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More Advanced Single Machine Models
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Total Earliness And Tardiness
• Non-regular performance measures ∑Ej + ∑Tj 

• Early jobs (Set j1) and Late jobs (Set j2) are scheduled according to LPT and SPT.
• Minimizing Total Earliness And Tardiness with a loose due date. 
Assume:
1. dj=d.
2. p1 ≥ p2 ≥ p3 ≥……………. ≥ pn

Step 1: Assign job 1 to set j1.
set k=2

Step 2: Assign job k to set j1 and job k+1 to set j2  or vice versa.
Step 3: If k+2 ≤ n – 1, set k=k+2 and go to step 2.

If k+2 = n , assign job n to either j1 or j2 and STOP.
If k+2 = n + 1, all jobs have been assigned ; STOP.

• Flexible in assigning jobs to sets j1 and j2..
• Assignment is such that the total processing times of set j1 is minimized.
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Total Earliness And Tardiness (Cont.)
Assume:
1. dj=d.
2. p1 ≥ p2 ≥ p3 ≥……………. ≥ pn

• Minimizing Total Earliness And Tardiness with a tight due date.
Step 1: Set τ1 =d and  τ2 = ∑pj - d

Set k=1 
Step 2: If τ1 > τ2, assign job k to the first unfilled position in the sequence and set 

τ1= τ1 - pk .
If τ1 < τ2, assign job k to the last unfilled position in the sequence and  set    
τ2= τ2- pk .

Step 3: If k < n , set k = k+1 and go to step 2.
If k = n , STOP.
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Example:
Jobs     1 2 3 4 5 6
pj 106     100     96    22    20     2

13654212-22
13X54244-22
13XX4266-22
13XXX26674
1XXXX216674
1XXXXX166180

Sequenceτ2τ1 
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Total Earliness And Tardiness (Cont.)
• If we consider ∑w’Ej + ∑w”Tj ,where the weights are not 

necessary the same for the two performance measures but  the due
dates are same, the earlier algorithms can be generalized easily for  
solving this problem.

• Now if we consider ∑wj’Ej + ∑wj”Tj and dj=d, then the weighted 
LPT and weighted SPT rules have to be used for sequencing.

• Now if we consider ∑wj’Ej + ∑wj”Tj and dj≠d, the problem is NP 
hard.

• Due to different due dates it might not be optimal to process the 
jobs without interruption. Idle times in between consecutive jobs 
might be necessary.

• Given a predetermined ordering of the jobs, the timings of the 
processing of the jobs and the idle times can be computed in 
polynomial times.
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• Lemma 1: If dj+1 – dj ≤ pj+1, then there is no idle time between 
jobs j and j+1 .

Three cases:
1. J is early.
2. J is completed exactly at its due date.
3. J is late.
• Lemma 2: In each cluster in a schedule, the early jobs proceed 

the tardy job. Moreover, if the jobs j and j+1 are in the same 
cluster and are both early, then Ej ≥Ej+1. If the jobs are both 
late ,then Tj ≤ Tj+1 .

For a cluster;
dj+1 – dj ≤ pj+1.

Subtracting t+pj from both sides, we get 
dj+1 - dj - t - pj ≤ pj+1 - t - pj .

Solving we get,
dj - Cj ≥ dj+1 - Cj+1
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• The job sequence 1,2,3…….n can be decomposed into 
m clusters with each cluster representing a 
subsequence.

• We compute the optimal shift for each cluster.
• For a cluster with jobs k,k+1,…..,l; let 
∆(j) = ∑w’l + ∑w”l l = k to j
• A block is a sequence of clusters that are processed 

without interruption.
• Let E(r) = Ejr = djr – Cjr where jr is the last job in cluster 
σr that is early.

• Hence E(r) = minj (djr – Cjr)   ; where k ≤ j ≤ jr .
• Now let ∆(r) = ∆jr = max ∆(j) ; where k ≤ j ≤ jr .
• If none of the jobs in the cluster is early, then E(r) =∞

and ∆(r) = - ∑w”l .
• If E(r) ≥ 1 for the last early job in every cluster of the block, a 

shift of the entire block by one unit time to the right decreases 
the total cost by ∑∆(r) (the summation is over the block).
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• Algorithm:
Step1: Identify the clusters and compute ∆(r) and E(r) for 

each cluster.       
Step2 : Find the smallest  s  s.t. ∑ ∆(r) ≤ 0. 

