More Advanced Single Machine Models

Total Earliness And Tardiness

- Non-regular performance measures $\sum \mathrm{E}_{\mathrm{j}}+\sum \mathrm{T}_{\mathrm{j}}$
- Early jobs (Set j_{1}) and Late jobs (Set j_{2}) are scheduled according to LPT and SPT.
- Minimizing Total Earliness And Tardiness with a loose due date.

Assume:

1. $\mathrm{d}_{\mathrm{j}}=\mathrm{d}$.
2. $\mathrm{p}_{1} \geq \mathrm{p}_{2} \geq \mathrm{p}_{3} \geq \ldots \ldots \ldots \ldots \ldots \geq \mathrm{p}_{\mathrm{n}}$

Step 1: Assign job 1 to set j_{1}. set $\mathrm{k}=2$
Step 2: Assign job k to set j_{1} and job $\mathrm{k}+1$ to set j_{2} or vice versa.
Step 3: If $\mathrm{k}+2 \leq \mathrm{n}-1$, set $\mathrm{k}=\mathrm{k}+2$ and go to step 2 .
If $\mathrm{k}+2=\mathrm{n}$, assign job n to either j_{1} or j_{2} and STOP.
If $\mathrm{k}+2=\mathrm{n}+1$, all jobs have been assigned; STOP.

- Flexible in assigning jobs to sets j_{1} and $\mathrm{j}_{2 .}$
- Assignment is such that the total processing times of set j_{1} is minimized.

Total Earliness And Tardiness (Cont.)

Assume:

1. $\mathrm{d}_{\mathrm{j}}=\mathrm{d}$.
2. $\mathrm{p}_{1} \geq \mathrm{p}_{2} \geq \mathrm{p}_{3} \geq \ldots \ldots \ldots \ldots \ldots \geq \mathrm{p}_{\mathrm{n}}$

- Minimizing Total Earliness And Tardiness with a tight due date.

Step 1: Set $\tau_{1}=\mathrm{d}$ and $\tau_{2}=\sum \mathrm{p}_{\mathrm{j}}-\mathrm{d}$
Set k=1
Step 2: If $\tau_{1}>\tau_{2}$, assign job k to the first unfilled position in the sequence and set $\tau_{1=} \tau_{1}-\mathrm{p}_{\mathrm{k}}$.
If $\tau_{1}<\tau_{2}$, assign job k to the last unfilled position in the sequence and set $\tau_{2=} \tau_{2}-\mathrm{p}_{\mathrm{k}}$.
Step 3: If $\mathrm{k}<\mathrm{n}$, set $\mathrm{k}=\mathrm{k}+1$ and go to step 2 . If $k=n$, STOP.

Example:

Jobs
1
2
3
4
5
6
$\begin{array}{lllllll}\mathrm{p}_{\mathrm{j}} & 106 & 100 & 96 & 22 & 20 & 2\end{array}$

τ_{1}	τ_{2}	Sequence
180	166	1 XXXXX
74	166	1 XXXX 2
74	66	$13 X \times \mathrm{X} 2$
-22	66	$13 \times \mathrm{X} 42$
-22	44	13×542
-22	12	136542

Total Earliness And Tardiness (Cont.)

- If we consider $\sum w^{\prime} E j+\sum w ’ T j$, where the weights are not necessary the same for the two performance measures but the due dates are same, the earlier algorithms can be generalized easily for solving this problem.
- Now if we consider $\sum \mathrm{w}_{\mathrm{j}}{ }^{\prime} E j+\sum \mathrm{w}_{\mathrm{j}}{ }^{\prime} \mathrm{Tj}$ and $\mathrm{d}_{\mathrm{j}}=\mathrm{d}$, then the weighted LPT and weighted SPT rules have to be used for sequencing.
- Now if we consider $\sum \mathrm{w}_{\mathrm{j}}{ }^{\prime} E j+\sum \mathrm{w}_{\mathrm{j}}{ }^{\prime} \mathrm{Tj}$ and $\mathrm{d}_{\mathrm{j}} \neq \mathrm{d}$, the problem is NP hard.
- Due to different due dates it might not be optimal to process the jobs without interruption. Idle times in between consecutive jobs might be necessary.
- Given a predetermined ordering of the jobs, the timings of the processing of the jobs and the idle times can be computed in polynomial times.
- Lemma 1: If $\mathrm{d}_{\mathrm{j}+1}-\mathrm{d}_{\mathrm{j}} \leq \mathrm{p}_{\mathrm{j}+1}$, then there is no idle time between jobs $_{\mathrm{j}}$ and $_{\mathrm{j}+1}$.
Three cases:

