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Statistical Mechanics

O Theoretical basis for derivation of macroscopic behaviors from
mICroscopic origins
O Two fundamental postulates of equilibrium statistical mechanics

* microstates of equal energy are equally likely

* time average is equivalent to ensemble average

O Formalism extends postulates to more useful situations

* thermal, mechanical, and/or chemical equilibrium with reservoirs
systems at constant T, P, and/or m

* yields new formulas for probabilities of microstates
derivation invokes thermodynamic limit of very large system
O Macroscopic observables given as a weighted sum over
microstates

* dynamic properties require additional formalism




Ensembles
O Definition of an ensemble

* Collection of microstates subject to at least one extensive constraint
“microstate” is specification of all atom positions and momenta
fixed total energy, total volume, and/or total number of molecules
unconstrained extensive quantities are represented by full range of possible values

*  Probability distribution rt describing the likelihood of observing each
state, or the weight that each state has in ensemble average

O Example: Some members of ensemble of fixed N

* isothermal-isobaric (TPN)
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Commonly Encountered Ensembles
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Partition Functions

O The normalization constants of the probability distributions are
physically significant

* known as the partition function

* relates to a corresponding free energy, or thermodynamic potential,

via a bridge equation

Ensemble Thermodynamic Partition Function Bridge Equation
Potential
Microcanonical Entropy, S Q= 21 S/k=InQ(E,V,N)
Canonical Helmholtz, A —BA=InQO(T,V,N)

0= 2 o PEi

Isothermal-1sobaric

Gibbs, G

A=Y e AEP)

—BG =InA(T,P,N)

Grand-canonical

Hill, L =-PV

BPV =InE(T,V, 1)




Ensemble and Time Averaging

O Configuration given by all positions and momenta

. “phase space ” (pN ,rN) el N shorthand for “positions of all N atoms”
O Configuration variable A(r™,pM)
O Ensemble average

* Weighted sum over all members of ensemble
* Ingeneral (A)=) An
* For example, canomcal ensemble, classical mechanics.:
N(3.N 4 N Ny -BEQp" -~
()= oy, Jdp" [ar ap” P e PEET )
O Time average

* Sum over all states encountered in dynamical trajectory of system

Should average
over initial

A=1lim - JA( p (t),r (t) p (O) r (O))dt conditions

[—oo [ N

Given by equations of motion




Ergodicity

O If a time average does not give complete representation of
full ensemble, system 1s non-ergodic

* Truly nonergodic: no way there from here

* Practically nonergodic: very hard to find route from here to there

Phase space

O Term applies to any algorithm that purports to generate a
representative set of configurations from the ensemble

O Click here for an applet describing ergodicity.




Separation of the Energy

O Total energy is sum of kinetic and potential parts
- E@NrN) = KpN) + UrN)
O Kinetic energy is quadratic in momenta
© K(p")=Y pi/2m
O Kinetic contribution can be treated analytically in partition

function ,_ J N _—BY p2i2m J N —pUG)
0= 3 NN' dp'e dr''e
_ 1 J‘ dr N - U (r ) thermal de Broglie wavelength
3N
ANV A=
| Z \ N27mmkT
AN N'\conﬁguration integral

O And it drops out of position averages
<A> A N,jdrNA(r )e BU")




Simple Averages 1. Energy

O Average energy
N N
<E> :éh”‘l’N!jde.[drNE(PNJN)e_’BE(p )
O Note thermodynamic connection
dl d(A/kT
<E> . anQ ( ) = E; internal
foo9B f AWAT) X

definition of Q; calculus  bridge equation Gibbs-Helmholtz equation

O Average kinetic energy
S JdeZ 21 AEpifom

-3 NkT Equipartition of energy: kT/2 for each degree of freedom
2
O Average potential energy

<U> 7 N,jdrNU(r e~ puc™)
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Simple Averages 2. Temperature

O Need to measure temperature in microcanonical ensemble
(NVE) simulations

O Define instantaneous kinetic temperature

Z p More generally, divide by number of molecular
3Nk : degrees of freedom instead of 3N

O Thermodynamic temperature is then given as ensemble
average

T=(T)
O Relies on equipartition as developed in canonical ensemble
O A better formulation has been developed recently
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Simple Averages 3a. Pressure
O From thermodynamics and bridge equation

__[o94 J N U
P__(a_VL _kTa—Vln[N,jdr }

O Volume appears in limits of integration

* Scale coordinates to move volume dependence into the potential
re(0,L)

s, =1 /L SE(O,,I) U(rlx,rly,...,rNZ)= U(lex,ley,...,LSNZ):U((VS)N)

5 N V=L
-pU (Vs

P= kTa—Vln[V J.ds eﬁ(())} —L— <1 >

o . Q| . % °
* L-derivative of U is related to force “ = o
2 u(isLyV)= =
oL (61)")=% oL d(s;L) L
O Result

NkT 1 -
B +3V< Z..r"f"fif>

pairs 1,
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Simple Averages 3b. Hard-Sphere Pressure

O Force is zero except at collision

O Time integration of virial over instant of collision is finite
* contribution over instant of collision
N2 'fl2dt =T, AP
_ 2mm,

= Vi * }7
12 "12
ml +m2

O Pressure is sum over collisions

NKT 1 1 L
P= % +3Vt 2 MpVia 1o

sim collisions
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Simple Averages 4. Heat Capacity

O Example of a “2nd derivative” property

O Expressible in terms of fluctuations of the energy

Cv —k IBZ |: < E2> _ < E>2j| M:. gliffereqce betweeg two O(N2)

quantities to give a quantity of O(N)

O Other 2nd-derivative or “fluctuation” properties

* isothermal compressibility (BV l

=T o




(Not) Simple Averages 5. Free Energy

O Free energy given as partition-function integral

e P = 0
h3NN' jdedrNe PE
O Impossible to evaluate
* Even numerically!

* Click here for an applet demonstrating the difficulty

O Free energy involves properties of entire ensemble
* No value associated with a single member of ensemble

* For example, the size of (number of members in) the ensemble

O The trick is to settle for computing free-energy differences

O Return to this topic later in course
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Fluctuations

O How complete is the mean as a statistic of ensemble behavior?

*  Are there many members of the ensemble that have properties that
deviate substantially from the mean?

* Look at the standard deviation o p(E)
5172 1/2
op=((E~(E)]) " =[{#*)-(£)]
 This relates to the heat capacity f—»
o =kT(Cy /)2 G
* Relative to mean is the important measure f E
1/2 1/2 <F>
(E) (E) O(N)

O Fluctuations vanish in thermodynamic limit N=»co

O Similar measures apply in other ensembles

* volume fluctuations in NPT; molecule-number fluctuations in uVil

O Click here for an applet illustrating fluctuations




