring that all necessary part types are 

included and the BOM is complete). 

This extension to the XML language has particular interest for engineering applications.  

Constraints govern many aspects of the design process, from the initial design task definition to 

the development of process plans.  When constraints are combined with the searchable nature of 

XML, the result is a powerful tool that enables engineers to find similar parts and verify design 

feasibility.  

3.  A data mining methodology for forming GBOMs  

3.1 Goals in forming GBOMs 

GBOMs have two purposes:  to aid in configuring new variants and to support the search for 

similar parts.  In order to function efficiently as a configuration tool, the GBOM should clearly 

represent the most common forms of the product. However, structural differences within the 

product family should not be lost in the formation, as there may be valid reasons for these 

variations, such as assembly sequence requirements or manufacturing considerations.  In 

addition, variations could also turn out to be – or suggest – a better or more efficient means of 

structuring a product. 

The second purpose for GBOMs is facilitating the search for similar parts.  By grouping 

products into families and unifying the families into a single GBOM entity, the search space for 

like designs is reduced markedly.  This effort requires a quantification of the similarity among a 

company’s end products (as in Romanowski and Nagi, 2003) and using that similarity value to 

derive consistent product family groups.  The GBOM structure formed by the unification of the 

family member BOMs directly affects the way search queries are written; therefore, the goal is to 

make the structure as simple as possible, while dealing consistently with the issues inherent in 

unifying several BOMs into one entity.  
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3.2 A methodology for unifying BOMs into a single entity 

The data mining-based methods in this paper attempt to overcome the limitations of previous 

research, as discussed in Section 2.3, by using knowledge discovery and machine learning 

methods to classify and cluster the separate components of the end item.  The methodology has 

four steps:  

1. Generalizing purchased parts and determining their similarity values, based on the 

assumption that the part description carries the most important attributes.  Text mining is 

employed to choose the major identifying characteristics of the part families.  In 

(Romanowski and Nagi, 2003) the purchased part similarity values were assumed to be 

given; this paper develops a method of obtaining these values.   

2. Generalizing subassemblies by clustering single level subtrees, using a modification of 

the similarity measure approach in (Romanowski and Nagi, 2003). 

3.  The primary contribution of this paper, performing tree union to form the GBOM, using 

subassembly general class names, and translating the GBOM to XML.  To the authors’ 

knowledge, no research exists on this type of tree union and the issues involved in 

unifying similar trees.  These issues are discussed in Section 3.3 of this paper. 

4.  Modeling of configuration and design constraints from rules derived by association 

mining algorithms, and inclusion of these constraints in the XML file.  This topic is also 

an area of potential future research (see Section 5.1). 

The methodology is shown graphically in Figure 4, including the areas where domain 

knowledge (and, therefore, some user intervention) is essential.  The shaded area, forming the 

GBOM, is the main contribution of this paper. 

Figure 4:  Methodology for forming GBOMs 
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GBOMs formed using this approach support the configuration purpose by providing a way to 

identify new variants and check them against the design and configuration constraints.  They 

support the search for similar parts and design reuse by being consistent and complete models of 

existing products and their variants, represented in a flexible language (XML) that promotes 

portable, neutral data interchange among distributed enterprises.  

In the following subsections, the tree union portion is presented first; then the supporting 

processes of part generalization and subassembly clustering are discussed. 

3.3  Forming the GBOM – the tree union operation 

The GBOM is built by unifying the BOM members in the product family cluster members.  

This process begins with the cluster medoid, which represents the midpoint of the cluster.  Each 

BOM cluster member is added to the growing GBOM, level by level, beginning at the root node 

and working down through the tree.  Several issues arise with this operation, and these issues 

directly impact the XML representation as well. 

As discussed in Section 3.1, structural differences in otherwise identical BOMs are common 

in practice.  There is no “one right way” to represent a particular product structure.  These 

structural differences manifest as parts (or components) assigned to different parents in one 

BOM than in another, similar BOM.  For example, in Figure 5 the subtree rooted at F – 

representing a subassembly – is the child of subassembly C in the left tree and of end item A’ in 

the right tree. 

  To deal with this difference in structure, a 

variation of low level coding is applied.  Low 

level coding in material resource planning 

(MRP) calculations processes the total 

demand for an item at the earliest point in the 

production process, which corresponds to the 

lowest level in the BOM tree (Orlicky, 1975); 

in the variation of the concept used in this research, 

these items are assigned to their lowest level in the GBOM.  The alternate parent/child 

relationships are represented as design and configuration constraints.  Items with different 

parents on the same level are assigned to the parent most commonly associated with the item. 

The GBOM formation is a union of trees Gi,…,Gn, where Gi is a tree graph with vertex set Vi 

and edge set Ei.  Tree vertices have a depth attribute, which corresponds to the length of the path 

Figure 5:  Two variant BOM trees 
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from a vertex to the root node.  Additionally, recall that, for trees, the number of edges in the 

edge set E equals the number of vertices minus one.  In order for the GBOM to remain a tree, 

vertices with more than one parent – such as vertex F in Figure 5 – are assigned to the most 

common parent.  For this purpose, a strength attribute S is assigned to each edge and 

incremented for every occurrence of that particular parent-child vertex combination.    

The GBOM is a unification of all n trees in the cluster:  

GBOM(V, E, D, S) = G0 ∪ G1  ∪ G2 ∪ … ∪ Gn. 

Each tree comprises a vertex set {V1 ∪V2∪…∪Vn}, its associated depth vector 

{D1∪D2∪…∪Dn}, an edge set {E1∪E2∪…∪En-1}, and its associated strength vector 

{S1∪S2∪…∪Sn-1}.     

Let G0 be the medoid tree in the cluster, and initialize GBOM to be equal to G0.  The next step 

is to add the sets and vectors of G1 to GBOM.  Let V0 be the vertex set of GBOM, and V1 be the 

vertex set of G1.  Similarly, D1, E1, and S1 represent the depth vector, edge set, and strength 

vector of G1.  

