Physical quantities in molecular simulation

In this sections we review the types of physical quantities encountered in a molecular simulation.

State variables

Molecular simulation describes physical systems, particularly ones that are usually examined in the context of chemical thermodynamics.  Naturally, the quantities encountered in thermodynamics are relevant to molecular simulation.  This includes the temperature and internal energy, pressure and volume, and moles and chemical potential; additional thermodynamic state variables arise in mixtures, and other cases such as when surface tension is relevant.  

It is important to pay attention to the pairing of the variables as just given.  Here they are again

Extensive variable
Conjugate field

Internal energy, E
Temperature, T

Volume, V
Pressure, P

Number of molecules, N
Chemical potential, 

Note that each pair comprises an extensive variable, one that scales linearly with the system size, and a conjugate field variable, which is intensive and thus size-independent.  The full specification of the thermodynamic state requires that one of each pair be specified.  The value of the each of the resulting dependent variables is then given as some sort of an average over all the microscopic configurations of the molecules of the system.  One of the aims of molecular simulation is to perform this averaging and report, for example, how the internal energy depends on temperature, pressure and number of molecules for a system of interest.

Different molecular simulation algorithms are required for different choices of the dependent and independent state variables.  Common choices for the independent variables are EVN (the microcanonical ensemble), TVN (canonical ensemble), TPN (isothermal-isobaric ensemble) and TV (grand-canonical ensemble).  Other choices are possible, but note that there must always be at least one extensive variable in the set; otherwise there is nothing to specify the absolute size of the system, and the state is not well defined (violation of the Gibbs phase rule).

Configuration variables

Molecular simulation of course deals with the arrangements and rearrangements of molecules, so variables specifying the molecular configurations play a central role.  The “configuration” is given by all those variables needed to fully specify the microscopic state of the set of molecules and their atoms.  This includes primarily the positions and momenta of all atoms.  We use the symbol r to represent the position vector, and p the momentum vector.  In cartesian coordinates, the momentum is simply related to the velocity v through p = mv, where m is the mass.  Molecular position and momentum vectors are sometimes used, and these normally apply to the center of mass of the molecule.  Orientation variables (position and momentum) may arise naturally in the treatment of molecules.  Sometimes it is more convenient to specify the configuration in terms of molecular position and momentum, with atomic coordinates given in a molecule-based frame, such that atom positions are specified in terms of bond angles and bond distances.  We will postpone discussion of these complicating features until later, when we examine more complex and realistic molecular models.

If an extensive variable is not included in the state variables as discussed above, it becomes a configuration variable.  So in an isobaric simulation (in which pressure is imposed instead of the volume), the volume will fluctuate as part of the simulation process, and the full microscopic state has the instantaneous volume as one if its variables.  Likewise, in the grand-canonical ensemble, the number of molecules is a fluctuating configuration variable.  Configuration variables of this type are averaged over many configurations to yield the corresponding thermodynamic state variable (e.g., in isothermal systems the thermodynamic energy is an average of configurational energy).

Special mention should be made of time, which plays a central role in molecular dynamics but normally has no significance in Monte Carlo simulations.  

Properties

Other important physical quantities can be computed given a specific molecular configuration.  In addition to the energy, there are forces and torques that are needed to advance a molecular dynamics simulation.  The virial is routinely computed to measure the pressure, and the stress tensor may be needed to evaluate rheological properties.  Indeed, it can be quite enlightening to learn and implement the formulas used to compute common but nontrivial physical properties (e.g., diffusivity, viscosity, dielectric constant) from quantities that are averaged over molecular configurations.  Other properties of interest characterize uniquely molecular behaviors.  An example is the radial distribution function, which quantifies the molecular structure.

All of the foregoing properties are special in that they have “instantaneous” values that can be associated with each configuration.  This can be contrasted with the “statistical” properties, such as the entropy, free energy and things properly defined in terms of them (e.g. elastic constants).  These properties do not have values defined for an individual configuration.  Instead these properties depend on features of the entire ensemble of configurations.  For example, the entropy is related to the number of distinct configurations that can be formed consistent with particular values of E, V, and N.  Thus there is no “entropy of a configuration”, but there is an entropy of an ensemble of configurations.

Model parameters

Another class of physical quantities arises with the specification of the molecular model.  Classical models of molecular interactions are defined in terms of simple functions.  These functions take as inputs the atomic distances and from them output a potential energy, so at a minimum (with some exceptions) they introduce a characteristic length and a characteristic energy in their definition.  As an aside we note that the “size” (and, more obviously, the “energy”) of a model molecule is not a well-defined quantity, and that it is only through interaction with another molecule that the “size” manifests itself.  Consequently the characteristic size and energy are more properly associated with the pair interaction rather than with the molecule itself.  

More complex model potentials usually introduce more than one size and energy parameter. These may include force constants for vibrations, bends, and torsional motions, bond lengths, asymmetric potential parameters, and so on.  These models also may be constructed in part using Coulombic point charges or point multipoles.

