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Review 
¡ Monte Carlo simulation 

•  Markov chain to generate elements of ensemble with proper 
distribution 

¡ Metropolis algorithm 
•  relies on microscopic reversibility 
•  two parts to a Markov step 

➺ generate trial move (underlying transition probability matrix) 
➺ decide to accept move or keep original state 

¡ Determination of acceptance probabilities 
•  detailed analysis of forward and reverse moves 
•  we examined molecule displacement and volume-change trials 

i ij j jiπ π π π=
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Performance Measures 

¡ How do we improve the performance of a MC simulation? 
•  characterization of performance 
•  means to improve performance 

¡ Return to our consideration of a general Markov process 
•  fixed number of well defined states 
•  fully specified transition-probability matrix 
•  use our three-state prototype 

¡ Performance measures 
•  rate of convergence 
•  variance in occupancies 
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Rate of Convergence 1. 

¡ What is the likely distribution of states after a run of finite length? 
•  Is it close to the limiting distribution? 

•  We can apply similarity transforms to understand behavior of 
➺ eigenvector equation 
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Rate of Convergence 1. 

¡ What is the likely distribution of states after a run of finite length? 
•  Is it close to the limiting distribution? 

•  We can apply similarity transforms to understand behavior of 
➺ eigenvector equation 
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Rate of Convergence 2. 

¡ Likely distribution after finite run 

¡ Convergence rate determined by magnitude of other 
eigenvalues 
•  very close to unity indicates slow convergence 
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Occupancy Variance 1. 

¡ Imagine repeating Markov sequence many 
times (Là∞), each time taking a fixed 
number of steps, M 
•  tabulate histogram for each sequence;  
•  examine variances in occupancy fraction 

•  through propagation of error, the occupancy 
(co)variances sum to give the variances in the 
ensemble averages; e.g. (for a 2-state system) 

•  we would like these to be small  
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Occupancy Variance 2. 

¡ A formula for the occupancy (co)variance is known 

•  right-hand sides independent of M 
•  standard deviation decreases as  

2 2 2 1          variance

  covariance
i i i ii

i j i j i ij j ji
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Example Performance Values 

0.0 0.5 0.5
0.25 0.5 0.25
0.5 0.5 0.0

⎛ ⎞
⎜ ⎟Π = ⎜ ⎟⎜ ⎟⎝ ⎠

0.42 0.33 0.25
0.17 0.66 0.17
0.25 0.33 0.42

⎛ ⎞
⎜ ⎟Π = ⎜ ⎟⎜ ⎟⎝ ⎠

0.97 0.02 0.01
0.01 0.98 0.01
0.01 0.02 0.97

⎛ ⎞
⎜ ⎟Π = ⎜ ⎟⎜ ⎟⎝ ⎠

0 1 0
0.5 0 0.5
0 1 0

⎛ ⎞
⎜ ⎟Π = ⎜ ⎟⎜ ⎟⎝ ⎠

Metropolis 

Barker 

Inefficient 

Most efficient 

( )0.25 0.5 0.25π =Limiting distribution 

 λ = 1 0.96 0.96( )
9.2 6.1 3.1
6.1 12.2 6.1
3.1 6.1 9.2

− −⎛ ⎞
⎜ ⎟Σ = − −⎜ ⎟⎜ ⎟− −⎝ ⎠

 λ = 1 0.33 0.17( )
0.30 0.25 0.05
0.25 0.50 0.25
0.05 0.25 0.30

− −⎛ ⎞
⎜ ⎟Σ = − −⎜ ⎟⎜ ⎟− −⎝ ⎠

 λ = 1 0 −1( )
0.125 0 0.125
0 0 0
0.125 0 0.125

−⎛ ⎞
⎜ ⎟Σ = ⎜ ⎟⎜ ⎟−⎝ ⎠

 λ = 1 0 −0.5( )
0.10 0.125 0.02
0.125 0.25 0.125
0.02 0.125 0.10

−⎛ ⎞
⎜ ⎟Σ = − −⎜ ⎟⎜ ⎟−⎝ ⎠
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Example Performance Values 