Set the original Ck for each job of the first s cluster.         
If s = m, then STOP; other wise go to step 3.
If no such s exists, then go to step 4.

Step3: Remove the first s clusters from the list. 
Go to step 2 to consider the reduced sets of cluster.

Step 4: Find minimum (E(1)……E(m)).
Increase all  Ck by minimum (E(1)……E(m)).
Eliminate all early jobs that are no longer early.
Update E(r) and  ∆(r). Go to step 2.

Optimizing timings given a predetermined sequence
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Optimizing Timings Given A 
Predetermined Sequence

15181212382512wj2

1116109182010wj1

3025161826412dj

8263723pj

7654321Jobs
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• σ1 = 1,2   ; σ2 = 3,4,5  ; σ3 = 6,7 
• Completion times will be 3,5,12,15……..

E(r) = Min(dj – cj) and  ∆(r) = max ∆j

115-15∆(r)

239E(r)

321Cluster

-3315∆(r)

Infinity1E(r)

32Cluster

The optimal completion times are:

3,5,14,17,23,25,33 
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Primary and Secondary Objectives
• α ׀ β ׀ γ1(Opt.), γ2.
• Lemma: For the single machine problem with n jobs subject to the

constraint that all due dates have to be met, there exists a schedule that 
minimizes ∑ Cj in which job k is scheduled last, if and only if
1. dk ≥ ∑ pj
2. pk ≥ pL, for all L such that dL ≥ ∑ pj  

• Minimizing total completion times with deadlines (backward algorithm).
• Algorithm:
Step 1: Set k = n, τ = ∑ pj , jc = {1,2,…...,n}
Step 2: Find k* in jc s.t. dk* ≥ τ and pk* ≥ pL , for all jobs L in jc s.t. dL ≥ τ

Put job k* in position k of the sequence. 
Step 3: Decrease k by 1 ; decrease τ by pk* .  Delete job k* from jc.

Step 4: If k ≥ 1 go to Step 2, otherwise STOP.
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• Pareto-optimal schedule: is the one in which it is not 
possible to decrease the value of one objective without 
increasing the value of the other. 
1| β | θ1γ1  +  θ2γ2    ; where θ1 ,θ 2    are the weights of 
the two objectives.

Lmax
Lmax (SPT/EDD)Lmax EDD

∑Cj

Trade-off between total completion time and maximum lateness
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SEQUENCE-DEPENDENT SETUP 
PROBLEMS
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Sequence-Dependent Setup Problems

1. An algorithm which gives an optimal schedule
with the minimum makespan with sequence-dependent setup times 
1 | Sjk | Cmax
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Single machine: rj=0, no sequence dependent setup times ⇒ ∑=
j

jpCmax

1 | Sjk | Cmax NP hard

• Set-up times have a special structure and hence an efficient
solution procedure is possible.

• Consider a structure where two parameters associated with 
job j  : aj and    bj

1. At the completion of the job the machine state is bj
2. To start the job the machine must be in state aj

• sjk = | ak - bj |   is the total setup time necessary to bring the      
machine from state bj to ak state.
• Machine speed.
• Travelling Salesman Problem 

with n+1 cities   j0, j1, …, jn. The additional city Co has 
parameters ao & bo.
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0 2

3 1

0 2

3 1

{0, 1, 2, 3} → {2, 3, 1, 0}
φ(0) = 2
φ(1) = 3
φ(2) = 1
φ(3) = 0

{0, 1, 2, 3} → {2, 1, 3, 0}

b1

bk

bj

b2

aφ(1)

aφ(2)

aφ(k)

aφ(j)

cost of going from 1 to φ(1) is | aφ(1) - b1 |

k = φ(j)  is the relation that maps each element of {0, 1, 2,….,n} onto a unique element of 
{0, 1, 2,…..,n} .Traveling salesman is leaving city j for city k.

