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Review

O Monte Carlo simulation

* Markov chain to generate elements of ensemble with proper
distribution

O Metropolis algorithm
* relies on microscopic reversibility mz; =77
* two parts to a Markov step

=¥ generate trial move (underlying transition probability matrix)

=* decide to accept move or keep original state

O Determination of acceptance probabilities
* detailed analysis of forward and reverse moves

* we examined molecule displacement and volume-change trials




Performance Measures

O How do we improve the performance of a MC simulation?
* characterization of performance

° means to improve performance

O Return to our consideration of a general Markov process
* fixed number of well defined states
* fully specified transition-probability matrix

° use our three-state prototype Ty Ty T3

O Performance measures =7y 7wy 7

° rate of convergence 731 732 733

° variance in occupancies




Rate of Convergence 1.

O What is the likely distribution of states after a run of finite length?

* Is it close to the limiting distribution? Probability of being in state 3
(n) (n) (n) after n moves, beginning in state 1
n n n
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* We can apply similarity transforms to understand behavior of 11"
= eigenvector equation [1® = ®A = [1= OAD ™!

eigenvalue matrix: A= 0 A4, 0 eigenvector matrix @ =\ | @ | ¢, | @3
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Rate of Convergence 2.

O Likely distribution after finite run
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O Convergence rate determined by magnitude of other

eigenvalues

* very close to unity indicates slow convergence




Occupancy Variance 1.

O Imagine repeating Markov sequence many
times (L), each time taking a fixed
number of steps, M

HF

* tabulate histogram for each sequence; p

° examine variances in OCCMpClnC)/fVClCtZOH

=Y (0 -m) 50,3 (" -m)( 1)

* through propagation of error, the occupancy
(co)variances sum to give the variances in the
ensemble averages; e.g. (for a 2-state system)

=Uf ot +U3s 05 + 20U, 0,0,

* we would like these to be small




Occupancy Variance 2.

O A formula for the occupancy (co)variance is known

M O_iz = ﬂ'lz +27;8;; —1 variance

Moo, =mzx;+7ms; +7;s; covariance

JoJi

S=1-T+®) -

* right-hand sides independent of M

- standard deviation decreases as 1/\M




Example Performance Values

Limiting distribution ®#=(025 0.5 0.25)

0.97 0.02 0.01 92 —6.1 -3.1
mefficiens T1=| 0.01 0.98 0.01 ;L:(l 0.96 0,96) T=|-61 122 -6.1
0.01 0.02 0.97 3.1 -6.1 92
042 033 0.25 030 -025 -0.05
Barker =017 066 017 | a=(1 033 017 ) £=[-025 050 -0.25
025 033 0.42 —0.05 -0.25 0.30
0 1 0 0.125 0 -0.125
Most efficiens TI=[0.5 0 0.5 A=(10 -1) = 0 0 0
0 1 0 —0.125 0 0.125
0.0 0.5 0.5 0.10 -0.125 0.02
Metropolis  T1={025 0.5 0.25 A=(1 0 -05) E=[-0125 025 -0.125
0.5 05 0.0 0.02 -0.125 0.10
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Lots of movement 1 2 2;3 2> 4
Little movement (1,2) = (3,4)

Limiting distribution

Eigenvalues

Covariance matrix
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Heuristics to Improve Performance

O Keep the system moving
* minimize diagonal elements of probability matrix

* avoid repeated transitions among a few states

O Typical physical situations where convergence is poor

* large number of equivalent states with poor transitions between
regions of them . —
= entangled polymers \/\\)\/ <::> \/\\>/
* large number of low-probability states and a few high-probability

states

=> low-density associating systems «—Low, nonzero

probability region

High e Bottleneck
probability F

region ¥~ Phase space
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Biasing the Underlying Markov Process

O Detailed balance for trial/acceptance Markov process
o mrymin(l, y) =77 ; min(l,1/ y)
O Often it happens that T;; is small while ) is large (or vice-versa)

* even if product is of order unity, ; will be small because of min()
O The underlying TPM can be adjusted (biased) to enhance
movement among states
* bias can be removed in reverse trial probability, or acceptance

° require in general

* ideally, y will be unity (all trials accepted) even for a “large” change

=¢ rarely achieve this level of improvement

* requires coordination of forward and reverse moves
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Example: Biased Insertion in GCMC

O Grand-canonical Monte Carlo (uVT)
* fluctuations in N require insertion/deletion trials

* at high density, insertions may be rarely accepted

=* T, 1s small for j a state having additional but non-overlapping molecule

* at high chemical potential, limiting distribution strongly favors
additional molecules o PN

=+ % 1s large for (N+1) state with no overlap
* apply biasing to improve acceptance

