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Monte Carlo Simulation 
¡ Gives properties via ensemble averaging 

•  No time integration 
•  Cannot measure dynamical properties 

¡ Employs stochastic methods to generate a (large) sample of members 
of an ensemble 
•  “random numbers” guide the selection of new samples 

¡ Permits great flexibility  
•  members of ensemble can be generated according to any convenient 

probability distribution… 
•  …and any given probability distribution can be sampled in many ways 
•  strategies developed to optimize quality of results 

ergodicity — better sampling of all relevant regions of configuration space 
variance minimization — better precision of results 

¡ MC “simulation” is the evaluation of statistical-mechanics integrals 
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One-Dimensional Integrals 

¡ Methodical approaches 
•  rectangle rule, trapezoid rule, Simpson’s rule  

¡ Quadrature formula 
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Monte Carlo Integration 

¡ Stochastic approach 
¡ Same quadrature formula, different selection of points 

¡ Click here for an applet demonstrating MC integration 
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Random Number Generation 
¡ Random number generators 

•  subroutines that provide a new random deviate with each call 
•  basic generators give value on (0,1) with uniform probability 
•  uses a deterministic algorithm (of course) 

usually involves multiplication and truncation of leading bits of a number 
 

¡ Returns set of numbers that meet many statistical measures 
of randomness 
•  histogram is uniform 
•  no systematic correlation of deviates 

no idea what next value will be from knowledge of  
present value (without knowing generation algorithm) 

but eventually, the series must end up repeating 

¡ Some famous failures 
•  be careful to use a good quality generator 

1 ( )modn nX aX c m+ = + linear congruential sequence 

Plot of successive 
deviates (Xn,Xn+1) 

Not so random! 
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Errors in Random vs. Methodical Sampling 

¡ Comparison of errors 
•  methodical approach 
•  Monte Carlo integration 

¡ MC error vanishes much more slowly for increasing n 
¡ For one-dimensional integrals, MC offers no advantage 
¡ This conclusion changes as the dimension d of the integral 

increases 
•  methodical approach 
•  MC integration 

¡ MC “wins” at about d = 4 

   δ I ∼ (Δx)2 ∼ n−2

   δ I ∼ n−1/2

   δ I ∼ (Δx)2 ∼ n−2/d

1// dx L nΔ =   δ I ∼ n−1/2

independent of dimension! 

for example (Simpson’s rule) 

d = 2 
36 points, 
361/2 = 6 in 
each row 
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Shape of High-Dimensional Regions 
¡ Two (and higher) dimensional shapes can 

be complex 
¡ How to construct and weight points in a 

grid that covers the region R? 
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Shape of High-Dimensional Regions 
¡ Two (and higher) dimensional shapes can 

be complex 
¡ How to construct and weight points in a 

grid that covers the region R? 
•  hard to formulate a methodical algorithm in 

a complex boundary 
•  usually do not have analytic expression for 

position of boundary 
•  complexity of shape can increase 

unimaginably as dimension of integral grows 
¡ We need to deal with 100+ dimensional 

integrals 
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Integrate Over a Simple Shape? 1. 
¡ Modify integrand to cast integral into a 

simple shaped region 
•  define a function indicating if inside or 

outside R 

¡ Difficult problems remain 
•  grid must be fine enough to resolve shape 
•  many points lie outside region of interest 
•  too many quadrature points for our high-

dimensional integrals (see applet again) 
¡ Click here for an applet demonstrating 

2D quadrature 
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Integrate Over a Simple Shape? 2. 

¡ Statistical-mechanics integrals typically have 
significant contributions from miniscule regions 
of the integration space 
•    
•  contributions come only when no spheres overlap   
•  e.g., 100 spheres at freezing the fraction is 10-260  

¡ Evaluation of integral is possible only if restricted 
to region important to integral 
•  must contend with complex shape of region 
•  MC methods highly suited to “importance sampling” 
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Importance Sampling 

¡ Put more quadrature points in regions where integral 
receives its greatest contributions 

¡ Return to 1-dimensional example 

¡ Most contribution from  
region near x = 1 

¡ Choose quadrature points 
not uniformly, but according 
to distribution p(x) 
•  linear form is one possibility 

¡ How to revise the integral to remove the bias? 
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The Importance-Sampled Integral 

¡ Consider a rectangle-rule quadrature with unevenly 
spaced abscissas 

¡ Spacing between points 
•  reciprocal of local number of points per unit length 

¡ Importance-sampled rectangle rule 
•  Same formula for MC sampling 
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Generating Nonuniform Random Deviates 
¡ Probability theory says... 

•  ...given a probability distribution u(z) 
•  if x is a function x(z),  
•  then the distribution of π(x) obeys 

¡ Prescription for π(x) 
•  solve this equation for x(z) 
•  generate z from the uniform random generator 
•  compute x(z) 

¡ Example 
•  we want                 on x = (0,1) 
•  then    
•  so x = z1/2  
•  taking square root of uniform deviate gives linearly distributed values 

¡ Generating π(x) requires knowledge of  
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Choosing a Good Weighting Function 
¡ MC importance-sampling quadrature formula 

¡ Do not want π(x) to be too much smaller or too much larger than 
f(x) 
•  too small leads to significant contribution from poorly sampled region 
•  too large means that too much sampling is done in region that is not 

(now) contributing much 
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Variance in Importance Sampling Integration 

¡ Choose π to minimize variance in average 

¡ Smallest variance in average corresponds to π(x) = c × f(x) 
•  not a viable choice 
•  the constant here is selected to normalize π 
•  if we can normalize π we can evaluate 
•  this is equivalent to solving the desired integral of f(x) 

¡ Click here for an applet demonstrating importance sampling     
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Summary 
¡ Monte Carlo methods use stochastic process to answer a 

non-stochastic question 
•  generate a random sample from an ensemble 
•  compute properties as ensemble average 
•  permits more flexibility to design sampling algorithm 

¡ Monte Carlo integration 
•  good for high-dimensional integrals 

better error properties 
better suited for integrating in complex shape 

¡ Importance Sampling 
•  focuses selection of points to region contributing most to integral 
•  selecting of weighting function is important 
•  choosing perfect weight function is same as solving integral 

¡ Next up:   
•  Markov processes: generating points in a complex region 


