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Monte Carlo Simulation

O Gives properties via ensemble averaging
* No time integration
*  Cannot measure dynamical properties
O Employs stochastic methods to generate a (large) sample of members
of an ensemble

* “random numbers” guide the selection of new samples

O Permits great flexibility

* members of ensemble can be generated according to any convenient
probability distribution...

* ...and any given probability distribution can be sampled in many ways

* strategies developed to optimize quality of results
ergodicity — better sampling of all relevant regions of configuration space

variance minimization — better precision of results

O MC “simulation” is the evaluation of statistical-mechanics integrals
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One-Dimensional Integrals

O Methodical approaches
* rectangle rule, trapezoid rule, Simpson’s rule
S (x)

Sum areas of shapes
approximating shape

/

b
of curve A Evaluating the general integral [ = J f(x)dx
\7‘ . a

£
UARRARRY

n uniformly separated points

O Quadrature formula

b—a
n

I=AxY f(x)="—=> f(x)
i=1 i=1




Monte Carlo Integration

O Stochastic approach
O Same quadrature formula, different selection of points
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O for an applet demonstrating MC integration




Random Number Generation

O Random number generators
* subroutines that provide a new random deviate with each call
* basic generators give value on (0, 1) with uniform probability

* uses a deterministic algorithm (of course)

usually involves multiplication and truncation of leading bits of a number

X, =(aX, +c)modm linear congruential sequence

O Returns set of numbers that meet many statistical measures
of randomness

*  histogram is uniform Plot of successive
deviates (X, X, ,)
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* no systematic correlation of deviates

no idea what next value will be from knowledge of
present value (without knowing generation algorithm)

but eventually, the series must end up repeating

O Some famous failures

*  be careful to use a good quality generator Not so random!




Errors in Random vs. Methodical Sampling

. for example (Simpson s rule)
O Comparison of errors IV

* methodical approach 81~ (Ax)* ~n™

* Monte Carlo integration — 81 ~n""?
O MC error vanishes much more slowly for increasing »
O For one-dimensional integrals, MC offers no advantage

O This conclusion changes as the dimension d of the integral
Increases
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Shape of High-Dimensional Regions

O Two (and higher) dimensional shapes can  °4]

be complex -
O How to construct and weight points in a R )
grid that covers the region R? | %w@“)
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Example: mean-square
distance from origin
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Shape of High-Dimensional

O Two (and higher) dimensional shapes can o
be complex -

O How to construct and weight points in a
grid that covers the region R?

* hard to formulate a methodical algorithm in

a complex boundary 0l

* usually do not have analytic expression for
position of boundary

* complexity of shape can increase
unimaginably as dimension of integral grows

O We need to deal with 100+ dimensional
integrals
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Integrate Over a Stmple Shape? 1.

O Modify integrand to cast integral into a
simple shaped region
* define a function indicating if inside or
outside R 1 insideR®
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O Difficult problems remain
* grid must be fine enough to resolve shape
* many points lie outside region of interest

* too many quadrature points for our high-
dimensional integrals (see applet again)

O Click here for an applet demonstrating
2D quadrature
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Integrate Over a Stmple Shape? 2.

O Statistical-mechanics integrals typically have
significant contributions from miniscule regions
of the integration space
« (U)= 7 N,jdrNU(r e~ AUGT)
* contributions come only when no spheres overlap (e_ﬁ YV 0)
* e.g., 100 spheres at freezing the fraction is 10-2%
O Evaluation of integral 1s possible only if restricted
to region important to integral
* must contend with complex shape of region

* MC methods highly suited to “importance sampling”
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Importance Sampling

O Put more quadrature points in regions where integral
receives its greatest contributions

O Return to 1-dimensional example
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O Most contribution from i
region near X = 1| .

1.2

O Choose quadrature points .
not uniformly, but according ¢}

to distribution p(x) Tl
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* linear form is one possibility

O How to revise the integral to remove the bias?
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The Importance-Sampled Integral

O Consider a rectangle-rule quadrature with unevenly
spaced abscissas ;
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O Spacing between points i

* reciprocal of local number of points per unit length 4
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Greater m ==>more points = smaller spacing

O Importance-sampled rectangle rule _b-a Z 1)
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* Same formula for MC sampling
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Generating Nonuniform Random Deviates

O Probability theory says...
* ...given a probability distribution u(z)
* ifx is a function x(z),
* then the distribution of m(x) obeys  m(x)=u(z)

dz
o dx
O Prescription for m(x)

* solve this equation for x(z)

* generate z from the uniform random generator

* compute x(z)
O Example

* wewant (x)=ax onx = (0,1)

2

° then 7= 1 ax2 +c=x a and c from “boundary conditions”

2

* taking square root of uniform deviate gives linearly distributed values

O Generating 1(x) requires knowledge of fﬂ (x)dx
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Choosing a Good Weighting Function

O MC importance-sampling quadrature formula

n g w(x;)
(x)

O Do not want 1t(Xx) to be too much smaller or too much larger than
f(x)
* too small leads to significant contribution from poorly sampled region

* too large means that too much sampling is done in region that is not
(now) contributing much
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O Choose 1 to minimize variance in average

Variance in Importance Sampling Integration

15

r(x) oy
2 2 2
, 1 rw i £ AT
o7 _n{ | L[(x)} 72(x)dx D[”(x)}ﬂ'(x)dx} } i
3x? 0
4y %/@

f(x)=3x
n=100 n=1000
0.09 0.03
0.04 0.01
0 0
0.04 0.01

* not a viable choice
* the constant here is selected to normalize 7
* if we can normalize 1t we can evaluate I” (x)dx

* this is equivalent to solving the desired integral of f(x)

O Smallest variance in average corresponds to 7(x) = ¢ x f(x)

O Click here for an applet demonstrating importance sampling




Summary

O Monte Carlo methods use stochastic process to answer a
non-stochastic question

 generate a random sample from an ensemble

* compute properties as ensemble average

 permits more flexibility to design sampling algorithm
O Monte Carlo integration

* good for high-dimensional integrals
better error properties

better suited for integrating in complex shape
O Importance Sampling
* focuses selection of points to region contributing most to integral
* selecting of weighting function is important
* choosing perfect weight function is same as solving integral
O Next up:

* Markov processes: generating points in a complex region
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