Dimensions, Units, and Scaling

The table in Illustration 1 shows typical values of commonly used molecular variables. Because simulations involve on the order 103 molecules instead of 1023, values for the mass, energy, and volume are very small numbers when expressed in the common macroscopic units (meters, Joules, grams, etc). Working with such small numbers can be inconvenient, but the remedy is obvious and simple:  use different units, ones more appropriate to molecular-scale magnitudes. Thus we can work with Angstroms, Daltons, ergs, and so on.  An alternative approach is to work with dimensionless variables, in which all physical properties are scaled using appropriate combinations of a characteristic size, energy and/or mass (these three are sufficient to de-dimensionalize most properties that arise in molecular simulation); these values usually come from an appropriate atomic mass and parameters of a model for the pair potential.  There are two advantages to working with dimensionless groups.  First, their use ensures that all unit conversions are handled automatically. For example, in isobaric simulations it is necessary to evaluate the group PV/kT.  If dimensionless quantities are used (P* = P3/, V* = V/3, T* = kT/, where  and  are a characteristic energy and size, respectively), then the group is correctly given by P*V*/T*.  However, if pressure is given in bar, volume is in cubic Angstroms, and T is in Kelvins, then one must pay heed to use an appropriate value for Boltzmann’s constant to ensure that the units cancel properly.  Such problems arise in many places, and they make programming tiresome and error-prone.  If all physical quantities are scaled by the same characteristic values these problem vanish.

Note that the benefits gained from using dimensionless quantities are equally well realized if one takes care to use a consistent set of units within the simulation.  Agree that all properties within the simulation will be expressed in, for example, picoseconds, Angstroms, and Daltons, and that temperature is always actually kT, etc., and the units will again take care of themselves.  In fact, this is exactly what is done when one scales by  and ; one is defining a new system of units in which these parameters are unity. A dimensionless length L/ = 5 is perfectly well described as “five sigmas”, just as one speaks of L = 5Å as “5 Angstroms” and writes just as well as “L/Å = 5”.   A dimensionless pressure P* = 3 (as defined above) is  “three epsilons per cubic sigma”, although no one speaks of it this way.  In this view, insertion of values for  and  to recover conventional units is no different than applying a conversion from (say) Angstroms to recover meters. 

Regardless of the choice of an internal system, the units will not have a desired or familiar form for every property, in which case a conversion can be performed upon input or output to express the property in a preferred unit.  It is a good idea to keep this conversion process isolated to the input/output segments of the program, and to work with a self-consistent units at all other places.  One exception to this rule arises.  It can be  computationally expedient to work with a coordinate system that ranges over a unit length, so that all atom coordinates lie between 0 and 1 (or, alternatively, -1/2 and + 1/2). Then special care must be taken to rescale distances and velocities so that the values are consistent with the simulation units. We discuss this choice further in the section on periodic boundary conditions.

For very simple systems, molecular modelers often prefer to keep the simulation inputs and outputs in scaled form.  This merely postpones the conversion to more traditional units.  This might be done because when the simulation is performed there are no physical values for  and  in mind (no real physical system is being modeled).  Sometimes there is no intention of ever converting the values to “real” units, because one is interested only in qualitative behaviors of the model, or in comparing the simulation to predictions from a statistical mechanical theory applied to the same model. 

Perhaps it is worthwhile to consider an example demonstrating conversion to and from scaled units.  The LJ equation of state (which describes how the pressure depends on temperature and density for the LJ model fluid) is very well known from molecular simulation studies (ref).  One can find extensive data and accurate empirical models in the literature.  All of these data are presented in sigma-epsilon units (i.e., units in which the LJ size and energy parameters are 1).  Further, it is not unusual to find works in which the LJ equation of state is compared to experimental data for a real system <cite>Mourits, 1979a</cite>.  The aim of these studies is to find values (expressed in real units) of the LJ parameters such that the LJ model data coincides with the experimental data as much as possible.  Thus one might arrive for example at the values of  = 3.790Å and /k = 142.1 K as “best” values for methane <cite>Mourits</cite>.  With these values in hand, one can go on to estimate the pressure of methane at 0.0183 mol/cm3 and 167 K.  The first step is to put these values in dimensionless form using the methane LJ parameters
* = 3 = (0.0183 mol/cm3)(3.790 ( 10-8 cm)3(6.022 ( 1023 molecules/mole) = 0.6

T* = T/(/k) = (167 K)/(142.1 K) = 1.174
The LJ model at these state conditions has a dimensionless pressure P* = 0.146.  For the methane  and  values, this corresponds to a “real” pressure of 

P = 0.146 (142.1 K)(13.8 MPa-Å3/molecule )/(3.790Å)3 = 5.3 MPa 

or 53 bars.
Let us finish this section by highlighting a peculiar feature of the hard-sphere model. In the HS model the potential is infinite for atoms separated by less than one diameter , and is zero otherwise.  
The HS diameter introduces a natural length scale for the model.  However, the model defines no natural energy scale, since zero and infinity are not suitable characteristic values.  In fact, in hard-sphere systems the temperature provides the only suitable scale for the energy.  Consequently, the value of dimensionless groups (such as P3/kT) cannot depend on the temperature; the only independent, dimensionless state variable that can be constructed is the density 3. The hard-sphere models has important simplifying features such as this, and yet it captures an essential feature (harsh repulsion at short distances) of the behavior of real atoms.  This is a good balance of simplicity and realism, and thus the hard-sphere model—examined through the application of theory and molecular simulation—has played a very important role in the development of our understanding of real fluids and solids.
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