* first look at unbiased algorithm
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Insertion/Deletion Trial Move
1. Specification

O Gives new configuration of same volume but different number of
molecules

O Choose with equal probability:

* insertion trial: add a molecule to a randomly selected position

* deletion trial: remove a randomly selected molecule from the system

O Limiting probability distribution
—1 00 O
. o—RP 0 5

* grand-canonical ensemble o 00 OOO O 0o
O 0

()= L L A o o 05

= AN O o OO O "0

O O” ~Y000 A




Insertion/Deletion Trial Move
2. Analysis of Trial Probabilities

O Detailed specification of trial moves and and probabilities

Event Probability
[reverse event] [reverse probability]
Select insertion trial s
[select deletion trial] [72 ]
Place molecule at ry.; dr/V
[delete molecule N+1] [1/(N+1)]

15

- N
Forward-step 1 g
trial —X—xmin(l, y)
babili
L probaopility )
~
Reverse-step |
' —X ——xmin(l,—
trzfsllyabili WY
\p o J

Accept move
[accept move]

min(l,)) <«

[min(1,1/y)]

— ¥ is formulated to satisfy
detailed balance
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Insertion/Deletion Trial Move
3. Analysis of Detailled Balance

Forward-step | dr Reverse-step 1 1
trial —Xx—xmin(l, ) trial —X X min(1, %)

probability probability 2 N+I1
: a
\ Detailed balance /
S
f A
Limiting vy_1 1 _ﬂU(rN)JrﬂﬂN .
distribution ﬂ.(r ) - = AdN 2 dr

S J
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Insertion/Deletion Trial Move
3. Analysis of Detailled Balance

Forward-step Reverse-step

: ro . : 1
trial —X —xmin(l, y) trial — X
probability 27 probability 2 N+l

in(1 L
X min(1, Z)

Detailed balance
TT, TT.. - T TT..

Yy J L
e_,BUOId +’B'UNdl'N lxﬂx . (1 ) ) e_IBU”eW+,Bﬂ(N+l)drN+1 lx Xmin(l l)
=AN A SAYNH) 2" N+1 X

Limiting ﬂ(rN) 1 1 —,BU(rN)+,ByN

. = ar”y
distribution

=———e
DAdN




Insertion/Deletion Trial Move
3. Analysis of Detailed Balance

Forward-step Reverse-step

. r . 1 . 1
trial —X—xmin(l, y) trial — X X min(1, ;)
probability 27 probability 2 N+l

Detailed balance

T, T = 7 s

eﬂ[:(z/%w ub/; x min(1, y )} = ﬁU}j;:ﬂct’;i: :11))M/[{

x min(1,~
N +1 ( 1)}

—ﬁUOId _ 1 e_ﬁUnew_:B,u

Remember
insert: (N+1) = N_ 411
delete: (N+1) =N_4

Acceptance probability

18
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Biased Insertion/Deletion Trial Move
1. Specification

Q Insertable region

O Trial-move algorithm. Choose with
equal probability:
* Insertion

=* identify region where insertion will not
lead to overlap

=> let the volume of this region be €V

=* place randomly somewhere in this region

* Deletion
=¥ select any molecule and delete it
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Biased Insertion/Deletion Trial Move
2. Analysis of Trial Probabilities

O Detailed specification of trial moves and and probabilities

Event Probability f Forward-step A
[reverse event] [reverse probability] irial 1 . d_; x min(l, 7)
probability 7
Select insertion trial s ~ 7
[select deletion trial] [72 ]
Reverse-step 1
trial —x———xmin(l,1)
Place molecule at ry+; dr/(eV) probability 2 N+1 X
[delete molecule N+1] [1/(N+ . J
- /
Accept move min(1,y) ~Only difference from unbiased
[accept move] [min(1,1/%)] algorithm
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Biased Insertion/Deletion Trial Move
3. Analysis of Detailed Balance

Detailed balance
TT; T = 7 ;i

_pryold __ pyrhew
e +MM AL s mingl, ) _e” +'ﬁﬂ’wf+l),W/yx x min(1, 1)
g EAYAD 2" N+1 X

Remember
insert: (N+1) = N_,4+1 &V o AU U ol v Bu
delete: (N+1) = N4

Acceptance probability

*  &must be computed even when doing a deletion, since y depends upon it
=+ for deletion, € is computed for configuration after molecule 1s removed
=* for insertion, € is computed for configuration before molecule is inserted
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Biased Insertion/Deletion Trial Move
4. Comments

O Advantage is gained when ¢ is small and ¢ is large

* for hard spheres near freezing

= fu+In(V'/AN): 16 (difficult to accept deletion without bias)
~g: 107 (difficult to find acceptable insertion without bias)
<y 1