1. J is early.
2. J is completed exactly at its due date.
3. J is late.

- Lemma 2: In each cluster in a schedule, the early jobs proceed the tardy job. Moreover, if the jobs j and $\mathrm{j}+1$ are in the same cluster and are both early, then $E_{j} \geq E_{j+1}$. If the jobs are both late ,then $\mathrm{T}_{\mathrm{j}} \leq \mathrm{T}_{\mathrm{j}+1}$.
For a cluster;

$$
\mathrm{d}_{\mathrm{j}+1}-\mathrm{d}_{\mathrm{j}} \leq \mathrm{p}_{\mathrm{j}+1}
$$

Subtracting $\mathrm{t}+\mathrm{p}_{\mathrm{j}}$ from both sides, we get

$$
\mathrm{d}_{\mathrm{j}+1}-\mathrm{d}_{\mathrm{j}}-\mathrm{t}-\mathrm{p}_{\mathrm{j}} \leq \mathrm{p}_{\mathrm{j}+1}-\mathrm{t}-\mathrm{p}_{\mathrm{j}}
$$

Solving we get,

$$
d_{j}-C_{j} \geq d_{j+1}-C_{j+1}
$$

- The job sequence $1,2,3 \ldots . . .$. n can be decomposed into m clusters with each cluster representing a subsequence.
- We compute the optimal shift for each cluster.
- For a cluster with jobs $\mathrm{k}, \mathrm{k}+1, \ldots . ., \mathrm{l}$; let
$\Delta(j)=\sum w_{1}^{\prime}+\sum w^{\prime \prime}, \quad l=k$ to j
- A block is a sequence of clusters that are processed without interruption.
- Let $E(r)=E_{\mathrm{jr}}=\mathrm{d}_{\mathrm{jr}}-C_{\mathrm{jr}}$ where j_{r} is the last job in cluster σ_{r} that is early.
- Hence $E(r)=\min _{\mathrm{j}}\left(\mathrm{d}_{\mathrm{jr}}-\mathrm{C}_{\mathrm{jr}}\right)$; where $\mathrm{k} \leq \mathrm{j} \leq \mathrm{j}_{\mathrm{r}}$.
- Now let $\Delta(r)=\Delta j_{r}=\max \Delta(j)$; where $k \leq j \leq j_{r}$.
- If none of the jobs in the cluster is early, then $E(r)=\infty$ and $\Delta(r)=-\Sigma w^{\prime \prime}$,
- If $\mathrm{E}(\mathrm{r}) \geq 1$ for the last early job in every cluster of the block, a shift of the entire block by one unit time to the right decreases the total cost by $\sum \Delta(r)$ (the summation is over the block).

Optimizing timings given a predetermined sequence

- Algorithm:

Step1: Identify the clusters and compute $\Delta(r)$ and $E(r)$ for each cluster.
Step2: Find the smallest s s.t. $\sum \Delta(\mathrm{r}) \leq 0$.
Set the original C_{k} for each job of the first s cluster.
If $s=m$, then STOP; other wise go to step 3 .
If no such s exists, then go to step 4.
Step3: Remove the first s clusters from the list.
Go to step 2 to consider the reduced sets of cluster.
Step 4: Find minimum ($\mathrm{E}(1) \ldots . . \mathrm{E}(\mathrm{m})$).
Increase all C_{k} by minimum ($\mathrm{E}(1) \ldots \ldots \mathrm{E}(\mathrm{m})$).
Eliminate all early jobs that are no longer early.
Update $\mathrm{E}(\mathrm{r})$ and $\Delta(\mathrm{r})$. Go to step 2.

Optimizing Timings Given A Predetermined Sequence

Jobs	1	2	3	4	5	6	7
pj	3	2	7	3	6	2	8
dj	12	4	26	18	16	25	30
$\mathrm{w}_{\mathrm{j} 1}$	10	20	18	9	10	16	11
$\mathrm{w}_{\mathrm{j} 2}$	12	25	38	12	12	18	15

- $\sigma_{1}=1,2 \quad ; \sigma_{2}=3,4,5 ; \sigma_{3}=6,7$
- Completion times will be $3,5,12,15 \ldots \ldots$...
$\mathrm{E}(\mathrm{r})=\operatorname{Min}\left(\mathrm{d}_{\mathrm{j}}-\mathrm{c}_{\mathrm{j})}\right.$ and $\Delta(\mathrm{r})=\max \Delta_{\mathrm{j}}$