The vertex set of the GBOM is a simple union of the two vertex sets,  

GBOM(V) = V0 ∪ V1. 

The depth vector for the GBOM, however, is not a union of D0 and D1.  Because some 

vertices may appear at a lower level, the depth vector is the maximum of the value for each 

vertex found in the GBOM and G1. 

GBOM(D) = max{D0, D1}. 
Edge sets also are not a simple union.  To maintain the tree structure of the GBOM, edges 

with a common child vertex must be evaluated. Those edges that are not at the maximum depth 

for the child vertex are placed in a separate edge set EC  that will be added to the final GBOM 

representation as constraints, representing these alternate parents of a child item.  This operation 

can be expressed as: 
( ) ( )

0 1
0 1 0 1 0 1,

min
D v v

GBOM E E E E E E E
=

= ∪ − ∪ − ∩  

( ) ( )
0 1

0 0 1 0 1,
minC D v v

GBOM E E E E E E
=

= ∪ ∪ − ∩  

where D is the depth vector, V0 is the child vertex of the edge found in the GBOM, and V1 is the 

child vertex of the edge in G1.   

Essentially, this operation takes the union of the two edge sets and removes the edge with the 

minimum child vertex depth.  The expression within the curly braces is the symmetric difference 
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– the edges found in E0 but not in E1, and the edges found in E1 but not in E0.  Within this set of 

edges, those with the same child vertex but different parent vertices, such as CF and A’F in  

Figure 5, are examined, and the minimum depth edge (in this case, A’F) is placed in the 

constrained edge set EC.  When two edges with the same child vertex have the same depth, the 

pruning of those edges must wait until all n trees are unified.  At that point, the same-depth edges 

are pruned based on the maximum strength vector, which represents the most common 

occurrence of a particular parent-child combination. 

The strength value for each edge is incremented when a tree added to the GBOM contains an 

occurrence of that parent-child combination.  Strength values for edges in the constrained edge 

set EC are placed in an associated strength vector SC, and in GBOM(S) for those edges in 

GBOM(E).  When the final tree is added to the GBOM, the different-parent-but-same-depth 

edges are evaluated and the edge with the maximum strength value is kept in the GBOM.  Ties 

are broken arbitrarily.  The remaining edges are added to the constraint set EC. 

After the unification process is complete, the completed GBOM is a constrained tree structure 

containing all the variations of the base product in a single entity.  A flowchart of the general 

unification process for vertices and edges is shown in Figure 6, followed by the algorithm in 

pseudocode (Figure 7) and the final GBOM tree (Figure 8) obtained after unifying the two BOM 

trees in Figure 5. 

Figure 6:  Vertex and edge unification of BOMs 
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The GBOM unification algorithm is shown in Figure 7: 

Input:  List of trees in cluster and their bills of materials. 
 
1.  Set GBOM = medoid of cluster 
2.  Declare an NxN array for edge strength tally, where N is total number of subtree and leaf nodes in 

tree 
 For each parent a and child b in the GBOM, edge strength[a][b]=1; 
3.  Set member = next BOM in cluster 
4.  Unify member tree with GBOM 
     For subtree i and child j, j=1 to n, where n is the number of children in the subtree  
        edge strength[i][j]=edge strength[i][j]+1; 
 
     /*  Begin with level 1 (children of the member tree’s end item) */ 
          For level 1 of the member tree, 
   Search GBOM for child j 
      If j does not exist in the GBOM,  
         Add child to list of children in level 1 of GBOM  
      
    /* Continue with all other subtrees and their children 
          For all other subtrees i, i = 1 to m of the member tree,  
    Search GBOM for subtree root node i     
                 If subtree root node i does not exist in subtree root list of the GBOM, 
        Add the subtree root node and its level to the subtree root list of the GBOM 
 
     For child j, j=1 to n, 
        edge strength[i][j]=edge strength[i][j]+1;  // increment the edge strength 
        If (cardinality of j  > MaxCardinality[j],     // check range of cardinality 
              MaxCardinality[j] = cardinality; 
              else if (cardinality of j < MinCardinality[j] 
           MinCardinality[j] = cardinality; 
              treelevel = level of child j in member tree; 
           Search the GBOM for child j 
               If child j does not exist in the GBOM, 
          Add child to list of subtree i’s children in GBOM;  
    else if child j is found in the GBOM, 
          gbomlevel= level of child j in GBOM; 
          k = GBOM subtree parent; 
          If (treelevel == gbomlevel) 
                Add subtree i, child j, and treelevel to the alternate parent/child list; 
                else if (treelevel > gbomlevel) //the level is lower in the member tree 
                      Remove the child from the GBOM subtree parent k  
                      Add the child to the list of subtree i’s children in the GBOM  
 
5.  Assign same level children to the GBOM subtree parent with the highest edge strength 
 In alternate parent/child list, 
    For each child j in the list, 
       For each parent i of child j in the list, 
  Find the edge strength [i][j] in the edge strength array 
  MaxParent[j] = parent i of child j with max{edge strength[i][j]}; 
   If a tie exists for maximum edge strength, assign MaxParent[j] arbitrarily from the               
     candidate parents. 

    Add child j to the list of MaxParent[j]’s children in the GBOM  

Output:  GBOM, list of alternate parents, edge strength, maximum and minimum cardinality for each 
item in GBOM 

Figure 7:  GBOM unification algorithm 
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The unification of the two trees in Figure 5 would result in a GBOM as shown in unified 

modeling language (UML) format, a language for specifying and representing data models 

(www.umg.org), in Figure 8.  The alternate configuration of the subassembly F is shown as a 

multiplicity value of 0..1 at the parent end of the edge (minimum of 0 parents, maximum of 1 

parent per one F-type subassembly), an edge strength (ES) attribute for both C and A’, and a 

constraint for F indicating the alternate parent relationship.  Edge strength indicates the 

commonality of a parent-child relationship – the number occurrences of a particular relationship 

divided by the total number of BOMs contained in the GBOM.  Multiplicity values are shown at 

the child end for clarity; for instance, the model requires four H-type items in each C-type 

subassembly, so the number 4 appears at the H end of the edge, and a 1 appears at the C end.  

