Etomica: An APTI for Molecular

Simulation

David A. Kofke

Department of Chemical and
Biological Engineering
University at Buffalo, the State
University of New York

o

S 21

UNIVERSITY AT BUFFALO
State University of New York

Object-Oriented Programming

Programming accomplished through the actions and
interactions of objects

— everything is an object

Forces abstract thinking about the structure and activities
of a program

Promotes re-use of code and extension to new
applications

Good design is difficult to develop
— requires thorough understanding of application

— conversely, its use facilitates a better understanding of
application
- presents a good vehicle for teaching

I t’ S fun ' % UNIVERSITY AT BUFFALO

State University of New York :-

What is an Object?

A fancy variable
— stores data

— can perform operations using the data

Every object has a type, or “class”
— analogous to real, integer, etc.
— you define types (classes) as needed to solve your problems
— types differ in the data they hold and the actions they can perform on it

— every object is an “instance of a class”

A class has an interface
— what the object presents to enable its manipulation
— 1mplementation (how it accomplishes its operations) can be hidden
— object is viewed in terms of its “actions” and not its “thoughts”

Inheritance
— different classes can inherit the same interface, but implement it
differently to produce different behaviors
% UNIVERSITY AT BUFFALO
State University of New York |

Makeup of an Object

* Fields
— primitive types (integer, float, double, boolean, etc.)

— handles to other objects

« complex objects are composed from simpler objects
(composition)

— Fields are usually not part of the interface
* “private”

e Methods

— “subroutines and functions”

— may take arguments and return values

— have complete access to all fields of object

— methods are defined to set and get field values

UNIVERSITY AT BUFFALO
State University of New Yo_

Detailed Look: Molecule and Atom

 Atom methods

— Vector getPosition()
» Returns an object that represents the atom’s coordinate

— AtomType getType()

« Returns an object that specifies important parametric features of
the atoms, such as its size, shape, mass, and how it is drawn

— 1nt getIndex()
» Returns an integer used to store the Atom instance in an array
* Molecule methods
— AtomList getChildList()
— Species getType()
— 1nt getIndex()

* Click here for the complete API specification

UNIVERSITY AT BUFFALO
State University of New Yo_

Design Considerations

e Goals

— Extensible, broadly applicable
— Computational efficiency

— Suitable to run interactively or in batch

* Guidelines
— Highly granular pieces with convenience classes that assemble them

— Separate components as much as possible
» Graphics separate from other parts
« Used objects don’ t know about user

— Try to re-use themes that guide design of data and other constructs
* Agent model
« Event model

UNIVERSITY AT BUFFALO
State University of New Yo_

Agent Model

Agents Objects

@0
© 0

2. new Agent

1. Reguest new Agent instance

/ N
Client object; Construct at
implements initialization AgentManager

AgentSource 2 Locate
¢ N Agent ﬁ 6
l 1. Request Agent for object E n 2 i

3. Return Agent handle to client

UNIVERSITY AT BUFFALO
State University of New York

Event Model

Register as listener when
simulation is initialized

Event Source

~

J

Notify all listeners
when event occurs

-

\

Event Listener

G5

UNIVERSITY AT BUF

State University of New York

Simulation

Organizes other elements

Common point of reference

Independent entity—no simulation knows about or interacts with

another Simulation instance
No graphical elements

Develop new simulations by extending Simulation

 Assemble simulation in constructor
» Most fields publicly accessible
 Reusable in different contexts

SimulationContainer gives simulation an interface

» Graphical elements
« Remote access as a future consideration

Space 1s assigned to Simulation at construction

G5

UNIVERSITY AT BUFFALO

State University of New Y_

» Factory for objects that depend on or define the physical
space

— Vector, Tensor, Orientation, Boundary

« All object methods are implemented 1n a spatially-
independent manner

— Vector methods defined for vector addition, scalar multiplication,
dot product, simple compound operations, etc.

* Easy to convert from simulation in one dimension to another

UNIVERSITY AT BUFFALO
10 State University of New Yo_

* Defines Cartesian vector and operations performed on 1t

« Some methods

double squared()

double dot(Vector v)

void E(Vector v)

void PE(Vector v)

void EalTvl1(double a, Vector v)
Vector Mv1Squared(Vector y)
vold normalize()

Etc.

 Different implementations done for different dimensions

11

UNIVERSITY AT BUFFALO
State University of New Y_

Data Structures: Atom

 Atom
— Represents physical atom being simulated

« Some Important fields
— position
 class that holds and manipulates position vectors
— type

« class that specifies important parametric features of the atoms, such as
its size, shape, mass, and how it is drawn

— index
« an integer used to store the Atom instance in an array

% UNIVERSITY AT BUFFALO
State University of Nm
12

13

Data Structures: AtomFactory

AtomFactory

— Builds a molecule according to a specification

— “Atom’” is defined generally
« “Leaf” atom corresponds to a physical atom
« Group of atoms, even molecules, are represented by instances of Atom
* Molecule is represented by a tree structure, using AtomTreeNode