Cluster	1	2	3
$E(r)$	9	3	2
$\Delta(\mathrm{r})$	-15	15	1

Cluster	2	3
$E(r)$	1	Infinity
$\Delta(r)$	15	-33

The optimal completion times are:

$$
3,5,14,17,23,25,33
$$

Primary and Secondary Objectives

- $\alpha|\beta| \gamma_{1}\left(\right.$ Opt.), γ_{2}.
- Lemma: For the single machine problem with n jobs subject to the constraint that all due dates have to be met, there exists a schedule that minimizes $\sum C_{j}$ in which job k is scheduled last, if and only if 1. $\mathrm{d}_{\mathrm{k}} \geq \sum \mathrm{p}_{\mathrm{j}}$

2. $\mathrm{p}_{\mathrm{k}} \geq \mathrm{p}_{\mathrm{L}}$, for all L such that $\mathrm{d}_{\mathrm{L}} \geq \sum \mathrm{p}_{\mathrm{j}}$

- Minimizing total completion times with deadlines (backward algorithm).
- Algorithm:

Step 1: Set $\mathrm{k}=\mathrm{n}, \tau=\sum \mathrm{p}_{\mathrm{j}}, \mathrm{j}=\{1,2, \ldots \ldots, \mathrm{n}\}$
Step 2: Find k^{*} in j^{c} s.t. $d_{k^{*}} \geq \tau$ and $p_{k^{*}} \geq p_{L}$, for all jobs L in j^{c} s.t. $d_{L} \geq \tau$ Put job k^{*} in position k of the sequence.
Step 3: Decrease k by 1 ; decrease τ by $\mathrm{p}_{\mathrm{k}^{*}}$. Delete job k^{*} from $\mathrm{j}^{\text {c. }}$ Step 4: If $\mathrm{k} \geq 1$ go to Step 2, otherwise STOP.

- Pareto-optimal schedule: is the one in which it is not possible to decrease the value of one objective without increasing the value of the other.
$1|\beta| \theta_{1} \gamma_{1}+\theta_{2} \gamma_{2}$; where θ_{1}, θ_{2} are the weights of the two objectives.

Trade-off between total completion time and maximum lateness

SEQUENCE-DEPENDENT SETUP PROBLEMS

Sequence-Dependent Setup Problems

1. An algorithm which gives an optimal schedule with the minimum makespan with sequence-dependent setup times $1\left|S_{j k}\right| C_{\max }$

Single machine: $r_{j}=0$, no sequence dependent setup times $\Rightarrow C_{\max }=\sum_{j} p_{j}$
$1\left|S_{j k}\right| C_{\max }$

NP hard

- Set-up times have a special structure and hence an efficient solution procedure is possible.
- Consider a structure where two parameters associated with job j: $\quad a_{j}$ and b_{j}

1. At the completion of the job the machine state is b_{j}
2. To start the job the machine must be in state a_{j}

- $s_{j k}=\left|a_{k}-b_{j}\right|$ is the total setup time necessary to bring the machine from state b_{j} to a_{k} state.
- Machine speed.
- Travelling Salesman Problem
with $n+1$ cities $j_{0}, j_{1}, \ldots, j_{n}$. The additional city C_{0} has parameters $\mathrm{a}_{\mathrm{o}} \& \mathrm{~b}_{\mathrm{o}}$.
$\mathrm{k}=\phi(\mathrm{j})$ is the relation that maps each element of $\{0,1,2, \ldots, \mathrm{n}\}$ onto a unique element of $\{0,1,2, \ldots, n\}$.Traveling salesman is leaving city j for city k .

$$
\begin{gathered}
\{0,1,2,3\} \rightarrow \\
\hdashline(0) 3,1,0\} \\
(2)
\end{gathered} \begin{aligned}
& \phi(0)=2 \\
& \phi(1)=3 \\
& \phi(2)=1 \\
& \phi(3)=0
\end{aligned}
$$

$\{0,1,2,3\} \rightarrow\{2,1,3,0\}$

Swap $I(j, k)$ applied to a permutation ϕ produces another permutation ϕ ' by affecting only the assignments of j and k and leaving the others unchanged.