{0, 1, 2, 3} → {2, 3, 1, 0}
φ(0) = 2
φ(1) = 3
φ(2) = 1
φ(3) = 0
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Swap I(j,k) applied to a permutation φ produces another permutation φ’
by affecting only the assignments of j and k  and leaving the others 
unchanged. 

φ’(k) = φ(j)
φ’(j) = φ(k)
φ’(l) = φ(l),    l ≠ j , k

1
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bj

bk

aφ(j)

aφ(k)

change in cost due to
swap I(j, k)

Lemma. If the swap causes two arrows that did nor cross earlier
to cross, then the cost of the tour Cφ I(j,k) increases and vice versa.

Cφ I(j,k) =  ║[ bj,bk ] ∩ [a φ(j) ,bφ(k) ] ║.

Here,       ║[ a,b ] ║ =    2 (b-a)       if b ≥ a 
2 (a-b)       if b < a

{ .¦ ] b,  [an  ]bk bj, [¦{ φφ
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• Lemma. An optimal permutation mapping φ * is 
obtained if :

bj ≤ bk implies that a φ (j) ≤ a φ (k).
• This is an optimal permutation mapping and not 

necessary a feasible tour.
• φ * might consist p distinct sub tours.
• A swap on i & j, belonging to different sub-tours, 

will cause them to cross each other and thus 
coalesce into one and increase the cost. 

• Hence we select the cheapest arc that connects 
two of the p sub-tours and so on.
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• Lemma. The collection of arcs that connect the 
undirected graph with the least cost contain only arcs 
that connect city j to  city j+1. 

Consider k > j+1 .
Cφ I(j,k) =  ║[ bj,bk ] ∩ [a φ(j) ,bφ(k) ] ║

≥ ∑i ║[ bi,bi+1 ] ∩ [a φ*(i) ,bφ*(i+1) ] ║
for i= j,……., k-1

Hence the cost of swapping two nonadjacent arrows is 
at least equal to the cost of swapping all arrows between 
them.

• Here no arrows are allowed to cross. But in order to 
connect two sub-tours this condition might not be valid.
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a1= 2

a2= 3

a3 = 8

b1= 1

b2= 4

b3 =6

a1= 2

a2= 3

b1= 1

b2= 4

b3 =6

a3 = 8

a1= 2

a2= 3

b1= 1

b2= 4

b3 =6

a3 = 8

Cφ I(1,2) =  ║[ 1,4 ] ∩ [ 2,3 ] ║ = 2(3-2) = 2
Cφ I(2,3) =  ║[4,6 ] ∩ [ 3,8 ] ║ = 2(6-4) = 4

I(1,2) then I(2,3)
Cφ I(1,2) =║[1,4 ] ∩ [ 2,3 ] ║= 2(3-2) = 2
Cφ I(2,3) =║[4,6 ] ∩ [ 2,8 ] ║= 2(6-4) = 4

I(2,3) then I(1,2) 
Cφ I(2,3) =║[4,6 ] ∩ [ 3,8 ] ║= 2(6-4) = 4
Cφ I(1,2) =║[1,4 ] ∩ [ 2,8 ] ║= 2(4-2) = 4

Here cost increased.
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A node is of Type 1 if    bj ≤ aφ(j) (arrow points up)
A node is of Type 2 if    bj > aφ(j) (arrow points down)

A swap is of Type 1 if    lower node is of Type 1
A swap is of Type 2 if    lower node is of Type 2

If   swaps I(j,  j+1) of Type 1 are performed in decreasing order
of the node indices,
followed by swaps of Type 2 in increasing order
of the node indices

then a single tour is obtained without changing any
Cφ* I(j,  j+1) involved in the swaps
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Algorithm + Example

bj 1 15 26 40 3 19 31
aj 7 16 22 18 4 45 34

Step 1. 
Arrange the bj in order of size and renumber the jobs so that

b1 ≤ b2 ≤ ... ≤ bn

Arrange the aj in order of size.

The permutation mapping φ* is defined by
φ* (j) = k, k being such that ak is the jth smallest of the a.