Variations in multiplicity values can also be handled with constraints.  For example, if some C-

type subassemblies use five H-type items instead of four, the multiplicity value at the H end of 

the association would be 4..5, indicating a minimum of 4 and a maximum of 5 H items in each 

C-type subassembly; a constraint would be added to H to explain the configuration variations.   

  Note that subassembly root nodes are given general class labels in the GBOM; Section 3.4.4 

explains the need for these general labels and the technique used to generate them.  Each class, 

such as the “C-type subassembly”, can be further decomposed into more specific class labels as 

shown on the right in Figure 8.  The proportion of items making up each class is shown (for this 

example, 75% of the C-type subassemblies are C, 25% are L). The attributes for these classes 

were defined in the part processing and subassembly clustering steps in Section 3.4. 

C-type subassembly

C L
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Figure 8:  GBOM formed from trees in Figure 5 
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3.4   Supporting processes 

3.4.1  Generalizing purchased parts 

The first task in automating GBOM formation, in the absence of existing GT codes, is to 

form general part families for purchased parts.  As discussed in Section 2, GT systems are 

difficult, time-consuming, and cumbersome to implement, and for many small to medium 

manufacturers the time and cost of coding efforts is prohibitive.  The methodology presented in 

this paper can generate part families with minimal domain knowledge; increasing the input from 

a domain expert greatly enhances the quality of the output.  

The steps to form general part families for purchased parts are:  

1. Generate a list of words and phrases and their frequencies from the part description field, 

using text mining algorithms.   

2. Classify the words and phrases into a set of attributes.   

3. Identify synonymous words, phrases, and abbreviations.   

4. Assign relative weights to the set of attributes.  If no domain expert is available, weight 

the attributes by frequency of occurrence. 

5. Define the similarity between attribute values.  In the absence of a domain expert, 

categorical and ordinal values are assumed to be dissimilar; mapping functions can be 

derived for numerical values as in (Iyer and Nagi, 1997), or they can be binned into 

ranges.  

6. Calculate the similarity between purchased parts. 

7. Form part groups and subgroups using the similarity values and a clustering algorithm 

such as single linkage clustering (SLCA) or average linkage clustering (ALCA); replace 

the unique part numbers in the BOM with the subgroup labels. 

Steps 1 through 3 of this method begin the building of the company’s thesaurus; this 

reference is used in Step 6 to calculate the similarity values for purchased parts, and is an 

important part of the effort to re-use designs.  In Step 7 the clustering algorithms are essential in 

cases where the base group is not specified in the part description.  

3.4.2 An example of purchased part generalization 

A small example from an industrial database illustrates the methodology, generalizing 

purchased buttons from a manufacturer of nurse call devices.  No CAD drawings are available; 

these buttons come in a variety of shapes, and either come pre-printed or are pad printed at the 

company with lettering or graphics representing the button’s function.  The part coding system 



16 

Figure 9:  Item master part description entry

does not indicate the type of button, and so the part description must be used to form part 

families.  Also, in this example domain knowledge is minimally available. 

Step 1:  Generate a list of words and phrases and their frequencies from the part description 

field, using text mining algorithms.  Figure 9 shows the part 

description field for this database.  Note that the 

part type (button) is given within the description, 

along with three attributes. 

 Figure 10 is a screen shot from 

TextAnalyst (www.megaputer.com), a 

neural-network-based text analysis 

program.  The program identifies the 

most important words and phrases in a 

document and permits user-specified 

dictionaries.  The results for the button 

description field show five important 

words from the description records:  

oval, blank, nurse, almond, and TV.  

The numbers next to the words 

represent the semantic weight of the 

element in the set of descriptions.  The higher the weight, the more important the element.  For 

instance, “oval” has a semantic weight of 85; the semantic weight of “blank” is 100 when 

considered in conjunction with “oval” and 78 when considered alone.  From this list, we can 

identify four attributes:  the shape (oval), intended function (“nurse” and “TV”), the color of 

lettering (“blank”), and the base color (“almond”).  The other elements in the descriptions are 

classified into these four attribute types.   

Domain experts designate the relative weights for each attribute type.  In the absence of 

domain knowledge to set the attribute weights, parts are grouped by the attributes most 

frequently included in the description field.  The shape attribute and base color are nearly always 

listed; fore color and function appear in less than half the part descriptions.  Classifying the 

buttons by shape alone yields five subgroups; by base color alone yields six subgroups; by shape 

and base color yields 15 subgroups.  Because the number of button parts is so small, and some 

domain knowledge is available to guide the choice, the shape attribute (which yields the smallest 

Component Description
BUTTON,BAR,RED,NURSE

Figure 10:  Text analysis results from button descriptions
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number of subgroups) is given the highest weight.  Without domain knowledge, the buttons 

would be grouped by shape and base color, resulting in 15 subgroups. 

