CE 530 Molecular Simulation

Lecture 13
Molecular Dynamics in Other Ensembles

David A. Kofke
Department of Chemical Engineering
SUNY Buffalo
kofke@eng.buffalo.edu
Review

- Molecular dynamics is a numerical integration of the classical equations of motion
- Total energy is strictly conserved, so MD samples the NVE ensemble
- Dynamical behaviors can be measured by taking appropriate time averages over the simulation
 - Spontaneous fluctuations provide non-equilibrium condition for measurement of transport in equilibrium MD
 - Non-equilibrium MD can be used to get less noisy results, but requires mechanism to remove energy via heat transfer
- Two equivalent formalisms for EMD measurements
 - Einstein equation
 - Green-Kubo relation
time correlation functions
Molecular Dynamics in Other Ensembles

- Standard MD samples the NVE ensemble
- There is need enable MD to operate at constant T and/or P
 - with standard MD it is very hard to set initial positions and velocities to give a desired T or P with any accuracy
 - NPT MD permits control over state conditions of most interest
 - NEMD and other advanced methods require temperature control
- Two general approaches
 - stochastic coupling to a reservoir
 - feedback control
- Good methods ensure proper sampling of the appropriate ensemble
What is Temperature?

- **Thermodynamic definition**
 \[
 \frac{1}{T} = \left(\frac{\partial S}{\partial E} \right)_{V,N}
 \]
 - temperature describes how much more **disordered** a system becomes when a given amount of energy is added to it
 - high temperature: adding energy opens up **few** additional microstates
 - low temperature: adding energy opens up **many** additional microstates
 \[
 \frac{1}{kT} = \frac{\partial}{\partial E} \ln \Omega(E,V,N)
 \]

- **Thermal equilibrium**
 - entropy is maximized for an isolated system at equilibrium
 - total entropy of two subsystems is sum of entropy of each: \(S_{tot} = S_1 + S_2 \)
 - consider transfer of energy from one subsystem to another
 - if entropy of one system goes up more than entropy of other system goes down, total entropy increases with energy transfer
 - equilibrium established when both rates of change are equal \(T_1 = T_2 \)
 - (temperature is guaranteed to increase as energy is added)
Momentum and Configurational Equilibrium

- Momentum and configuration coordinates are in thermal equilibrium
 - $E(r^N, p^N) = K(p^N) + U(r^N)$
 - momentum and configuration coordinates must be “at same temperature” or there will be net energy flux from one to other

- An arbitrary initial condition (p^N, r^N) is unlikely to have equal momentum and configurational temperatures
 - and once equilibrium is established, energy will fluctuate back and forth between two forms
 - ...so temperatures will fluctuate too

- Either momentum or configurational coordinates (or both) may be thermostatted to fix temperature of both
 - assuming they are coupled
An Expression for the Temperature 1.

- Consider a space of two variables
 - *schematic representation of phase space*
- Contours show lines of constant E
 - *standard MD simulation moves along corresponding $3N$ dimensional hypersurface*
- Length of contour E relates to $\Omega(E)$
- While moving along the E_A contour, we’d like to see how much longer the E_B contour is
- Analysis yields

$$\frac{1}{kT} = \frac{\nabla_x^2 E}{|\nabla_x E|^2}$$

Relates to gradient and rate of change of gradient
Momentum Temperature

- **Kinetic energy**
 \[
 K(p^N) = \sum_{i=1}^{N} \frac{p_i^2}{2m}
 \]

- **Gradient**
 \[
 \nabla_p K = \sum_{i=1}^{N} \left(\frac{p_{ix}}{m} \hat{e}_{ix} + \frac{p_{iy}}{m} \hat{e}_{iy} \right) \quad d = 2
 \]

- **Laplacian**
 \[
 \nabla_p \cdot \nabla_p K = \sum_{i=1}^{N} \left(\frac{1}{m} + \frac{1}{m} \right) = \frac{Nd}{m}
 \]

