Monte Carlo Integration: Review

- **Stochastic evaluation of integrals**
 - *sum integrand evaluated at randomly generated points*
 - *most appropriate for high-dimensional integrals*
 - error vanishes more quickly \((1/n^{1/2})\)
 - better suited for complex-shaped domains of integration

- **Monte Carlo simulation**
 - *Monte Carlo integration for ensemble averages*
 \[
 \langle U \rangle = \frac{1}{N!} \int d^N r U(r^N) \frac{e^{-\beta U(r^N)}}{Z_N}
 \]

- **Importance Sampling**
 - *emphasizes sampling in domain where integrand is largest*
 - it is easy to generate points according to a simple distribution
 - *stat mech \(\pi\) distributions are too complex for direct sampling*
 - need an approach to generate random multidimensional points according to a complex probability distribution
 - *then integral is given by* \(I \approx \langle \frac{f}{\pi} \rangle_\pi \)
Markov Processes

- **Stochastic process**
 - movement through a series of well-defined states in a way that involves some element of randomness
 - for our purposes, “states” are microstates in the governing ensemble

- **Markov process**
 - stochastic process that has no memory
 - selection of next state depends only on current state, and not on prior states
 - process is fully defined by a set of transition probabilities π_{ij}
 - $\pi_{ij} =$ probability of selecting state j next, given that presently in state i.
 - Transition-probability matrix Π collects all π_{ij}
Transition-Probability Matrix

Example

- **system with three states**

\[
\Pi = \begin{pmatrix}
\pi_{11} & \pi_{12} & \pi_{13} \\
\pi_{21} & \pi_{22} & \pi_{23} \\
\pi_{31} & \pi_{32} & \pi_{33}
\end{pmatrix} = \begin{pmatrix}
0.1 & 0.5 & 0.4 \\
0.9 & 0.1 & 0.0 \\
0.3 & 0.3 & 0.4
\end{pmatrix}
\]

- If in state 1, will stay in state 1 with probability 0.1
- If in state 1, will move to state 3 with probability 0.4
- Never go to state 3 from state 2

Requirements of transition-probability matrix

- *all probabilities non-negative, and no greater than unity*
- *sum of each row is unity*
- *probability of staying in present state may be non-zero*
Distribution of State Occupancies

- Consider process of repeatedly moving from one state to the next, choosing each subsequent state according to \(\Pi \):
 - \(1 \rightarrow 2 \rightarrow 2 \rightarrow 1 \rightarrow 3 \rightarrow 2 \rightarrow 2 \rightarrow 3 \rightarrow 3 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow etc. \)

- Histogram the occupancy number for each state:
 - \(n_1 = 3 \) \(\pi_1 = 0.33 \)
 - \(n_2 = 5 \) \(\pi_2 = 0.42 \)
 - \(n_3 = 4 \) \(\pi_3 = 0.25 \)

- After very many steps, a limiting distribution emerges.

- Click here for an applet that demonstrates a Markov process and its approach to a limiting distribution.
The Limiting Distribution 1.

Consider the product of Π with itself

$$\Pi^2 \equiv \begin{pmatrix} \pi_{11} & \pi_{12} & \pi_{13} \\ \pi_{21} & \pi_{22} & \pi_{23} \\ \pi_{31} & \pi_{32} & \pi_{33} \end{pmatrix} \times \begin{pmatrix} \pi_{11} & \pi_{12} & \pi_{13} \\ \pi_{21} & \pi_{22} & \pi_{23} \\ \pi_{31} & \pi_{32} & \pi_{33} \end{pmatrix}$$

All ways of going from state 1 to state 2 in two steps

Probability of going from state 3 to state 2 in two steps

In general Π^n is the n-step transition probability matrix

- *probabilities of going from state i to j in exactly n steps*

$$\Pi^n \equiv \begin{pmatrix} \pi_{11}^{(n)} & \pi_{12}^{(n)} & \pi_{13}^{(n)} \\ \pi_{21}^{(n)} & \pi_{22}^{(n)} & \pi_{23}^{(n)} \\ \pi_{31}^{(n)} & \pi_{32}^{(n)} & \pi_{33}^{(n)} \end{pmatrix}$$

defines $\pi_{ij}^{(n)}$
The Limiting Distribution 2.