Iyer and Nagi (1997) developed similarity index values and mapping functions for electrical 

and mechanical parts, based on GT codes and critical design information.  This type of approach 

can be used for the part grouping problem as well.  Without GT codes and access to the domain 

knowledge needed to identify critical design information, an alternate method to determine 

similarity between purchased parts is to assume all part groups are orthogonal i.e., dissimilar, 

with similarity values of 0 on a scale of 0 (no similarity) to 1 (exactly similar).  Similarity values 

among part subgroups are calculated by determining the proportion of like values of the part 

group attributes.  The range of subgroup similarity is between 0.01 and 1; all subgroup elements 

are considered to be at least 0.01 similar to the base group class.   Again, domain knowledge can 

set the relative similarity between attribute values, such as whether a square button is considered 

to be more similar to an oval button than to a bar button.  In the absence of domain knowledge 

the values are only counted if they are exactly the same.  For instance, if two buttons are both 

round, and the shape attribute weight is 0.75, then the similarity between the two buttons is at 

least 0.76.  If one button is round and the other oval, there is no similarity of shape and the 

similarity value between the two buttons is at most 0.01.  Table 1 shows the five button 

subgroups from the parts database formed using this method.  Values in the table correspond to 

similarity calculations based on the four attributes identified using the part descriptions (shape, 

base color, fore color, and function).   In the BOMs using these purchased parts, the unique part 

numbers are replaced with one of the subgroup designations.  The distance between subgroups is 

calculated as the mean distance of all members of each subgroup from each other (see Table 2).  

These similarity values between purchased part groups and subgroups are stored in a lookup 

table and used in the next step of generalizing subassemblies. 
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3.4.3  Critical components  

Before beginning the clustering process, non-critical purchased parts should be identified and 

flagged as not included in the BOM similarity calculation.  For example, packaging, labels, and 

small hardware such as fasteners or screws are not as important as an engine, or a monitor, or a 

bike frame.  As in all aspects of the GBOM formation problem, this process is greatly enhanced 

by domain knowledge input; however, some common sense and general product knowledge can 

also give good results.  A formal treatment of this issue is not in the scope of the current research 

and is recommended for further study.   

3.4.4  Generalizing subassemblies 

Recall that, as discussed in Section 2.3, (Romanowski and Nagi, 2003) calculated the 

similarity between two BOM trees by decomposing the trees into single level subtrees 

(representing subassemblies), finding the minimum distances between pairs of single level 
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BU-010 1.00 0.99 0.88 0.88 0.88 0.12 0.02 0.02 0.02 0.02 0.02 0.12 0.12 0.02 0.02 0.13 0.02 0.03 0.03 0.02 0.12 0.01 0.01
BU-020 0.99 1.00 0.89 0.88 0.88 0.13 0.03 0.03 0.03 0.02 0.03 0.13 0.13 0.03 0.02 0.14 0.03 0.04 0.04 0.02 0.12 0.01 0.01
BU-030 0.88 0.89 1.00 0.99 0.89 0.02 0.12 0.02 0.14 0.13 0.03 0.03 0.02 0.14 0.13 0.03 0.02 0.13 0.03 0.01 0.02 0.01 0.01
BU-035 0.88 0.88 0.99 1.00 0.89 0.01 0.11 0.01 0.13 0.14 0.02 0.02 0.01 0.13 0.14 0.02 0.01 0.12 0.02 0.01 0.02 0.01 0.01
BU-038 0.88 0.88 0.89 0.89 1.00 0.01 0.01 0.11 0.03 0.03 0.02 0.02 0.01 0.03 0.03 0.02 0.11 0.02 0.02 0.01 0.03 0.01 0.01
BU-070 0.12 0.13 0.02 0.01 0.01 1.00 0.90 0.90 0.88 0.87 0.88 0.12 0.14 0.02 0.01 0.13 0.04 0.03 0.03 0.03 0.11 0.01 0.01
BU-120 0.02 0.03 0.12 0.11 0.01 0.90 1.00 0.90 0.98 0.97 0.88 0.02 0.04 0.12 0.11 0.03 0.04 0.13 0.03 0.03 0.01 0.01 0.01
BU-121 0.02 0.03 0.02 0.01 0.11 0.90 0.90 1.00 0.88 0.87 0.88 0.02 0.04 0.02 0.01 0.03 0.14 0.03 0.03 0.03 0.01 0.01 0.01
BU-150 0.02 0.03 0.14 0.13 0.03 0.88 0.98 0.88 1.00 0.99 0.89 0.03 0.02 0.14 0.13 0.03 0.02 0.13 0.03 0.01 0.02 0.01 0.01
BU-155 0.02 0.02 0.13 0.14 0.03 0.87 0.97 0.87 0.99 1.00 0.88 0.02 0.01 0.13 0.14 0.02 0.01 0.12 0.02 0.01 0.02 0.01 0.01
BU-170 0.02 0.03 0.03 0.02 0.02 0.88 0.88 0.88 0.89 0.88 1.00 0.04 0.02 0.03 0.02 0.03 0.02 0.03 0.13 0.01 0.02 0.01 0.02
BU-250 0.12 0.13 0.03 0.02 0.02 0.12 0.02 0.02 0.03 0.02 0.04 1.00 0.98 0.89 0.88 0.13 0.02 0.03 0.03 0.01 0.12 0.01 0.02
BU-260 0.12 0.13 0.02 0.01 0.01 0.14 0.04 0.04 0.02 0.01 0.02 0.98 1.00 0.88 0.87 0.13 0.04 0.03 0.03 0.03 0.11 0.01 0.01
BU-290 0.02 0.03 0.14 0.13 0.03 0.02 0.12 0.02 0.14 0.13 0.03 0.89 0.88 1.00 0.99 0.03 0.02 0.13 0.03 0.01 0.02 0.01 0.01
BU-292 0.02 0.02 0.13 0.14 0.03 0.01 0.11 0.01 0.13 0.14 0.02 0.88 0.87 0.99 1.00 0.02 0.01 0.12 0.02 0.01 0.02 0.01 0.01
BU-300 0.13 0.14 0.03 0.02 0.02 0.13 0.03 0.03 0.03 0.02 0.03 0.13 0.13 0.03 0.02 1.00 0.89 0.90 0.04 0.02 0.12 0.01 0.01
BU-305 0.02 0.03 0.02 0.01 0.11 0.04 0.04 0.14 0.02 0.01 0.02 0.02 0.04 0.02 0.01 0.89 1.00 0.89 0.03 0.03 0.01 0.01 0.01
BU-530 0.03 0.04 0.13 0.12 0.02 0.03 0.13 0.03 0.13 0.12 0.03 0.03 0.03 0.13 0.12 0.90 0.89 1.00 0.04 0.02 0.02 0.01 0.01
BU-060 0.03 0.04 0.03 0.02 0.02 0.03 0.03 0.03 0.03 0.02 0.13 0.03 0.03 0.03 0.02 0.04 0.03 0.04 1.00 0.88 0.88 0.87 0.87
BU-303 0.02 0.02 0.01 0.01 0.01 0.03 0.03 0.03 0.01 0.01 0.01 0.01 0.03 0.01 0.01 0.02 0.03 0.02 0.88 1.00 0.87 0.88 0.88
BU-325 0.12 0.12 0.02 0.02 0.03 0.11 0.01 0.01 0.02 0.02 0.02 0.12 0.11 0.02 0.02 0.12 0.01 0.02 0.88 0.87 1.00 0.87 0.87
BU-885 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.87 0.88 0.87 1.00 0.99
BU-935 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.87 0.88 0.87 0.99 1.00

