Efficient Fusion of a Set of Attributed Graphs

EM-MCMC Approach

Michael Stearns, Alex Nikolaev

Objectives

- Develop an efficient, scalable method for attributed graph association
- Example: reconstruct an event based on scrambled and possibly conflicting reports

Scientific/Technical Approach

- Find a model random graph most likely to have generated the observed data graphs
- Association variables are latent
- Expectation-Maximization to minimize the model graph entropy
- Markov Chain Monte Carlo sampling to evaluate the fit at every iteration

Accomplishments

- Concept validation performed (error-free data)
- Testing underway with error-embedded data
- Algorithm provably optimal
- Linear runtime in the number of data graphs

Challenges

- Algorithm parameter adjustment (adaptive?)
- Working with partially observed data (graph extension latent variables?)
Efficient Fusion of a Set of Attributed Graphs

Graph Synthesis Methods Overview

Incremental Synthesis
- Match data graphs as they are sequentially introduced
- Simultaneous learning and recognition
- Order Matters

Agglomerative Synthesis
- Iteratively match pairs with smallest relative incremental distances
- Order-independent
- Early errors affect the overall result

Consistent Multiple Isomorphism
- Decouple common labeling from synthesis: match pair-wise under consistency rules
- Too much attention to local knowledge
- Resolving rules is computationally hard

Direct Synthesis Methods
- Holistic common labeling without a-priori pair-wise stage
 - Genetic search for optimal label array
 - N-dimensional graduated assignment
- Global knowledge guides search
- Computationally feasible only for a small number of data graphs
Efficient Fusion of a Set of Attributed Graphs
Expectation Maximization (EM)

• Avoid the matching altogether!
• Find an optimal parameterization of a model graph that is most likely to have generated the observed data.
• Common labeling variables are latent: can be computed for each data graph individually after an optimal model graph is identified.
• Algorithm is provably convergent: iteratively updates the model graph parameters to maximize the combined likelihood of the data graphs.

• Challenge: the distribution of latent variables under a given parameterization is complex. Sampling can be used to estimate the likelihood function but how to do it efficiently?
Efficient Fusion of a Set of Attributed Graphs
Markov Chain Monte Carlo Sampling (MCMC)

- Approximate the probability distribution of latent variables by constructing a Markov chain that has this distribution as its equilibrium distribution.
- Sample quality improves iteratively.
- Rule to traverse latent space: release current solution nodes at random.
- MCMC setup variables can be adjusted to accelerate convergence.

Benefits EM graph synthesis with MCMC
- Global knowledge within the set of observed graphs is the driver, theoretically providing the most accurate synthesis.
- Both EM and MCMC are shown to be convergent.
- Contribution of each data graph to the model graph update can be assessed separately: overall computational time is linear!
Efficient Fusion of a Set of Attributed Graphs
Observed Results (Proof of Concept)

- Generate a cluster of identical AGs, with a random initial labeling to the model graph.
- Run the algorithm to optimality (entropy = 0) for various cluster sizes to determine time and number of iterations necessary to attain optimality.
- Variables
 - Number of MCMC samples = 250
 - Tolerance (t) = adaptive, adjusts to maintain the desired rate of node release in MCMC, e.g., if the node release rate falls below a stated level, the tolerance increases.

<table>
<thead>
<tr>
<th>Cardinality</th>
<th>Cluster size</th>
<th>Time (sec)</th>
<th>Number Iterations</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>25</td>
<td>6.3169</td>
<td>157.45</td>
</tr>
<tr>
<td>20</td>
<td>50</td>
<td>11.8949</td>
<td>149.25</td>
</tr>
<tr>
<td>20</td>
<td>100</td>
<td>22.2518</td>
<td>130.75</td>
</tr>
<tr>
<td>20</td>
<td>200</td>
<td>44.1427</td>
<td>143.4</td>
</tr>
<tr>
<td>20</td>
<td>500</td>
<td>128.2908</td>
<td>157.55</td>
</tr>
</tbody>
</table>
Efficient Fusion of a Set of Attributed Graphs
Current and Future Work

• Embed error in AGs as they are created (node/edge attributes will have a certain % chance of being incorrectly reported)
• Compare against the existing synthesis approaches
 – assess accuracy as the entropy of the generated random graph prototype
 – assess efficiency as the time to complete synthesis

• Allow incomplete records – AGs with partial information of the real network.
 – expand the method with graph extension capability
• Let node and arc attributes follow non-standard distributions
 – incorporate empirical likelihood computation
• Consider random graphs with higher level dependencies as model graphs
 – First-Order Random Graphs, Second-Order Random Graphs, etc.