0 0.99 0.01 0
0.99 0 0 0.01
0 0.01 0 0.99
0 0.01 0.99 0

⎛ ⎞
⎜ ⎟
⎜ ⎟Π =
⎜ ⎟
⎜ ⎟
⎝ ⎠

( )0.25 0.25 0.25 0.25π =

( )1 0.98 0.99 0.99λ = − −

6.2 6.2 6.2 6.2
6.2 6.2 6.2 6.2
6.2 6.2 6.2 6.2
6.2 6.2 6.2 6.2

− −⎛ ⎞
⎜ ⎟− −⎜ ⎟Σ =
⎜ ⎟− −
⎜ ⎟− −⎝ ⎠

Lots of movement 1 à 2; 3 à 4 

Little movement (1,2) à (3,4) 

Limiting distribution 

Eigenvalues 

Covariance matrix 
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Heuristics to Improve Performance 

¡ Keep the system moving 
•  minimize diagonal elements of probability matrix 
•  avoid repeated transitions among a few states  

¡ Typical physical situations where convergence is poor 
•  large number of equivalent states with poor transitions between 

regions of them 
➺ entangled polymers 

•  large number of low-probability states and a few high-probability 
states 
➺ low-density associating systems 

Γ	



Low, nonzero 
probability region 

High 
probability 
region 

Bottleneck 

Phase space 
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Biasing the Underlying Markov Process 

¡ Detailed balance for trial/acceptance Markov process 
•     

¡ Often it happens that τij is small while χ is large (or vice-versa) 
•  even if product is of order unity, πij will be small because of min() 

¡ The underlying TPM can be adjusted (biased) to enhance 
movement among states 
•  bias can be removed in reverse trial probability, or acceptance 
•  require in general 

•  ideally, χ will be unity (all trials accepted) even for a “large” change 
➺ rarely achieve this level of improvement 

•  requires coordination of forward and reverse moves 

min(1, ) min(1,1/ )i ij j jiπ τ χ π τ χ=

j ji

i ij

π τ
χ

π τ
=
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Example:  Biased Insertion in GCMC 

¡ Grand-canonical Monte Carlo (µVT) 
•  fluctuations in N require insertion/deletion trials 
•  at high density, insertions may be rarely accepted 

➺ τij is small for j a state having additional but non-overlapping molecule 

•  at high chemical potential, limiting distribution strongly favors 
additional molecules 
➺ χ is large for (N+1) state with no overlap 

•  apply biasing to improve acceptance 
•  first look at unbiased algorithm 

Neβµπ ∝
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Insertion/Deletion Trial Move  
1. Specification 

¡ Gives new configuration of same volume but different number of 
molecules 

¡ Choose with equal probability: 
•  insertion trial:  add a molecule to a randomly selected position 
•  deletion trial: remove a randomly selected molecule from the system 

¡ Limiting probability distribution 
•  grand-canonical ensemble 

( ) ( )1 1 NU NN N
dN e d

β βµ
π

− +
=
Ξ Λ

r
r r
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Insertion/Deletion Trial Move  
2. Analysis of Trial Probabilities 

¡ Detailed specification of trial moves and and probabilities 

Event
[reverse event]

Probability
[reverse probability]

Select insertion trial
[select deletion trial]

½
[½ ]

Place molecule at rN+1
[delete molecule N+1]

dr/V
[1/(N+1)]

Accept move
[accept move]

min(1,χ)
[min(1,1/χ)]

Forward-step 
trial 
probability 

1 min(1, )
2
d
V

χ× ×r

Reverse-step 
trial 
probability 

11 1 min(1, )
2 1N χ× ×

+

χ is formulated to satisfy 
detailed balance 
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Insertion/Deletion Trial Move 
3.  Analysis of Detailed Balance 

Detailed balance 

πi πij πj πji = 

Limiting 
distribution ( ) ( )1 1 NU NN N

dN e d
β βµ

π
− +

=
Ξ Λ

r
r r

Forward-step 
trial 
probability 

1 min(1, )
2
d
V

χ× ×r
Reverse-step 
trial 
probability 

11 1 min(1, )
2 1N χ× ×

+
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Insertion/Deletion Trial Move 
3.  Analysis of Detailed Balance 