Table 2:  Button subgroup similarity values 

B1 B2 B3 B4 B5
B1 1.00 0.025 0.053 0.065 0.058
B2 0.025 1.00 0.024 0.027 0.026
B3 0.053 0.024 1.00 0.058 0.056
B4 0.065 0.027 0.058 1.00 0.059
B5 0.058 0.026 0.056 0.059 1.00

Table 1:  Button similarity values 
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Input:  List of all single level subtree pairs in the BOM database. 
Output: Clusters containing similar subtrees (subassemblies).  
 
Do  
   Read in node labels for subtrees s and t 
   If  similarity values exist in Dist for all node label pairs in s and t,  
        Call function LabelMatch(s, t) 
        Remove (s,t) from List  
  else, 
        continue  
 w hile List !={}       
Call function MedoidCluster(SubTreeDist, number of clusters) 
Print cluster members and medoids for all clusters 
 
Function LabelMatch (A, B) 
    For nodes i to m in subtree A, 
        For nodes j to n in subtree B 
 Using node distances stored in Dist, perform w eighted bipartite matching 
   Dsub(A, B) = min cost weighted bipartite matching 
   Store Dsub(A, B)  in Dist and inSubTreeDist 
Return 
 
Function MedoidCluster(DistanceTable, k) 
 Perform k-medoid clustering 
Return cluster members and medoids 

subtrees by weighted bipartite matching of subtree child nodes, matching subtrees, and defining 

the similarity between the two BOM trees as the result from this second instance of weighted 

bipartite matching.   

This approach does not calculate similarity among all subtrees in the BOM database; the 

subtree root node’s label is of no significance in the calculation.  The methodology simply 

performs a pairwise comparison of two unordered BOM trees to find the similarity value.  The 

input to the clustering algorithm is the table of similarity values among all end item BOM trees; 

the output is a set of clusters representing part families and subfamilies. 

 In this paper, however, the intent is different; the input to the clustering algorithm is the 

table of similarity values among all single level subassemblies from the BOM database, and the 

output is a set of clusters representing subassembly types that will replace the unique 

subassembly part labels.  Generalization of subassemblies into types is necessary to form the 

GBOM from the part family/subfamily cluster, just as generalizing purchased parts into groups 

was necessary to find the similarity between two BOMs.  Similar to (Romanowski and Nagi, 

2003), the BOMs are once again decomposed into single level subtrees. However, the goal in this 

work is to cluster and, subsequently, generalize subassemblies into classes.  Therefore, all single 

level subtrees of all BOMs in the database are simultaneously compared.  Single level subtrees 

whose child nodes are purchased parts are defined as terminal subtrees, and the subassembly 

generalization process begins with these structures. 

The subassembly generalizing 

algorithm (Figure 11) starts by 

reading in two single level subtrees 

s and t.  If similarity values for all 

pairs of child nodes in the two 

subtrees are already in the distance 

table Dist, the total subtree 

similarity can be calculated.  The 

resulting similarity value is stored 

in SubTreeDist, and the pair (s, t) 

removed from the list of single 

level subtree pairs.  If the child 

node pairs do not yet have a 
Figure 11:  Subassembly generalizing algorithm 
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similarity value in the table, the similarity between s and t cannot yet be calculated and the pair is 

not removed from the list.   When the list is empty, the distance table is sent as input to the k-

medoid clustering algorithm to form the subassembly classes.  

The subassembly clusters are given general labels depending on the attributes and values of 

their members, just as the purchased parts were given general labels.  These labels replace the 

unique part numbers for the subassemblies in the GBOM clusters.   

3.5  Industrial Example 

The algorithms and methodologies in this paper were implemented using data from a 

manufacturer of nurse call devices. The company has four major product families, each 

comprising hundreds of variant BOMs.  For this case study, we used a sample of 405 BOMs 

from one of the major product families.       

An example of the part generalization methodology applied to this dataset was shown in 

Section 3.2; because of space considerations no further discussion of that step will be given here. 

The subtree generalization algorithm was applied to the single level subtrees in the BOM 

collection.  These 156 single level trees were clustered using CLARANS (Ng and Han, 1994) 

into subtree clusters, and the individual subassembly part numbers in each BOM replaced with 

the general labels from this clustering step.  The 405 BOMs, clustered using the approach in 

(Romanowski and Nagi, 2003), were then unified using the GBOM unification algorithm. 

