Decentralized Swarming by Robot Collectives

Research Goal:
Develop a framework for decentralized swarming by robot collectives using artificial potential fields.

Our Approach:
- Takes advantage of the **Artificial Potential Field Approach** for obstacle avoidance and with **Augmented Lagrangian Constraint Satisfaction** to ensure formation maintenance.

Challenges:
- **Decentralization** with minimal centralized coordination is critical from the viewpoint of scalability.
- **Formation maintenance** at every stage of the motion is crucial for payload transport.

Motivation:
- Task may be inherently too complex for a single robot to accomplish.
- Improved performance can be achieved using a group of robots.
- Developing simple small-sized robots can be cheaper, more flexible and fault tolerant.

Application Arenas:
- Military Swarm Robots
- Oceanographic Sampling
- Space Exploration
- Medical Nanobots
- Search & Recovery
- Cooperative Robots
- Buildings Surveillance
- Entertainment Industry

Methods:
VisualNastran Simulation:
- Test and evaluate swarming strategies using Visual Nastran simulation environment.
- Nonlinear, non-smooth effects, including slip and friction can be modeled and simulated.

Hardware-in-the-loop Testing:
- Advances in networking and miniaturization of electro-mechanical devices allow the deployment of such systems.
- iRobot’s Create mobile robots and MICA Motes allow creation of an ad-hoc networked multi-robot testbed for experimental validation.

Results:
- Study: 10 Robots and an Obstacle
- Study: 3 Robots and an Obstacle
- Study: Changing Formation
- Study: Expanding Formation

IDEA:
By modeling workspace and obstacles as a potential field, the motion planning problem reduces to letting the robot follow the gradient of the potential field to reach the destination.

Dynamics Formulation:
\[\mathbf{q} = \mathbf{v}, \quad \mathbf{M}(\mathbf{q})\dot{\mathbf{v}} = \mathbf{f}(\mathbf{q}, \mathbf{v}, \mathbf{u}) - \mathbf{J}(\mathbf{q})^\top \lambda, \quad \mathbf{C}(\mathbf{q}, \mathbf{r}) = 0 \]

Solved using 3 methods:
I: Direct Lagrange Multiplier Elimination Approach
II: Penalty Formulation Approach
III: Constraints Manifold Projection Based Approach