Detailed balance 

( 1) 1
1

( 1)
1 1 1min(1, ) min(1, )
2 2 1

old newU N N U N N

dN d N
e d d e d

V N

β βµ β βµ

χχ
− + − + + +

+
⎡ ⎤ ⎡ ⎤× × = × ×⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦ΞΛ ΞΛ

r r r

πi πij πj πji = 

Forward-step 
trial 
probability 

1 min(1, )
2
d
V

χ× ×r
Reverse-step 
trial 
probability 

11 1 min(1, )
2 1N χ× ×

+

Limiting 
distribution ( ) ( )1 1 NU NN N

dN e d
β βµ

π
− +

=
Ξ Λ

r
r r
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Insertion/Deletion Trial Move 
3.  Analysis of Detailed Balance 

Detailed balance 

( 1) 1
1

( 1)
1 1 1min(1, ) min(1, )
2 2 1

old newU N N U N N

dN d N
e d d e d

V N

β βµ β βµ

χχ
− + − + + +

+
⎡ ⎤ ⎡ ⎤× × = × ×⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦ΞΛ ΞΛ

r r r

= 

Forward-step 
trial 
probability 

1 min(1, )
2
d
V

χ× ×r
Reverse-step 
trial 
probability 

11 1 min(1, )
2 1N χ× ×

+

1 1
( 1)

old newU Ue e
V N

β β βµχ− − −=
Λ +

( )
( 1)

new oldU UV e
N

β βµχ − − +=
Λ + Acceptance probability 

Remember 
insert: (N+1) = Nold+1 
delete: (N+1) = Nold 

πi πij πj πji 
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Biased Insertion/Deletion Trial Move  
1. Specification 

¡ Trial-move algorithm.  Choose with 
equal probability: 
•  Insertion 

➺ identify region where insertion will not 
lead to overlap 

➺ let the volume of this region be εV 
➺ place randomly somewhere in this region 

•  Deletion 
➺ select any molecule and delete it 

Insertable region 
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Biased Insertion/Deletion Trial Move  
2. Analysis of Trial Probabilities 

¡ Detailed specification of trial moves and and probabilities 

Event
[reverse event]

Probability
[reverse probability]

Select insertion trial
[select deletion trial]

½
[½ ]

Place molecule at rN+1
[delete molecule N+1]

dr/(εV)
[1/(N+1)]

Accept move
[accept move]

min(1,χ)
[min(1,1/χ)]

Forward-step 
trial 
probability 

1 min(1, )
2
d
V

χ
ε

× ×r

Reverse-step 
trial 
probability 

11 1 min(1, )
2 1N χ× ×

+

Only difference from unbiased 
algorithm 
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Biased Insertion/Deletion Trial Move 
3.  Analysis of Detailed Balance 

Detailed balance 

( 1) 1
1

( 1)
1 1 1min(1, ) min(1, )
2 2 1

old newU N N U N N

dN d N
e d d e d

V N

β βµ β βµ

χχ
ε

− + − + + +

+
⎡ ⎤ ⎡ ⎤× × = × ×⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦ΞΛ ΞΛ

r r r

πi πij πj πji = 

( )
( 1)

new oldU UV e
N

β βµεχ − − +=
Λ + Acceptance probability 

Remember 
insert: (N+1) = Nold+1 
delete: (N+1) = Nold 

 

•  ε must be computed even when doing a deletion, since χ depends upon it 
➺ for deletion, ε is computed for configuration after molecule is removed 
➺ for insertion, ε is computed for configuration before molecule is inserted 
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¡ Advantage is gained when ε is small and        is large 
•  for hard spheres near freezing  

➺                                        (difficult to accept deletion without bias) 
➺                                        (difficult to find acceptable insertion without bias) 
➺   

¡ Identifying and characterizing (computing ε) the non-overlap 
region may be difficult 

Biased Insertion/Deletion Trial Move 
4.  Comments 

( 1)
UVe e

N
βµ βχ ε − Δ=

Λ +

eβµ

ln( / ) 16V Nβµ + Λ :
710ε −:

1χ :
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Force-Bias Trial Move  
1. Specification 