The unification of one GBOM cluster, using the methodology discussed in Section 3.3, is 

shown graphically in Figure 12 in UML format.  Note the multiplicity ranges for the raw cable 

(shaded), from 21 to 366 inches, and resin, from 0.01 to 0.05 lbs.  Also, this cluster shows a level 

jump for the plug component (shaded); in 10 out of 25 BOMs the plug is a child of the cable 

assembly.  In BOM #2 the plug is a child of the end item. 
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3.6   Modeling configuration and design constraints 

The last step of modeling the GBOM is determining design rules and configuration 

constraints.  Some rules are common to all BOMs; for instance, the constraint that purchased 

parts may not have child components, and a child component may not contain its own ancestor.  

Other rules may be global (common to all products in the domain) or local (common to specific 

products, and therefore to particular GBOMs).  These rules also help define the identifying 

characteristics of the GBOM cluster. 

The process of forming the GBOM generates topological, configuration, and multiplicity 

constraints, as seen in the UML diagram in Figure 12.  Other rules, such as those involving 

specific part characteristics, must be derived using other methods.  Association mining 

algorithms (Agrawal et al., 1993; Zaki, 2000; Liu et al., 1998) that look for frequently occurring 

itemsets in a database are an appropriate tool for this task.  A typical design association rule 

might be “If the car type is compact, the engine type is 4 cylinder.”  The strength of association 

in these itemsets is quantified by two measuress:  support (the percentage of records containing 

the antecedent) and confidence (the percentage of records containing the antecedent that also 

contain the consequent).  The values of these measures, which are set by the user, directly affect 

the number of rules generated by the algorithm. 

  Finding global rules requires mining over all BOMs in the product database; we do not 

address that issue in this paper.  To find local rules, each cluster of BOMs is mined separately.  

Figure 12:  GBOM formed from 25 similar BOMs 
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For this task, the part descriptions are necessary as they provide information on the critical 

characteristics of each component. 

Association mining data are in the form of a comma-separated set of records; for this BOM 

application, these data are similar to a parts list but use short descriptors instead of unique ID 

numbers.  For instance, Figure 13 shows a record for one of the 25 BOMs contained in the 

GBOM in Figure 11. The parts are identified using short string versions of the part descriptions 

(e.g., BarButton, OvalButton) based on the generalization results from Section 3.4.2.  Note that 

in this domain, the number of parts in a BOM is fairly small; however, if the number of parts is 

much larger than the number of records, some method of factor reduction must be used. 

The output of a mining algorithm may include interesting, novel patterns but also trivial and 

already known relationships.  Domain knowledge and user input is required to sift through and 

validate the rules included in the constraints.  One major benefit of a data mining approach is the 

reduced need for user engagement, which is focused primarily on the verification and validation 

of induced rules instead of their generation.  This methodology promotes automation of activities 

and tasks that do not require human intervention, and thus frees this expensive and constrained 

resource for the tasks where human expertise and effort are most important.  

  For Cluster 4, with a minimum support of 30%, and minimum confidence of 50%, 2025 

rules were generated – many of which were, as expected, trivial or redundant.   The rules 

characterize this cluster as a two-button G2 pillow speaker (TV and nurse), with a 200 Ohm 

volume control.  The major variations from this base model are the length of the cable (48% have 

an 8 ft cable) and the speaker (60% have a 3.2 Ohm speaker and the remaining 40% use an 8 

Ohm speaker).  A sample rule generated by CBA (Classification Based on Association), an 

association and classification program developed by (Liu, Hsu and Ma, 1998) based on the 

Apriori algorithm (Agrawal et al., 1993) is shown in Figure 14.  The rule is read as “IF 8 ft cable 

assembly is present, THEN 3.2 Ohm speaker is also present.”  The numerical results following 

the rule represent the support, confidence, number of records containing the attribute 

“8ftCableAssy”, number of attributes containing “32OSpkr”, and the ratio of support to 

confidence.  The support is calculated by dividing the number of records containing the 

CaseFAssy,BrackAssy1sw,ZincBrack,PushMomSw,CFGen2,BarButton,OvalButton,SpkVCAssy205808, 
VolContAssy,200VC,Gen2Knob,8OSpkr,10ftCableAssy,R3Cond22,PVCResin,602Pin6,5PinWafer,Labor,Poly, 
CaseBAssy,CBGen2,Label,Box,Phillips1in,2InChain,Lit 

Figure 13:  Example association mining record 
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precedent (12) by the total number of records in the dataset (25), which is 48%.  The confidence 

is the number of records containing both the precedent and the antecedent (8) divided by the 

number of records containing the precedent (12), which equals 66.67%.  In contrast, mining the 6 

BOMs in Cluster 8 (whose GBOM is shown below in Figure 15) generates rules showing this 

family of products can be characterized as a four-button pillow speaker with an 8 foot, 24 gauge 

cable; the major variations are in the printing for the buttons and in the volume control (75 to 

10000 Ohm) and speaker (8 and 40 Ohm) components.   

  3.6  CXML representation of GBOMs and constraints 

The intent of GBOM representations is to maintain structural information and avoid 

redundancy while incorporating design information into a compact form.  We can exploit these 

characteristics of GBOMs in the search for similar parts, taking advantage of the reduced search 

space resulting from the decrease in redundant information.  We also, by representing GBOMs as 
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Rule 8: 
  8ftCableAssy = Y 
  ->  32OSpkr = Y 
  (48.000% 66.67% 12 8 32.000%) 

Figure 14:  Example association mining rule 

Figure 15:  A GBOM formed from 6 similar BOMs 
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constrained XML files, take advantage of the characteristics of XML as a framework for data 

storage. 

Constrained XML extends the XML language to include restrictions of many types on the 

XML file contents.  For example, constraints common to all bills of material include: 

• restrictions on the quantity per field (for instance, there can be only one end item) 

• restrictions on the number of children (purchased parts may not, by definition, have 

children)  

• restrictions on node relationships (for instance, a node may not be a child of itself) 

• checks on correctness (for instance, the cost of a parent item should equal the cost of 

its children multiplied by their respective quantities, plus added labor costs of 

assembling/processing the parent). 

• checks on validity of part numbers. 