- **Temperature**
 \[
 kT = \frac{\left| \nabla_p K \right|^2}{\nabla_p^2 K}
 \]
 \[
 = \frac{1}{Nd / m} \sum_{i=1}^{N} \left(\frac{p_{ix}^2}{m^2} + \frac{p_{iy}^2}{m^2} \right)
 \]
 \[
 kT = \frac{1}{Nd} \sum_{i=1}^{N} \frac{p_i^2}{m}
 \]

The standard canonical-ensemble “equipartition” result
Configurational Temperature

- **Potential energy** \(U(r^N) \)

- **Gradient** \(\nabla_r U = \sum_{i=1}^{N} \left(\frac{\partial U}{\partial r_{ix}} \hat{e}_{ix} + \frac{\partial U}{\partial r_{iy}} \hat{e}_{iy} \right) = -\sum_{i=1}^{N} \left(F_{ix} \hat{e}_{ix} + F_{iy} \hat{e}_{iy} \right) \)

- **Laplacian** \(\nabla_r \cdot \nabla_r U = -\sum_{i=1}^{N} \left(\frac{\partial F_{ix}}{\partial r_{ix}} + \frac{\partial F_{iy}}{\partial r_{iy}} \right) \)

- **Temperature** \(kT = \frac{|\nabla_r U|^2}{\nabla_r^2 U} \)

\[
= \sum_{i=1}^{N} \frac{F_i^2}{-\sum_{i=1}^{N} \left(\frac{\partial F_{ix}}{\partial r_{ix}} + \frac{\partial F_{iy}}{\partial r_{iy}} \right)}
\]

Lennard-Jones Configurational Temperature

- Spherically-symmetric, pairwise additive model

\[U(r^N) = \sum_{i=1}^{N} \sum_{j<i} u_{ij}(r_{ij}) \]

\[u_{LJ}(r) = 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right] \]

- Force

\[F_i = -\sum_{j \neq i} \frac{\mathbf{r}_{ij}}{r_{ij}} \frac{du_{ij}}{dr_{ij}} \]

\[\frac{r}{r} \frac{du_{LJ}}{dr} = \frac{48\varepsilon}{\sigma^2} \left[\left(\frac{\sigma}{r} \right)^{14} - \frac{1}{2} \left(\frac{\sigma}{r} \right)^{8} \right] \]

- Laplacian

\[\frac{\partial F_{i\alpha}}{\partial r_{i\alpha}} = -\sum_{j \neq i} \left[\frac{r_{ij}^2}{r_{ij}} \frac{\partial}{\partial r_{ij}} \left(\frac{1}{r_{ij}} \frac{du_{ij}}{dr_{ij}} \right) - \frac{1}{r_{ij}} \frac{du_{ij}}{dr_{ij}} \right] \]

\[\frac{1}{r} \frac{d}{dr} \left(\frac{1}{r} \frac{du_{LJ}}{dr} \right) = \frac{672\varepsilon}{\sigma^4} \left[\left(\frac{\sigma}{r} \right)^{16} - \frac{2}{7} \left(\frac{\sigma}{r} \right)^{10} \right] \]

N.B. Formulas not verified
Thermostats

- All NPT MD methods thermostat the momentum temperature
- Proper sampling of the canonical ensemble requires that the momentum temperature fluctuates
 - *momentum temperature is proportional to total kinetic energy*
 - *energy should fluctuate between K and U*
 - *variance of momentum-temperature fluctuation can be derived from Maxwell-Boltzmann*
 - fluctuations vanish at large N
 - rigidly fixing K affects fluctuation quantities, but may not matter much to other averages

- All thermostats introduce unphysical features to the dynamics
 - *EMD transport measurements best done with no thermostat*
 - use thermostat equilibrate \(r \) and \(p \) temperatures to desired value, then remove
Isokinetic Thermostatting 1.