- Define \(\pi_i^{(0)} \) as a unit state vector
 \[
 \pi_1^{(0)} = (1 \ 0 \ 0) \quad \pi_2^{(0)} = (0 \ 1 \ 0) \quad \pi_3^{(0)} = (0 \ 0 \ 1)
 \]
- Then \(\pi_i^{(n)} \equiv \pi_i^{(0)} \Pi^n \) is a vector of probabilities for ending at each state after \(n \) steps if beginning at state \(i \)
 \[
 \pi_1^{(n)} = \pi_1^{(0)} \Pi^n \equiv (1 \ 0 \ 0) \begin{pmatrix}
 \pi_{11}^{(n)} & \pi_{12}^{(n)} & \pi_{13}^{(n)} \\
 \pi_{21}^{(n)} & \pi_{22}^{(n)} & \pi_{23}^{(n)} \\
 \pi_{31}^{(n)} & \pi_{32}^{(n)} & \pi_{33}^{(n)}
 \end{pmatrix} = \begin{pmatrix}
 \pi_{11}^{(n)} & \pi_{12}^{(n)} & \pi_{13}^{(n)} \\
 \pi_{21}^{(n)} & \pi_{22}^{(n)} & \pi_{23}^{(n)} \\
 \pi_{31}^{(n)} & \pi_{32}^{(n)} & \pi_{33}^{(n)}
 \end{pmatrix}
 \]
- The limiting distribution corresponds to \(n \to \infty \)
 - independent of initial state \(\pi_1^{(\infty)} = \pi_2^{(\infty)} = \pi_3^{(\infty)} \equiv \pi \)
The Limiting Distribution 3.

○ Stationary property of π

$$\pi = \lim_{n \to \infty} \left[\pi_i^{(0)} \Pi^n \right]$$

$$= \left(\lim_{n \to \infty} \left[\pi_i^{(0)} \Pi^{n-1} \right] \right) \Pi$$

$$= \pi \Pi$$

○ π is a left eigenvector of Π with unit eigenvalue

• such an eigenvector is guaranteed to exist for matrices with rows that each sum to unity

○ Equation for elements of limiting distribution π

$$\pi_i = \sum_j \pi_j \pi_{ji}$$

E.g. $\Pi = \begin{pmatrix} 0.1 & 0.5 & 0.4 \\ 0.9 & 0.1 & 0.0 \\ 0.3 & 0.3 & 0.4 \end{pmatrix}$

$\pi_1 = 0.1\pi_1 + 0.9\pi_2 + 0.3\pi_3$
$\pi_2 = 0.5\pi_1 + 0.1\pi_2 + 0.3\pi_3$
$\pi_3 = 0.4\pi_1 + 0.0\pi_2 + 0.4\pi_3$

$\pi_1 + \pi_2 + \pi_3 = \pi_1 + \pi_2 + \pi_3$

not independent
Eigenvector equation for limiting distribution

- \(\pi_i = \sum_j \pi_j \pi_{ji} \)

A sufficient (but not necessary) condition for solution is

- \(\pi_i \pi_{ij} = \pi_j \pi_{ji} \)
- “detailed balance” or “microscopic reversibility”

Thus

- \(\pi_i = \sum_j \pi_j \pi_{ji} \)
- \(= \sum_j \pi_i \pi_{ij} \)
- \(= \pi_i \sum_j \pi_{ij} = \pi_i \)

For a given \(\Pi \), it is not always possible to satisfy detailed balance; e.g. for this \(\Pi \)

\[
\begin{pmatrix}
0.1 & 0.5 & 0.4 \\
0.9 & 0.1 & 0.0 \\
0.3 & 0.3 & 0.4 \\
\end{pmatrix}
\]

\(\pi_3 \pi_{32} \neq \pi_2 \pi_{23} \) zero
Deriving Transition Probabilities

- Turn problem around...
- …given a desired π, what transition probabilities will yield this as a limiting distribution?
- *Construct transition probabilities* to satisfy detailed balance
- Many choices are possible
 - *e.g.* $\pi = (0.25 \ 0.5 \ 0.25)$
 - *try them out*

\[
\begin{pmatrix}
0.97 & 0.02 & 0.01 \\
0.01 & 0.98 & 0.01 \\
0.01 & 0.02 & 0.97 \\
\end{pmatrix}
\]

Least efficient

\[
\begin{pmatrix}
0.42 & 0.33 & 0.25 \\
0.17 & 0.66 & 0.17 \\
0.25 & 0.33 & 0.42 \\
\end{pmatrix}
\]

Most efficient

\[
\begin{pmatrix}
0.0 & 0.5 & 0.5 \\
0.25 & 0.5 & 0.25 \\
0.5 & 0.5 & 0.0 \\
\end{pmatrix}
\]

Barker

Metropolis
Metropolis Algorithm 1.

- Prescribes transition probabilities to satisfy detailed balance, given desired limiting distribution

- Recipe:
 From a state i...

 - with probability τ_{ij}, choose a trial state j for the move (note: $\tau_{ij} = \tau_{ji}$)
 - If $\pi_j > \pi_i$, accept j as the new state
 - otherwise, accept state j with probability π_j/π_i
 generate a random number R on $(0,1)$; accept if $R < \pi_j/\pi_i$
 - if not accepting j as the new state, take the present state as the next one in the Markov chain ($\pi_{ii} \neq 0$)

Metropolis Algorithm 2.