$$
\begin{aligned}
& \phi^{\prime}(k)=\phi(j) \\
& \phi^{\prime}(j)=\phi(k) \\
& \phi^{\prime}(l)=\phi(l), \quad l \neq j, k
\end{aligned}
$$

change in cost due to swap $I(j, k)$

Lemma. If the swap causes two arrows that did nor cross earlier

$C \phi I(j, k)=\left\|\left[\mathrm{b}_{\mathrm{j}}, \mathrm{b}_{\mathrm{k}}\right] \cap\left[\mathrm{a}_{\phi(\mathrm{j})}, \mathrm{b}_{\phi(\mathrm{k})}\right]\right\|$.
Here,

$$
\|[a, b]\|=\begin{array}{ll}
2(b-a) & \text { if } b \geq a \\
2(a-b) & \text { if } b<a
\end{array}
$$

- Lemma. An optimal permutation mapping ϕ^{*} is obtained if :
$\mathrm{bj} \leq \mathrm{bk}$ implies that $a \phi(j) \leq a \phi(k)$.
- This is an optimal permutation mapping and not necessary a feasible tour.
- ϕ^{*} might consist p distinct sub tours.
- A swap on i \& j, belonging to different sub-tours, will cause them to cross each other and thus coalesce into one and increase the cost.
- Hence we select the cheapest arc that connects two of the p sub-tours and so on.
- Lemma. The collection of arcs that connect the undirected graph with the least cost contain only arcs that connect city j to city $\mathrm{j}+1$.
Consider $\mathrm{k}>\mathrm{j}+1$.
$C \phi I(j, k)=\left\|\left[\mathrm{b}_{\mathrm{j}}, \mathrm{b}_{\mathrm{k}}\right] \cap\left[\mathrm{a}_{\phi(\mathrm{j})}, \mathrm{b}_{\phi(\mathrm{k})}\right]\right\|$

$$
\begin{gathered}
\geq \sum_{i}\left\|\left[\mathrm{~b}_{\mathrm{i}}, \mathrm{~b}_{\mathrm{i}+1}\right] \cap\left[\mathrm{a}_{\phi^{*}(\mathrm{i})}, \mathrm{b}_{\phi^{*}(\mathrm{i}+1)}\right]\right\| \\
\text { for } \mathrm{i}=\mathrm{j}, \ldots \ldots, \mathrm{k}-1
\end{gathered}
$$

Hence the cost of swapping two nonadjacent arrows is at least equal to the cost of swapping all arrows between them.

- Here no arrows are allowed to cross. But in order to connect two sub-tours this condition might not be valid.

$\mathrm{I}(1,2)$ then $\mathrm{I}(2,3)$
$\mathrm{C} \phi \mathrm{I}(1,2)=\|[1,4] \cap[2,3]\|=2(3-2)=2$
$\mathrm{C} \phi \mathrm{I}(2,3)=\|[4,6] \cap[2,8]\|=2(6-4)=4$

$$
\begin{aligned}
& \mathrm{C}_{\phi} \mathrm{I}(1,2)=\|[1,4] \cap[2,3]\|=2(3-2)=2 \\
& \mathrm{C}_{\phi} \mathrm{I}(2,3)=\|[4,6] \cap[3,8]\|=2(6-4)=4
\end{aligned}
$$

$\mathrm{I}(2,3)$ then $\mathrm{I}(1,2)$
$\mathrm{C} \phi \mathrm{I}(2,3)=\|[4,6] \cap[3,8]\|=2(6-4)=4$
$\mathrm{C} \phi \mathrm{I}(1,2)=\|[1,4] \cap[2,8]\|=2(4-2)=4$
Here cost increased.
$\begin{array}{llll}\text { A node is of Type 1 } & \text { if } & b_{j} \leq a_{\phi(j)} & \text { (arrow points up) } \\ \text { A node is of Type 2 } & \text { if } & b_{j}>a_{\phi(j)} & \text { (arrow points down) }\end{array}$
A swap is of Type 1 if lower node is of Type 1
A swap is of Type 2 if lower node is of Type 2

If swaps $I(j, j+1)$ of Type 1 are performed in decreasing order of the node indices, followed by swaps of Type 2 in increasing order of the node indices
then a single tour is obtained without changing any $C_{\phi^{*}} I(j, j+1)$ involved in the swaps

Algorithm + Example

7 jobs

b_{j}	1	15	26	40	3	19	31
a_{j}	7	16	22	18	4	45	34

Step 1.