O Identifying and characterizing (computing €) the non-overlap
region may be difficult
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Force-Bias Trial Move
1. Specification

O Move atom in preferentially in
direction of lower energy

 select displacement or in a
cubic volume centered on

present position
* within this region, select with ‘
probability
eXp [-I-/lﬂf : 51'] el’B fxory elﬂ Jyort Favors 6r, in same direction as f,
p(or) = =
C(f) CCy
* C=cc,is anormalization
constant . Y.
c, = J‘ eﬂﬁfx5rxd(§rx)= S (ffx rmax)
_5rmax ﬁfx

Pangali, Rao, and Berne, Chem. Phys. Lett. 47 413 (1978)
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An Aside: Sampling from a Distribution

O Rejection method for sampling from a complex distribution p(x)
* write p(x) = Ca(x)b(x)

=¥ a(x) 1s a simpler distribution

=¥ b(x) lies between zero and unity
°* recipe
=¥ generate a uniform random variate U on (0,1)

=¥ generate a variate X on the distribution a(x)
= 1if U < b(X) then keep X
=* if not, try again with a new U and X
O We wish to sample from p(x) = e% for x = (-0,10)
* we know how to sample on e4™>*" for x = (x,,%)
-*x = x5 —¢qIn[U(0,1)]
* use rejection method with
- a(X) = e4(x-9)
=> b(x) =0 for x <-0 or x > +9; 1 otherwise

— 1.e., sample on a(x) and reject values outside desired range
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Force-Bias Trial Move
2. Analysis of Trial Probabilities

O Detailed specification of trial moves and and probabilities

Event Probability f Forward-step _old \
o - 0 d .
[reverse event] [reverse probability] tial p~ (Or)dr xmin(l, ¥)
probability
Select molecule k I/N S g
[select molecule k] [1/N] f )
Reverse-step pew,
. N trial P~ (Eon)dr xmin(l,1)
Move to r y p(or) probability B g
[move back to r°] [p™"(-0r)] ~ 7
Accept move min(1,)
[accept move] [min(1,1/y%)]




Force-Bias Trial Move
3. Analysis of Detailled Balance

FOVWClVd-Steppold (é‘r)dr Reverse-step new

trial xmin(1, ) —_— p (=or)dr «min(L, 1)

probability N probability N >

exp[+Aff-6r]  *PIx0% B0,
p(or)= —
c(r)
Detailed balance
£ & = % T

e_ﬁUOId drN 1 e+ﬂﬂfold or . e_ﬂUnew drN i e—/lﬂfnew.é'r | |
— X xmin(l, y) | = —X xmin(l,-)

Zy | N C(fold) Zy N C(fnew) p

Limiting  zopNygeV = L g=BUG™) N
distribution Zy

26
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Force-Bias Trial Move
3. Analysis of Detailled Balance

F orward-step old Reverse- Step new

trial (or)r X min(l, ) trial (-or)dr xmin(l,1)

probability N probability N ¢

p(ar) _ exp [+ﬂvﬂf ) 51.] _ elﬂfxé‘rx eﬂﬂfyé‘ry
C(f) CCy)
Detailed balance
TL; Tt = 7 T

_ ﬁUOId +1 ﬁfOId Sr _ ﬂUnew -2 ﬂfnew_ Sr

" 18 —xmin(l, ) |=© " 1. x min(l, 1)
,Z;v C(f“ ) /ZN N C(fneW) X
1ld e—ﬂU"Zd +AB1% 5y y=—1 ¢ —BU"Y —ABE"" . S
C(fo ) (fnew)

old
C(f ) e_ﬂ(Unew_Uold )—ﬂ.ﬂ(f”ew+f0]d )51,

A= Acceptance probability

C(fnew)




Force-Bias Trial Move
4. Comments

O Necessary to compute force both before and after move

old
C(f ) e_IB(Unew_Uold )—iﬂ(f”ew-l-f()ld )51,

-~ C ( fFrew )

O From definition of force f=-VU
. ey Lol _ L ££9Y. 5y
* A= 1/2 makes argument of exponent nearly zero
* A =0 reduces to unbiased case
O Force-bias makes Monte Carlo more like molecular dynamics
* example of hybrid MC/MD method
O Improvement in convergence by factor or 2-3 observed
* worth the effort?