- Force momentum temperature to remain constant
- One (bad) approach
 - at each time step scale momenta to force K to desired value
 - advance positions and momenta
 - apply $p_{\text{new}} = \lambda p$ with λ chosen to satisfy $\sum \frac{(\lambda p_i)^2}{m} = NdkT$
 - repeat
 - “equations of motion” are irreversible
 - “transition probabilities” cannot satisfy detailed balance
 - does not sample any well-defined ensemble
Isokinetic Thermostating 2.

○ One (good) approach

 • *modify equations of motion to satisfy constraint*
 \[\dot{r}_i = \frac{\mathbf{p}_i}{m} \]
 \[\dot{\mathbf{p}}_i = \mathbf{F}_i - \lambda \mathbf{p} \]

 • *λ is a friction term selected to force constant momentum-temperature*
 \[K = \sum_{i=1}^{N} \frac{\mathbf{p}_i^2}{2m} \]
 \[\frac{dK}{dt} = \sum_{i=1}^{N} \frac{\mathbf{p}_i \cdot \dot{\mathbf{p}}_i}{m} \]
 \[= \sum_{i=1}^{N} \frac{\mathbf{p}_i \cdot (\mathbf{F}_i - \lambda \mathbf{p}_i)}{m} \equiv 0 \quad \rightarrow \quad \lambda \equiv \frac{\sum_{i=1}^{N} \frac{1}{m_i} \mathbf{p}_i \cdot \mathbf{F}_i}{\sum_{i=1}^{N} \frac{1}{m_i} \mathbf{p}_i \cdot \mathbf{p}_i} \]

○ Time-reversible equations of motion

 • *no momentum-temperature fluctuations*

 • *configurations properly sample NVT ensemble (with fluctuations)*

 • *temperature is not specified in equations of motion!*
Thermostatting via Wall Collisions

- Wall collision imparts random velocity to molecule
 - *selection consistent with (canonical-ensemble) Maxwell-Boltzmann distribution at desired temperature*

 \[
 \pi(p) = \frac{1}{(2\pi mkT)^{d/2}} \exp\left(-\frac{p^2}{2mkT}\right)
 \]

- Advantages
 - *realistic model of actual process of heat transfer*
 - *correctly samples canonical ensemble*

- Disadvantages
 - *can’t use periodic boundaries*
 - *wall may give rise to unacceptable finite-size effects*
 - not a problem if desiring to simulate a system in confined space
 - *not well suited for soft potentials*
Andersen Thermostat

- Wall thermostat without the wall
- Each molecule undergoes impulsive “collisions” with a heat bath at random intervals
- Collision frequency ν describes strength of coupling
 - Probability of collision over time dt is νdt
 - Poisson process governs collisions $P(t;\nu) = \nu e^{-\nu t}$
- Simulation becomes a Markov process
 - $\Pi = (\nu \Delta t) \Pi_{NVT} + (1 - \nu \Delta t) \Pi_{NVE}$
 - Π_{NVE} is a “deterministic” TPM
 - It is not ergodic for NVT, but Π is
- Click here to see the Andersen thermostat in action
Nosé Thermostat 1.

- **Modification of equations of motion**
 - *like isokinetic algorithm (differential feedback control)*
 - *but permits fluctuations in the momentum temperature*
 - *integral feedback control*

- **Extended Lagrangian equations of motion**
 - *introduce a new degree of freedom, \(s \), representing reservoir*
 - *associate kinetic and potential energy with \(s \)*

\[
L_{\text{Nosé}} = \sum_{i=1}^{N} \frac{m_i (s \dot{r}_i)^2}{2} - U(r^N) + \frac{Q}{2} s^2 - gkT \ln s
\]

- *momenta* \(\mathbf{p}_i = \frac{\partial L}{\partial \dot{\mathbf{r}}_i} = m_i s^2 \dot{\mathbf{r}}_i \)

\[
p_s = \frac{\partial L}{\partial s} = Q \dot{s}
\]

\[
U_s = -gkT \ln s \quad K_s = \frac{1}{2} Qs^2
\]

effective mass
Nosé Thermostat 2.