¡ Move atom in preferentially in 
direction of lower energy 
•  select displacement       in a 

cubic volume centered on 
present position 

•  within this region, select with 
probability 

•  C = cxcy is a normalization 
constant  

[ ]
( )

exp
( )

y yx x f rf r

x y

e ep
C c c

λβ δλβ δλβ δδ + ⋅
= =

f r
r

f

f 

δ r

Favors δry in same direction as fy 

max

max

maxsinh( )( )x x

r
f r x

x x
xr

f rc e d r
f

δ
λβ δ

δ

λβ δδ
λβ

+

−

= =∫

max2 rδ

Pangali, Rao, and Berne, Chem. Phys. Lett. 47 413 (1978) 
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An Aside:  Sampling from a Distribution 
¡ Rejection method for sampling from a complex distribution p(x) 

•  write p(x) = Ca(x)b(x) 
➺ a(x) is a simpler distribution 
➺ b(x) lies between zero and unity 

•  recipe 
➺ generate a uniform random variate U on (0,1) 
➺ generate a variate X on the distribution a(x) 
➺ if U < b(X) then keep X 
➺ if not, try again with a new U and X 

¡ We wish to sample from p(x) = eqx for x = (-δ,+δ) 
•  we know how to sample on eq(x-x0) for x = (x0,∞) 

➺   
•  use rejection method with 

➺ a(x) = eq(x-δ) 
➺ b(x) = 0 for x < -δ or x > +δ; 1 otherwise 

–  i.e., sample on a(x) and reject values outside desired range 

0 ln[ (0,1)]x x q U= −
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Force-Bias Trial Move  
2. Analysis of Trial Probabilities 

¡ Detailed specification of trial moves and and probabilities 

Event
[reverse event]

Probability
[reverse probability]

Select molecule k
[select molecule k]

1/N
[1/N]

Move to rnew

[move back to rold]
pold(δr)

[pnew(-δr)]

Accept move
[accept move]

min(1,χ)
[min(1,1/χ)]

Forward-step 
trial 
probability 

( ) min(1, )
oldp d
N
δ χ×r r

Reverse-step 
trial 
probability 

1( ) min(1, )
newp d

N χ
δ− ×r r



26 Force-Bias Trial Move 
3.  Analysis of Detailed Balance 

Detailed balance 

( ) ( )
11 1min(1, ) min(1, )

old old new newU N U N

old new
N N

e d e e d e
Z N Z NC C

β λβ δ β λβ δ

χχ
− + ⋅ − − ⋅⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥× × = × ×
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

f r f rr r
f f

πi πij πj πji = 

Limiting 
distribution 

( )1( )
NN N U N

N
d e d

Z
βπ −= rr r r

Forward-step 
trial 
probability 

( ) min(1, )
oldp d
N
δ χ×r r Reverse-step 

trial 
probability 

1( ) min(1, )
newp d

N χ
δ− ×r r

[ ]
( )

exp
( )

y yx x f rf r

x y

e ep
C c c

λβ δλβ δλβ δδ + ⋅
= =

f r
r

f



27 Force-Bias Trial Move 
3.  Analysis of Detailed Balance 

( ) ( )
1 1old old new new

old new
U U

C C
e eβ λβ δ β λβ δχ− + ⋅ − − ⋅=f r f r

f f

( )
( )

( ) ( )
old new old new old

new

C U U
C

e β λβ δχ − − − + ⋅=
f f f r
f

Acceptance probability 

Detailed balance 

( ) ( )
11 1min(1, ) min(1, )

old old new newU N U N

old new
N N

e d e e d e
Z N Z NC C

β λβ δ β λβ δ

χχ
− + ⋅ − − ⋅⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥× × = × ×
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

f r f rr r
f f

πi πij πj πji = 

Forward-step 
trial 
probability 

( ) min(1, )
oldp d
N
δ χ×r r Reverse-step 

trial 
probability 

1( ) min(1, )
newp d

N χ
δ− ×r r

[ ]
( )

exp
( )

y yx x f rf r

x y

e ep
C c c

λβ δλβ δλβ δδ + ⋅
= =

f r
r

f
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¡ Necessary to compute force both before and after move 

¡ From definition of force 
•    
•  λ = 1/2 makes argument of exponent nearly zero  
•  λ = 0 reduces to unbiased case 

¡ Force-bias makes Monte Carlo more like molecular dynamics 
•  example of hybrid MC/MD method 

¡ Improvement in convergence by factor or 2-3 observed 
•  worth the effort? 