28
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Association-Bias Trial Move
1. Specification

.. r.
O Low-density, strongly attracting molecules '\.
* when together, form strong associations that 7
take long to break °
* when .ap.art, are slow to find each other to form s g2
associations

* performance of simulation is a problem
O Perform moves that put one molecule
preferentially in vicinity of another

* suffer overlaps, maybe 50% of time

* compare to problem of finding associate only 1
time in (say) 1000

O Must also preferentially attempt reverse move

Attempt placemen
in this region, of
volume €V




Association-Bias Trial Move

1. Specification

O With equal probability, choose a move:

* Association
=¥ select a molecule that is not associated
=¥ select another molecule (associated or not)
=¥ put first molecule in volume eV in vicinity of
second
* Dis-association
=* select a molecule that is associated
=> move it to a random position anywhere in the system

30
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Association-Bias Trial Move
2. Analysis of Trial Probabilities

O Detailed specification of trial moves and and probabilities

31

4 )
Forward-step | -
: X min(l,
trzall? i NN &V (Lx)
L probaopility )
N
Reverse-step |
trial xmin(l, )
V4
L probability Wi 17 )

Event Probability
[reverse event] [reverse probability]
Select molecule k 1/Nun
[select molecule k] [1/(Nassoct1)]
Move to r*" 1/ (Nassocev) (*)
[move back to r°] [1/V]
Accept move min(1,)

[accept move]

[min(1,1/y)]

(*) incorrect




Association-Bias Trial Move
3. Analysis of Detailed Balance

Forward-step 1 Reverse-step 1 |
trial xmin(l, y) trial xmin(l,-")
X
probability NulNotV probability (Na +1)V
Detailed balance
i 7L = % i
e P v dﬁv 1 : e AU M 1 .
~xmin(l, y) |= xmin(l,-)
Ay NNg Zy LW +DY g

Acceptance probability

32
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Association-Bias Trial Move
4. Comments

N -~ new _rrold
4N ge pUTT-UT)

O This is incorrect! Pt

O Need to account for full probability of positioning in r""

This region has extra probability of being
selected (in vicinity of two molecules)

* must look in local environment of trial position to see if it lies also
in the neighborhood of other atoms
=¥ add a 1/eV for each atom
O Algorithm requires to identify or keep track of number of
associated/unassociated molecules
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Using an Approximation Potential
1. Specification

O Evaluating the potential energy is the most time-consuming
part of a simulation

O Some potentials are especially time-consuming, €.g.
* three-body potentials

* Ewald sum

O Idea;:

* move system through Markov chain using an approximation to
the real potential (cheaper to compute)

* atintervals, accept or reject entire subchain using correct
potential

*—=0—0 0000000
e

True potential Approximate True potential




35

Approximation Potential
2. Analysis of Trial Probabilities

O What are m;; and t;;?

o—0—0—3)—0O0—0O0—0O—>0O0—0O—®
State 1 State j

O Given that each elementary Markov step obeys detailed
balance for the approximate potential...

...one can show that the “super-step” 1 = j also obeys detailed
balance (for the approximate potential)

a(n) _ —a_(n)
T =TT

* very hard to analyze without this result

=> would have to consider all paths from 1 to j to get transition probability
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Approximation Potential
3. Analysis of Detailed Balance

O Formulate acceptance criterion to satisfy detailed balance for
the real potential

7[,7[15" ) min(1, y) = 7 7z(” ) min(1,1/ ) Approximate-potential
detailed balance

4 a . (n) a_.(n)
[ (”) ]mln(l, X)=7; 7[(" ) min(1,1/ y) iy~ =i

l

o—0—0—3)—0O0—0O0—0O—>0O0—0O—®
State 1 State j
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Approximation Potential
3. Analysis of Detailed Balance

O Formulate acceptance criterion to satisfy detailed balance for
the real potential

7[,7[15" ) min(1, y) = 7 7z(” ) min(1,1/ ) Approximate-potential
detailed balance

a_.(n) a_.(n)
[ / 77(%) ]mln(l,;() T gy’) min(L,1/ y) iy~ =i

State 1 State j
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Approximation Potential
3. Analysis of Detailed Balance

O Formulate acceptance criterion to satisfy detailed balance for
the real potential

7[,7[15") min(l, ) =7 ﬂ(”) min(1,1/ y)

[ / 77(%) ]mln(l,;() T gy’) min(1,1/ })

Close to 1 if approximate potential is good
description of true potential

State 1 State j




Summary

O Good Monte Carlo keeps the system moving among a wide
variety of states
O At times sampling of wide distribution is not done well

* many states of comparable probability not easily reached
* few states of high probability hard to find and then escape
O Biasing the underlying transition probabilities can remedy
problem
* add bias to underlying TPM

* remove bias in acceptance step so overall TPM is valid

O Examples
* insertion/deletion bias in GCMC
* force bias
* association bias

* using an approximate potential
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