- Extended-system Hamiltonian is conserved
 \[H_{\text{Nose}} = \sum_{i=1}^{N} \frac{p_i^2}{2m_i s^2} + U(r^N) + \frac{p_s^2}{2Q} + gkT \ln s \]

- Thus the probability distribution can be written
 \[\pi(r^N, p^N, s, p_s) = \delta(H_{\text{Nose}} - E) \]

- What does this mean for the sampling of coordinates and momenta? How does this ensure a canonical distribution?
Nosé Thermostat 3.

\[Q_{\text{Nosé}} = \frac{1}{N!} \int dp_s ds dp^N dr^N \delta(H_{\text{Nosé}} - E) \]

\[= \frac{1}{N!} \int dp_s ds dp'N dr^N s^3 \delta \left[\sum \frac{p_i'^2}{2m_i} + U(r^N) + \frac{p_s^2}{2Q} + gkT \ln s - E \right] \]

- Get canonical ensemble for \(s, p' \) if \(g = 3(N+1) \)
- \(s \) can be interpreted as a time-scaling factor
 - \(\Delta t_{\text{true}} = \Delta t_{\text{sim}} / s \)
 - \(s \) varies during simulation, so “true” time step is of varying length
Nosé Thermostat 3.

\[
Q_{\text{Nosé}} = \frac{1}{N!} \int dp_s ds dp^N d\mathbf{r}^N \delta(H_{\text{Nosé}} - E)
\]

\[
= \frac{1}{N!} \int dp_s ds dp^N d\mathbf{r}^N s^{3N} \delta \left[\sum \frac{p_i^2}{2m_i} + U(\mathbf{r}^N) + \frac{p_s^2}{2Q} + gkT \ln s - E \right]
\]

\[
= \frac{1}{N!} \int dp_s ds dp^N d\mathbf{r}^N s^{3N+1} \frac{1}{gkT} \delta \left[s - \exp \left(-\frac{1}{gkT} \left(H(\mathbf{p}^N, \mathbf{r}^N) + \frac{p_s^2}{2Q} - E \right) \right) \right]
\]

\[
= \frac{1}{N!} \frac{1}{gkT} e^{\frac{E(3N+1)}{gkT}} \int dp_s e^{\frac{(3N+1)p_s^2}{gkT}} 2^Q d\mathbf{p}^N d\mathbf{r}^N \exp \left(-\frac{3(N+1)}{gkT} H(\mathbf{p}^N, \mathbf{r}^N) \right)
\]

\[
= C \frac{1}{N!} \int d\mathbf{p}^N d\mathbf{r}^N \exp \left(-\frac{3(N+1)}{gkT} H(\mathbf{p}^N, \mathbf{r}^N) \right)
\]

- Get canonical ensemble for \(s \), \(p' \) if \(g = 3(N+1) \)
- \(s \) can be interpreted as a time-scaling factor
 - \(\Delta t_{\text{true}} = \Delta t_{\text{sim}} / s \)
 - \(s \) varies during simulation, so “true” time step is of varying length

\[
p' = \frac{p}{s}
\]

\[
\delta[h(s)] = \frac{\delta(s-s_0)}{h'(s_0)}
\]
Nosé-Hoover Thermostat 1.