AtomFactoryMono, AtomFactoryHomo, AtomFactoryHetero

— Hierarchical: Large molecules built from factories that comprise other
factories that build the molecule subunits

Each factory attaches a unique AtomType to all the Atoms it
builds

Factory has a Conformation that arranges atoms

UNIVERSITY AT BUFFALO
State University of New Yorkj_

14

Data Structures: Box

Box
— Collects all atoms that interact with each other

A single Simulation may employ multiple Box instances
— Parallel tempering, Gibbs ensemble
— No atoms in one Box interact with atoms in another Box

Box holds a Boundary instance
— Constructed by Space
— Implements (or not) periodic boundary conditions

Manages addition/removal of molecules

Additional information associated with Box via
BoxAgentManager

UNIVERSITY AT BUFFALO] h
State University of New York :-

Data Structures: Species

* Species classes collect information needed to construct and
manage molecules

» Subclasses defined for specific molecules

« Serves as a “molecule type” for doing potential calculations

'[é UNIVERSITY AT BUFFALO
State University of New Y_
15

Data Structures: AtomsetIterator

e AtomSet

— Interface for a set of atoms
« Atom, AtomPair most often used

* Many types of atom-set 1terators
— Iterate atoms or atom pairs at a particular level in hierarchy
— Iterate pairs formed with a particular atom
— Iterate in one or both directions from a given atom

— Many interfaces defined
» AtomsetlteratorPhaseDependent
» AtomsetlteratorBasisDependent
» AtomsetlteratorDirectable
» AtomsetlteratorTargetable
» AtomsetlteratorListDependent
* etc.

% UNIVERSITY AT BUFFALO
State University of New Yo_
16

17

Models: Potential

Potential
— Defines manner of interaction of atoms
— public void energy(AtomSet atoms)

Subclasses specific to 1-body, 2-body, efc. forms

Interfaces for hard and soft potentials

— PotentialSoft
* energy, virial, hypervirial, gradient

— PotentialHard
* energy, collisionTime, bump

PotentialMaster class collects potentials and manages
iterators

UNIVERSITY AT BUFFALO
State University of New Yo_

Models: PotentialGroup

* Potential Group
— Collects several potentials that all interact on a single AtomSet

* I-body PotentialGroup
— acts on a single Atom (which typically is a group of atoms)

— collects intramolecular interactions

* 2-body PotentialGroup
— acts between two Atom instance

— collects intermolecular interactions

UNIVERSITY AT BUFFALO
18 State University of New Yo_

19

Flow Control: Action and Activity

« Action
— 1interface for abstract, elementary action that does something
— public void actionPerformed()
— can be grouped for series implementation

— for example
« AtomActionRandomizeVelocity
« AtomActionTranslateBy
* IntegratorReset
» Phaselnflate

* Activity
— more complex, time-consuming extension of Action
— can be started, stopped, paused, resumed
— can be grouped for series or parallel implementation

— for example
« Activitylntegrate

° ili I i UNIVERSITY AT BUFFALO
EquilibrationProduction '[é R —

Flow Control: Controller

* Two ways to conduct simulation
— 1Interactively
— batch
— (or hybrid of both)

« Specification of actions must be mutable

— even while simulation proceeds

 Controller

— schedules actions to be performed
— single instance constructed for each Simulation
— actions/activities can be added to queue

— urgentAction can be requested for immediate implementation
« all GUI-driven changes follow this path

— carefully synchronized

UNIVERSITY AT BUFFALO
20 State University of New York:_

Flow Control: Integrator

* Integrator
— repeatedly changes configuration to follow a sampling algorithm
— public void doStep()
— deploys subclass-specific agent to each atom
— only one integrator acts on a given box

— some Integrators act on multiple boxes
* IntegratorGEMC (Gibbs ensemble Monte Carlo)
* IntegratorPT (Parallel tempering)

* IntegratorMD

— IntegratorVelocityVerlet

— IntegratorHard
« discontinuous molecular dynamics

e IntegratorMC

% UNIVERSITY AT BUFFALO
State University of New Y_
21

Flow Control: IntegratorMC

e IntegratorMC
— Monte Carlo sampling

— Selects trial move, performs trial, decides acceptance, notifies move and
other listeners

« MCMove
— Performs Monte Carlo trial

— Reports information needed to determine acceptance

* In(Prew/Poia)s IN(ti/t;)
* Holds fields needed for evaluation

— Does appropriate update for acceptance or rejection

— For example
« MCMoveAtom
« MCMovelnsertDelete
+ MCMoveRotateMolecule
« MCMoveVolume

— Sampled ensemble 1s determined by set of MCMoves added to integrator

UNIVERSITY AT BUFFALO

State University of New Yo_
22

Flow Control: IntegratorEvent

* IntegratorEvent

— 1Integrator fires event to registered listeners to notify of progress
with simulation

 IntegratorListener

— IntegratorIntervalListener
* receives repeated events reporting progress

— IntegratorNonintervalListener
* receives only events indicating initialization, start, end, etc.