Arrange the b_{j} in order of size and renumber the jobs so that

$$
b_{1} \leq b_{2} \leq \ldots \leq b_{n}
$$

Arrange the a_{j} in order of size.
The permutation mapping ϕ^{*} is defined by
$\phi^{*}(j)=k, k$ being such that a_{k} is the j th smallest of the a.

jobs	1	2	3	4	5	6	7
b_{j}	1	3	15	19	26	31	40
a_{j}	7	4	16	45	22	34	18
$a_{\phi^{*}}(j)$	4	7	16	18	22	34	45
$\phi^{*}(j)$	2	1	3	7	5	6	4

Step 2.

Form an undirected graph with n nodes and undirected arcs connecting the j th and $\phi^{*}(j)$ nodes, $j=1, \ldots n$.
If the current graph has only one component then STOP ; otherwise go to Step 3 .

Step 3.

Compute the swap costs $C_{\phi} * I(j, j+1)$ for $j=1, \ldots, n$

$$
\left.C_{\phi^{*}} I(j, j+1)=2 \max \left(\min \left(b_{j+1}, a_{\phi^{*}(j+l)}\right)-\max \left(b_{j}, a_{\phi^{*}(j)}\right)\right), 0\right)
$$

$$
\begin{aligned}
& C_{\phi^{*}} I(1,2)=2 \max ((3-4), 0)=0 \\
& C_{\phi^{*}} I(2,3)=2 \max ((15-7), 0)=16 \\
& C_{\phi^{*}} I(3,4)=2 \max ((18-16), 0)=4 \\
& C_{\phi^{*}} I(4,5)=2 \max ((22-19), 0)=6 \\
& C_{\phi^{*}} I(5,0)=2 \max ((31-26), 0)=10 \\
& C_{\phi^{*}} I(6,7)=2 \max ((40-34), 0)=12
\end{aligned}
$$

Step 4.

Select the smallest value $C_{\phi^{*}} I(j, j+1)$ such that j is in one component and $j+1$ in another. In case of a tie for smallest, choose any.

Insert the undirected arc $R_{j, j+l}$ into the graph. Repeat this step until all the components in the undirected graph are connected.

Step 5.

Divide the arcs added in Step 4 into two groups.
Those $R_{j, j+1}$ for which $b_{j} \leq a_{\phi(f)}$ go in group 1, those for which $b_{j}>a_{\phi(j)}$ go in group 2.

arcs	b_{j}	$a_{\left.\phi^{*}()\right)}$	group
$R_{2,3}$	$b_{2}=3$	$a_{1}=7$	1
$R_{3,4}$	$b_{3}=15$	$a_{3}=16$	1
$R_{4,5}$	$b_{4}=19$	$a_{7}=18$	2
$R_{5,6}$	$b_{5}=26$	$a_{5}=22$	2

Step 6.

Find the largest index j_{l} such that $R_{j_{I}, j_{l}+1}$ is in group 1 .
Find the second largest index, and so on, up to j_{l} assuming there are l elements in the group.
Find the smallest index k_{l} such that $R_{k_{l}}, k_{l_{l}+1}$ is in group 2.
Find the second smallest index, and so on, up to k_{m} assuming there are m elements in the group.

$$
\begin{aligned}
& \qquad j_{1}=3, j_{2}=2, \quad k_{1}=4, \quad k_{2}=5 \\
& \text { University at Buffalo }
\end{aligned}
$$

Step 7.

The optimal tour $\phi^{* *}$ is constructed by applying the following sequence of swaps on the permutation ϕ^{*} :

$$
\begin{array}{rl}
\phi^{* *}=\phi^{*} & I\left(j_{1}, j_{l}+1\right) I\left(j_{2}, j_{2}+1\right) \ldots I\left(j_{b} j_{l}+1\right) \\
& I\left(k_{1}, k_{1}+1\right) I\left(k_{2}, k_{2}+1\right) \ldots I\left(k_{m}, k_{m}+1\right)
\end{array}
$$

$$
\phi^{* *}=\phi^{*} I(3,4) I(2,3) I(4,5) I(5,0)
$$

$$
\text { Type } 1 \text { Type } 2
$$

$\phi^{*} I(3,4)$

$$
\phi^{*} I(3,4) I(2,3)
$$

$$
\phi^{*} I(3,4) I(2,3) I(4,5)
$$

$$
\phi^{* *}=\phi^{*} I(3,4) I(2,3) I(4,5) I(5,6)
$$

an

The optimal tour is: $\quad 1 \rightarrow 2 \rightarrow 7 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 3 \rightarrow 1$

The cost of the tour is: $3+15+5+3+8+15+8=57$