- Advantageous to work with non-fluctuating time step

- Scaled-variables equations of motion
 - constant simulation Δt
 - fluctuating real Δt

\[
\begin{align*}
\dot{r}_i &= \frac{\partial H}{\partial p_i} = \frac{p_i}{m_i s^2} \\
\dot{p}_i &= -\frac{\partial H}{\partial r_i} = F_i \\
\dot{s} &= \frac{\partial H}{\partial p_s} = \frac{p_s}{Q} \\
\dot{p}_s &= -\frac{\partial H}{\partial s} = \frac{1}{s} \left(\sum_{i=1}^{N} \frac{p_i}{m_i s^2} - gkT \right)
\end{align*}
\]

- Real-variables (′ removed) equation of motion

\[
\begin{align*}
\dot{r}' &= r' \\
p' &= \frac{p}{s} \\
s' &= s \\
\Delta t' &= \Delta t / s
\end{align*}
\]

\[
\begin{align*}
\dot{r}_i &= \frac{p_i}{m_i} \\
\dot{p}_i &= F_i - \frac{sp_s}{Q} p_i \\
\dot{s} &= \frac{sp_s}{Q} \\
\dot{p}_s &= \frac{1}{Q} \left(\sum_{i=1}^{N} \frac{p_i}{m_i} - gkT \right)
\end{align*}
\]
Nosé-Hoover Thermostat 2.

- Real-variable equations are of the form
 \[\dot{r}_i = \frac{p_i}{m_i} \]
 \[\dot{p}_i = F_i - \xi p_i \]
 \[\dot{s} = \frac{s}{s} = \xi \] (redundant; \(s \) is not present in other equations)
 \[\dot{\xi} = \frac{1}{Q} \left(\sum_{i=1}^{N} \frac{p_i}{m_i} - gkT \right) \]

- Compare to isokinetic equations
 \[\dot{r}_i = \frac{p_i}{m} \]
 \[\dot{p}_i = F_i - \lambda p \]
 \[\lambda = \frac{\sum m_i p_i \cdot F_i}{\sum m_i p_i \cdot p_i} \]

- Difference is in the treatment of the friction coefficient
 - Nosé-Hoover correctly samples NVT ensemble for both momentum and configurations; isokinetic does NVT properly only for configurations
Nosé-Hoover Thermostat 3.

- **Equations of motion**
 \[
 \begin{align*}
 \dot{r}_i &= \frac{p_i}{m_i} \\
 \dot{p}_i &= F_i - \xi p_i \\
 \dot{s} &= \xi \\
 \xi &= \frac{1}{Q} \left(\sum_{i=1}^{N} p_i - gkT \right)
 \end{align*}
 \]

- **Integration schemes**
 - *predictor-corrector algorithm is straightforward*
 - *Verlet algorithm is feasible, but tricky to implement*

At this step, update of ξ depends on p; update of p depends on ξ.
Barostats

- Approaches similar to that seen in thermostats
 - *constraint methods*
 - *stochastic coupling to a pressure bath*
 - *extended Lagrangian equations of motion*

- Instantaneous virial takes the role of the momentum temperature

\[
P(r^N, p^N) = \frac{NkT_p(p^N)}{V} + \frac{1}{3V} \left\langle \sum_{\text{pairs } i,j} \vec{r}_{ij} \cdot \vec{f}_{ij} \right\rangle
\]

- Scaling of the system volume is performed to control pressure

- Example: Equations of motion for constraint method

\[
\begin{align*}
\dot{r}_i &= p_i / m + \chi(r^N, p^N)r \\
\dot{p}_i &= F_i - \chi(r^N, p^N)p \\
\dot{V} &= 3V \chi(r^N, p^N)
\end{align*}
\]

\(\chi(t)\) is set to ensure \(\frac{dP}{dt} = 0\)
Summary

- Standard MD simulations are performed in the NVE ensemble
 - initial momenta can be set to desired temperature, but very hard to set configuration to have same temperature
 - momentum and configuration coordinates go into thermal equilibrium at temperature that is hard to predict

- Need ability to thermostat MD simulations
 - aid initialization
 - required to do NEMD simulations

- Desirable to have thermostat generate canonical ensemble

- Several approaches are possible
 - stochastic coupling with temperature bath
 - constraint methods
 - more rigorous extended Lagrangian techniques

- Barostats and other constraints can be imposed in similar ways