— For example
* objects pushing data measurement and processing
« cell- and neighborlist-updating

% UNIVERSITY AT BUFFALO
State University of New
23

Data Processing: DataSource, DataSink

* DataSource
— 1interface for class that can provide data

— data 1s generally represented by array of double
— public double[] getDbatal():

— Meter i1s a DataSource that acts on a Box

— for example
* MeterDensity, MeterEnergy, MeterRDF, MeterTemperature
 DataSourceCountCollisions, DataSourceCountTime

 DataSink

— 1nterface for class that can receive data
— public void putData (double[] data);

— for example
» DisplayBox, DataSinkConsole, DataBin
« DataPipe

% UNIVERSITY AT BUFFALO
State University of New Yo_
24

Data Processing: Pipelines

« Data 1s pushed from a source to a sink
— It may pass through other elements along the way
— Each pushes data on to the next element

« DataPipe
— Abstract, implements DataSink
— Takes data given to it, does something to it, and pushes new data

— DataAccumulator
» Collects statistics on data it receives, and pushes it on at intervals
* e.g. AccumulatorAverage, AccumulatorHistory, AccumulatorHistogram

— DataTransformer
* Modifies data and immediately pushes it downstream

% UNIVERSITY AT BUFFALO
State University of New Y_
25

Data Processing: DataPump

* DataPump
— Extends DataProcessor
— Holds a DataSource, and moves data from it to the sinks
— Provides the impetus for moving the data from a source into a pipe

— Implements Action
« Typically activated via Integrator IntervalEvent, or GUI action

UNIVERSITY AT BUFFALO
State University of New York

26

Data Flows in Etomica

()
Prompt DataPump

action Integrator Listener

g J
DataPump
\r)
GUI button

Get data L p

DataSource

A

L‘E >[DataFork]
Send downstream

£ A

DataProcessor DataProcessor
Tally average, std dev Histogram

§ A& @

[DataSink] DataSink] [DataSink J

Write Display Display
to file as table as graph

UNIVERSITY AT BUFFALO
State University of New

28

I/0 and Graphics: Display

Display

Object to present data in graphical interface

Boxes, plots, tables, etc.

All are treated as implementing DataSink

Logging capabilities still not well developed

Units

Internally, all data are represented in a common unit system

« picosecond, Angstrom, Dalton
Unit classes are defined to handle conversions
All I/O and graphics classes hold a Unit instance

Classes can declare Dimension for fields so that appropriate units

are offered

S e

UNIVERSITY AT BUFFALO

State University of New York_

I/0 and Graphics: Device

* Device
— Widget that allows user to interact with simulation

* Examples

— DeviceButton
« Connects to an action, performs action when button is pressed

— DeviceSlider
+ Changes value of some quantity with movement of a slider

— DeviceThermoController
« ComboBox that permits selection from several temperatures

— DeviceCheckBox

* Toggles a boolean value using a checkbox

— DeviceControllerButton
» Start/stop/pause/resume simulation

* Acts via Controller

— Invokes urgentAction

— Controller handles Action request ASAP

» Pauses current Activity, or finishes current Action
» then attends to requested Action

— Prevents collision between user and integrator threads

29

G5

UNIVERSITY AT BUFFALO

State University of New

« Utility classes developed as needed
— versatile lattice capabilities

— Polytope for defining shapes

— very small set of math classes
* linear algebra
» special functions
« permutations/combinations

% UNIVERSITY AT BUFFALO
State University of Nm
30

Supporting Tools

e CVS
e JUnit

— facility for developing unit tests

 javadoc

— facility to generate hyperlinked documentation from comments
. bugzilla

— bug tracking

tinderbox
— performance tracking

UNIVERSITY AT BUFFALO
State University of New York

31

Supporting Tools: Tinderbox

[’ tinderbox: etomica

| [} SENS Webmail

[Build Time

Guilty

Click tite to
see changes
since then

05/24 19:35

05/24 17:53

05/24 16:11

Click name to see what they did

Done

UNIVERSITY AT BUFFALO

State University of New

G5

Supporting Tools: Tinderbox

p:firheneas.eng.buffalo.edufgraphjquery.cgi?testname=HSMD3D_32000&box=rusty&autoscale=1&days=7&avg=1&showp L\g] E

| [} SENS Webmai]

HSMD3D_32000
(rusty)

Y-axis: (zoom|100%) Days:(all datgl Style:(lines|steps) Points:(onjoff) Average:(omoff)

rusty HSMD3D 32060
298

285 *

280 A 1LA 1 1y L

0
s)
= ’HLA\[\ A
o 275 f
i i | vy A !
=]
™
a
&
: A MA
a7 Ay .
265
260 R ,
as-/18 as-s19 as/2e ass21 assee asse3 ass24
ae: 00 aa: 00 a@: 00 aa: 08 aa: 08 aa: 008 aa: 00

Generated: 24-/Mays8S 26:36

¢ Other rusty tests: (startup, xulwinopen, pageload, show all tests) Graph size: % UNIVERSITY AT BUFFALO

¢ Show the raw data for this plot State University of New York 00
33