Specific constraints may also be written for a particular domain to maintain completeness, 

consistency, and correctness of BOM files.  For instance, we can include 

• restrictions on which parts can be substituted 

• restrictions on vendor choice 

• restrictions on configuration (for example, which parts can be used together in an 

assembly, and which are incompatible) 

• validation of BOM contents (for example, ensuring that all necessary part types are 

included and the BOM is complete). 

These constraints are included in the document type definition (DTD) file (see McKernon 

and Jayaraman, 2000, for a discussion on the advantages of using DTDs over XML Schema).  

Individual XML files written to the specifications in the DTD are parsed first for compliance 

with XML formats, and second for compliance with the constraints.  In this manner, we can 

enforce consistency, correctness, and completeness of BOMs, which can further enhance search 

effectiveness and efficiency. 

While the GBOMs could be shown as graphs instead of trees by explicitly adding the 

alternate edges resulting from differing ancestry relationships, we have chosen to use the XML 

representation for its portability across disparate platforms.  XML documents are also tree 

structures, which nicely supports the conversion of GBOM information into an XML file.  The 

DTD file, made up of elements and attributes (and, in the CXML extension, constraints) spells 

out the relationships between the parts of the document tree.  Elements represent nodes in the 
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<!ELEMENT PillowSpeaker (Item_no+, Box, CableAssy, CaseBackAssy, CaseFrontAssy, Hardware, Lit, Plug, 
Socket, SpeakerVolAssy)> 

<!ATTLIST PillowSpeaker 
 GroupName CDATA #REQUIRED> 
<!ELEMENT Item_no  (IDnum,Cardinality,Alt_Parent)> 
<!ATTLIST Item_no 
 strength  CDATA #REQUIRED> 
<!ELEMENT IDnum   (#PCDATA)> 
<!ELEMENT Cardinality  (#PCDATA)> 
<!ELEMENT Alt_Parent  (#PCDATA)>  
<!ELEMENT Box    (Item_no+)> 
<!ELEMENT CableAssy  (Item_no+, Labor, Pin*, Plug*, RawCable, Resin*, Wafer*)> 
<!ELEMENT CBAssy  (Item_no+, CBSubAssy)> 
<!ELEMENT CFAssy  (Item_no+, CFSubAssy)> 
. . . 
<!ELEMENT SpeakerVolAssy   (Item_no+, SpeakerVolSubAssy)> 
<!ELEMENT CFSubAssy   (Item_no+, Button, BracketAssy, CaseFront)> 
<!ELEMENT CBSubAssy    (Item_no+, CaseBack, Label)> 
<!ELEMENT SpeakerVolSubAssy  (Item_no+, Speaker, VolAssy)> 
<!ELEMENT BracketAssy  (Item_no+, Hardware, Labor*, Switch)> 
<!ELEMENT VolAssy  (Item_no+, Knob, VolControl)> 
<!ELEMENT Switch   (Item_no+)> 
<!ELEMENT VolControl  (Item_no+)> 
<!ELEMENT Knob   (Item_no+)> 
. . . 
<!CONSTRAINT  IF EXISTS (PillowSpeaker.CableAssy.Plug.item_no == PL-060)   /* Designates alternate parent for plug item 
   PillowSpeaker.CableAssy.Plug.item_no.Alt_Parent = 103-011> 
<!CONSTRAINT  IF EXISTS (PillowSpeaker.CableAssy.Resin.item_no == PolyR110)  /* Checks for correct quantity per parent 
   PillowSpeaker.CableAssy.Resin.item_no.Cardinality = 0.011> 
<!CONSTRAINT SUM(PillowSpeaker.CableAssy.RawCable:strength)==1>              /* Checks for inclusion of all variant items 
<!CONSTRAINT          SETOF(PillowSpeaker.CableAssy.Resin)=S AND size(S)==2>      /* Checks for completeness, must have two items from    

the Resin group 
] 

tree; each DTD has one and only one root element (see Figure 16, where the root element is 

‘PillowSpeaker’).  Elements may include other elements, and occurrence operators such as * and 

+ designate how many of each child element can appear in the document.  If no operator is 

present, the element appears once and only once.  An asterisk means an element can appear zero 

or more times.  A + symbol means the element must appear at least once, but can appear more 

than once.  #PCDATA stands for parsed character data. 

Attributes are either required or implied; implied attributes do not need to appear in the XML 

document.  In this example, the attributes are all character data (CDATA) although enumerated 

types and tokenized types are also allowed. 

Figure 16 contains four constraints:  the first constraint lists an alternate parent for a 

particular item number.  The second constraint checks the quantity per parent; the third 

constraint makes sure all variants are included in the XML file, and the fourth constraint checks 

for completeness.  A more extensive encoding of assembly compatibility and design 

configuration constraints within the CXML framework is proposed as a research agenda in 

(Romanowski and Nagi, 2001).  See the appendix for further discussion of DTD formulations, a 

CXML version of the GBOM in Figure 12, and an example CXML parser output. 

Figure 16:  Sample GBOM DTD with constraints
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4.  Summary and future work 

This paper presented a novel data mining-based methodology for semi-automated formation 

of a generic bill of materials from legacy BOMs.  The methodology is a systematic approach for 

the problems of unifying similar, but not identical, trees into a single entity.  In summary, we 

develop a method for generalizing parts and subassemblies using text mining; present an 

algorithm for unifying similar BOM tree structures into a single GBOM; and extract design and 

configuration rules from the BOM data using association mining.       

These data mining-based methodologies for generalizing parts and subassemblies and 

unifying similar BOMs are illustrated using data from an industrial BOM database.  The 

resulting GBOMs, which contain information on the most common product structure and 

variations of that structure, reduce the search space for retrieving similar previous designs and 

aid in configuring new variants.  We represent the GBOMs in platform independent, constrained 

XML to support distributed and virtual enterprises. 