- What are the transition probabilities for this algorithm?
 - *Without loss of generality, define* \(i \) *as the state of greater probability* \(\pi_i > \pi_j \)
 \[
 \pi_{ij} = \tau_{ij} \times \frac{\pi_j}{\pi_i}
 \]
 \[
 \pi_{ji} = \tau_{ji}
 \]
 \[
 \pi_{ii} = 1 - \sum_{j \neq i} \pi_{ij}
 \]

- Do they obey detailed balance?
 \[
 \pi_i \pi_{ij} = \pi_j \pi_{ji}
 \]
 \[
 \frac{\pi_j}{\pi_i} \frac{\pi_j}{\pi_i} = \tau_{ji} \tau_{ji}
 \]
 \[
 \tau_{ij} = \tau_{ji}
 \]

- Yes, as long as the *underlying matrix* \(T \) of the Markov chain is symmetric
 - *this can be violated, but acceptance probabilities must be modified*
Markov Chains and Importance Sampling 1.

- Importance sampling specifies the desired limiting distribution
- We can use a Markov chain to generate quadrature points according to this distribution
- Example

\[
\left\langle r^2 \right\rangle = \frac{\int_{-0.5}^{+0.5} dx \int_{-0.5}^{+0.5} dy (x^2 + y^2) s(x, y)}{\int_{-0.5}^{+0.5} dx \int_{-0.5}^{+0.5} dy s(x, y)} = \frac{\left\langle r^2 s \right\rangle}{\left\langle s \right\rangle}
\]

\[s = \begin{cases}
1 & \text{inside R} \\
0 & \text{outside R}
\end{cases}
\]

\[q = \text{normalization constant}
\]

- **Method 1:** let \(\pi_1(x, y) = s(x, y) / q_1 \)
- then

\[
\left\langle \frac{r^2 s}{\pi_1} \right\rangle = \frac{\left\langle q_1 r^2 \right\rangle}{\pi_1} = \frac{q_1 \left\langle r^2 \right\rangle}{\pi_1} = \left\langle \frac{r^2}{\pi_1} \right\rangle
\]

Simply sum \(r^2 \) with points given by Metropolis sampling
Example (cont’d)

Method 2: let \(\pi_2(x, y) = r^2 s / q_2 \)

then

\[
\left\langle r^2 \right\rangle = \frac{\left\langle r^2 s \right\rangle_{\pi_2}}{\pi_2} = \frac{\left\langle q_2 \right\rangle_{\pi_2}}{\pi_2} \frac{q_2}{\left\langle 1/r^2 \right\rangle_{\pi_2}} = \frac{1}{\left\langle r^{-2} \right\rangle_{\pi_2}}
\]

Algorithm and transition probabilities

- given a point in the region \(R \)
- generate a new point in the vicinity of given point

\[
x_{\text{new}} = x + r(-1, +1)d\mathbf{x} \quad y_{\text{new}} = y + r(-1, +1)d\mathbf{y}
\]

- accept with probability \(\min(1, \pi_{2}^{\text{new}} / \pi_{2}^{\text{old}}) \)
- note \(\frac{\pi_{1}^{\text{new}}}{\pi_{1}^{\text{old}}} = \frac{s_{\text{new}}}{q_1} = \frac{s_{\text{new}}}{s_{\text{old}} / q_1} \)

Normalization constants cancel!

- Method 1: accept all moves that stay in \(R \)
- Method 2: if in \(R \), accept with probability \(\left(r^2 \right)^{\text{new}} / \left(r^2 \right)^{\text{old}} \)
Subtle but important point

- Underlying matrix T is set by the trial-move algorithm (select new point uniformly in vicinity of present point)
- It is important that new points are selected in a volume that is independent of the present position
- If we reject configurations outside R, without taking the original point as the “new” one, then the underlying matrix becomes asymmetric
Evaluating Areas with Metropolis Sampling

What if we want the absolute area of the region R, not an average over it?

\[A = \int_{-0.5}^{+0.5} dx \int_{-0.5}^{+0.5} dy s(x, y) = \langle s \rangle_V \]

- Let \(\pi_1(x, y) = s(x, y) / q_1 \)
- then \(A = \frac{\langle s \rangle_{\pi_1}}{\langle \pi_1 \rangle_{\pi_1}} = \langle q_1 \rangle_{\pi_1} = q_1 \)

- We need to know the normalization constant \(q_1 \)
- but this is exactly the integral that we are trying to solve!

Absolute integrals difficult by MC
- relates to free-energy evaluation
Summary

- Markov process is a stochastic process with no memory.
- Full specification of process is given by a matrix of transition probabilities Π.
- A distribution of states are generated by repeatedly stepping from one state to another according to Π.
- A desired limiting distribution can be used to construct transition probabilities using detailed balance.
 - Many different Π matrices can be constructed to satisfy detailed balance.
 - Metropolis algorithm is one such choice, widely used in MC simulation.
- Markov Monte Carlo is good for evaluating averages, but not absolute integrals.
- Next up: Monte Carlo simulation.