7 jobs
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jobs 1 2 3 4 5 6 7
bj 1 3 15 19 26 31 40
aj 7 4 16 45 22 34 18
aφ*(j) 4 7 16 18 22 34 45
φ*(j) 2 1 3 7 5 6 4

b4=19

b7=40

b6=31

b1=1
b2=3

b3=15

b5=26

a2=4

a1=7

a3=16
a7=18
a5=22

a6=34

a4=45
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Step 2. 
Form an undirected graph with n nodes and undirected arcs 
connecting the jth and φ*(j) nodes,  j=1,…n .

If the current graph has only one component then STOP ;
otherwise go to Step 3. 

3

2

7

1

6

4

5
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Step 3. 
Compute the swap costs Cφ *I(j, j+1)  for j=1,…,n

Cφ* I(j, j+1) = 2 max ( min (bj+1, aφ*(j+1)) - max (bj, aφ*(j)) ), 0 )

Cφ* I(1, 2) = 2 max ( (3-4), 0 ) = 0
Cφ* I(2, 3) = 2 max ( (15-7), 0 ) = 16
Cφ* I(3, 4) = 2 max ( (18-16), 0 ) = 4
Cφ* I(4, 5) = 2 max ( (22-19), 0 ) = 6
Cφ* I(5, 6) = 2 max ( (31-26), 0 ) = 10
Cφ* I(6, 7) = 2 max ( (40-34), 0 ) = 12



University at Buffalo IE661  Scheduling Theory 27

Step 4.
Select the smallest value Cφ* I(j, j+1) such that j is in one component
and j+1 in another. In case of a tie for smallest, choose any.

Insert the undirected arc Rj, j+1 into the graph. Repeat this step until
all the components in the undirected graph are connected.
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Step 5.
Divide the arcs added in Step 4 into two groups. 
Those Rj, j+1 for which bj ≤ aφ(j)  go in group 1, 
those for which bj > aφ(j)  go in group 2.

arcs bj aφ*(j) group
R2, 3 b2=3 a1=7 1
R3, 4 b3=15 a3=16 1
R4, 5 b4=19 a7=18 2
R5, 6 b5=26 a5=22 2

Step 6.
Find the largest index j1 such that Rj1

, j1+1 is in group 1. 
Find the second largest index, and so on, up to jl assuming there are
l elements in the group. 

Find the smallest index k1 such that Rk1
, k1+1 is in group 2. 

Find the second smallest index, and so on, up to km assuming there are
m elements in the group. 

j1 = 3,  j2 = 2, k1 = 4,  k2 = 5
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Step 7.
The optimal tour φ** is constructed by applying the following
sequence of swaps on the permutation φ*:

φ** = φ* I(j1, j1+1) I(j2, j2+1) … I(jl, jl+1)
I(k1, k1+1) I(k2, k2+1)  … I(km, km+1) 

φ** = φ* I(3,4) I(2,3) I(4,5) I(5,6)

Type 1 Type 2
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b4=19

b7=40

b6=31

b1=1
b2=3

b3=15

b5=26

a2=4

a1=7

a3=16
a7=18
a5=22

a6=34

a4=45

b4=19

b7=40

b6=31

b1=1
b2=3

b3=15

b5=26

a2=4

a1=7

a3=16
a7=18
a5=22

a6=34

a4=45

φ* I(3,4) φ* I(3,4) I(2,3)
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b4=19

b7=40

b6=31

b1=1
b2=3

b3=15

b5=26

a2=4

a1=7

a3=16
a7=18
a5=22

a6=34

a4=45

φ* I(3,4) I(2,3) I(4,5)

b4=19

b7=40

b6=31

b1=1
b2=3

b3=15

b5=26

a2=4

a1=7

a3=16
a7=18
a5=22

a6=34

a4=45

φ** = φ* I(3,4) I(2,3) I(4,5) I(5,6)
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The optimal tour is: 1 → 2 → 7 → 4 → 5 → 6 → 3 → 1

The cost of the tour is: 3  +    15  + 5  + 3    +  8   + 15 + 8     = 57 

φ** = φ* I(3,4) I(2,3) I(4,5) I(5,6)
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