Some future directions for data mining-based research in this area include: 

• developing a hybrid text/numerical mining algorithm to efficiently mine part description 

fields, which typically contain many different data types.  For example, the description 

“SPACER,ENHANCED,1/4",HI-IMPACT POLYSTYRN” contains categorical 

(SPACER, HI-IMPACT POLYSTRN), numerical (1/4”),and ordinal (ENHANCED) data 

types.  No algorithm currently exists to mine all possible data types simultaneously.  Such 

an algorithm can also be applied to other manufacturing documents such as process plans 

and routings; the knowledge mined from these information sources can then be integrated 

into the GBOM.   

• refining of the distance measure to increase efficiency of the tree clustering process.  The 

current measure can overstate distances for some configurations where identical child 

items have different parents (see Romanowski, Nagi and Sudit, 2003). 

• deriving design and configuration constraints from mining of related product documents 

such as CAD drawings, R&D reports, production records, etc., and representing those 

constraints in CXML. 

  Data mining offers many attractive solution methods for difficult information-related 

engineering problems.  As shown in this paper, these methods can greatly reduce the amount of 

human effort required for tedious tasks, freeing up resources for more critical functions such as 

validation and verification, that are best performed by domain experts.
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Appendix 
A.  The search for similar parts 

To place this research into context, this section discusses how the CXML representation of 

the GBOM can be searched for similar parts and subassemblies.  Table 1a shows the typical 

search types, their parameters, and expected outputs. 

 
Table 1a:  Typical searches for design re-use 

Search Type Search for Parameters Output 

Where used Specific item Item Number List of ancestor items  
Similar parts Items Item description List of items with BOM links 
Similar subassemblies/ 
components 

Items Content and topology Subtrees with BOM links 

Similar product End item End item description, 
content, topology 

Bills of material; a recursive 
version of the subassembly 
search 

 

The search for similar subassemblies begins with the definition of desired attribute values.  

The values are compared with previously defined group characteristics, and the most similar 

groups – subject to a user-defined threshold for similarity – are identified as ranked candidate 

groups.  The XQuery search is run, using these ranked candidate groups, and the results 

displayed for the user.  Figure 1a shows the search process.   

B.  Maintaining design feasibility   

When using the results from a search to configure a new 

variant, the lower level parts and subassemblies chosen should 

maintain the design’s feasibility.  The GBOMs are determined 

from existing, established product designs.  The GBOM 

generation process captures configuration constraints, such as 

cardinality and parent-child relationships, that are subsequently 

included in the GBOM DTD file.  Additionally, association 

mining of the individual BOMs contributes more constraints in 

the form of specific component attributes.  The combination of 

general and specific constraints provides a DTD that completely 

specifies the product design.  As a check on feasibility, an XML 

file of the new product variant can be sent to the constrained 

XML parser; violations of domain-specific constraints will be flagged in the process.  Therefore, 

Figure 1a:  Search procedure 
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the CXML parser would recognize a bicycle BOM missing the rear brake assembly.  Design rule 

constraints check for feasible combinations; the CXML parser would recognize that a 4-cylinder 

engine requires 4 pistons of a specific bore and compression ratio. 

C.  DTDs and CXML files for GBOMs 

The GBOM, because it is a union of several BOMs, requires a DTD that is a modification of 

an individual BOM DTD.  In this DTD, we are concerned with being able to search for similar 

parts, purchased parts, and subassemblies; we also want to make sure the combinations of 

components and subassemblies form a valid end product.  Also, clustering – both by content and 

by topology – forms groups of similar items, so we use these group definitions to support the 

similar component search.  Completeness and correctness are checked using XML occurrence 

operators and design rules are represented as constraints.   

Figure 2a shows a portion of a CXML file for the GBOM in Figure 11 (section 3.4), 

corresponding to the DTD in Figure 16.  Figure 3a shows the output from the CXML parser. 

 

 

Figure 2a:  CXML file for GBOM in Figure 11

<!DOCTYPE PillowSpeaker SYSTEM "C:\ PillowSpeaker.dtd"> 
<PillowSpeaker GroupName = "103"> 
  <item_no strength = "NA"> 

<IDnum>1038 </IDnum> 
<Cardinality> 1 </Cardinality> 

       </item_no> 
 <Box> 
  <item_no strength = "1"> 

<IDnum> BX10 </IDnum> 
<Cardinality> 1 </Cardinality> 

</item_no> 
 </Box> 
 <Cable Assy> 
  <item_no strength = ".86"> 
   <IDnum> 8ftCableAssy </IDnum> 
   <Cardinality> 1 </Cardinality> 
  </item_no> 
  <RawCable>   
   <item_no strength = "0.12"> 
    <IDnum> Str020 </IDnum> 
    <Cardinality>1</Cardinality> 
  </RawCable> 
  <Resin> 
   <item_no strength = “0.84”> 
    <IDnum> PVC100 </IDnum> 
   <Cardinality>0.01</Cardinality> 
   </item_no> 
  </Resin> 
  <Resin> 
   <item_no strength = “0.44”> 
    <IDnum>PolyR110</IDnum> 
    <Cardinality>0.011</Cardinality> 
   </item_no> 
  </Resin> 
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> java CxmlUI clus4.xml 
 
   There were no XML Syntax Errors. 
 
   There were no CXML Semantic Constraint Violations. 
 
   Executed CXML Instructions: 
 
     0: 2.0  eq   2.0    1  -2 
     1: 1.0  eq   1.0    2  -2 
     2: 2.0  eq   2.0    3  -2 
     3: 1.0  eq   1.0    4  -2 
     4: 1.0  eq   1.0    5  -2 
     5: 4.0  eq   4.0    6  -2 
     6: EXISTS  PillowSpeaker.CableAssy.Plug.item_no.IDnum   eq   PL60  7  -2 

Figure 3a:  CXML parser results for CXML file