Force-Bias Trial Move 
4.  Comments 

( )
( )

( ) ( )
old new old new old

new

C U U
C

e β λβ δχ − − − + ⋅=
f f f r
f

1
2 ( )new old new oldU U δ≈ − + ⋅f f r

U= −∇f
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Association-Bias Trial Move  
1. Specification 

¡ Low-density, strongly attracting molecules 
•  when together, form strong associations that 

take long to break 
•  when apart, are slow to find each other to form 

associations 
•  performance of simulation is a problem 

¡ Perform moves that put one molecule 
preferentially in vicinity of another 
•  suffer overlaps, maybe 50% of time 
•  compare to problem of finding associate only 1 

time in (say) 1000 
¡ Must also preferentially attempt reverse move 

Attempt placement 
in this region, of 
volume εV 
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Association-Bias Trial Move  
1. Specification 

¡ With equal probability, choose a move: 
•  Association 

➺ select a molecule that is not associated 
➺ select another molecule (associated or not) 
➺ put first molecule in volume eV in vicinity of 

second 

•  Dis-association 
➺ select a molecule that is associated 
➺ move it to a random position anywhere in the system 
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Association-Bias Trial Move  
2. Analysis of Trial Probabilities 

¡ Detailed specification of trial moves and and probabilities 

Event
[reverse event]

Probability
[reverse probability]

Select molecule k
[select molecule k]

1/Nun
[1/(Nassoc+1)]

Move to rnew

[move back to rold]
1/(NassocεV) (*)

[1/V]

Accept move
[accept move]

min(1,χ)
[min(1,1/χ)]

Forward-step 
trial 
probability 

1 min(1, )
u aN N V

χ
ε

×

Reverse-step 
trial 
probability 

11 min(1, )
( 1)aN V χ×

+

(*) incorrect 
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Association-Bias Trial Move 
3.  Analysis of Detailed Balance 

( )
( 1)

new old
a
a

N U U
uN N e βχ ε − −

+= Acceptance probability 

Detailed balance 

11 1min(1, ) min(1, )
( 1)

old newU N U N

N u a N a

e d e d
Z N N V Z N V

β β

χχ
ε

− −⎡ ⎤ ⎡ ⎤
× = ×⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦

r r

πi πij πj πji = 

Forward-step 
trial 
probability 

Reverse-step 
trial 
probability 

1 min(1, )
u aN N V

χ
ε

× 11 min(1, )
( 1)aN V χ×

+
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¡ This is incorrect! 

¡ Need to account for full probability of positioning in rnew 

•  must look in local environment of trial position to see if it lies also 
in the neighborhood of other atoms 
➺ add a 1/εV for each atom 

¡ Algorithm requires to identify or keep track of number of 
associated/unassociated molecules 

Association-Bias Trial Move 
4.  Comments 

( )
1

new old
a
a

N U U
uN N e βχ ε − −

+=

This region has extra probability of being 
selected (in vicinity of two molecules) 
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Using an Approximation Potential 
1. Specification 

¡ Evaluating the potential energy is the most time-consuming 
part of a simulation 

¡ Some potentials are especially time-consuming, e.g. 
•  three-body potentials 
•  Ewald sum 

¡ Idea:   
•  move system through Markov chain using an approximation to 

the real potential (cheaper to compute) 
•  at intervals, accept or reject entire subchain using correct 

potential 

True potential Approximate True potential 
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Approximation Potential    
2. Analysis of Trial Probabilities 

¡ What are πij and πji? 

¡ Given that each elementary Markov step obeys detailed 
balance for the approximate potential…  
•  …one can show that the “super-step” i à j also obeys detailed 

balance (for the approximate potential) 
•    
•  very hard to analyze without this result 

➺ would have to consider all paths from i to j to get transition probability 

1 2 3 n 
State i State j 

( ) ( )n na a
i jij jiπ π π π=
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Approximation Potential 
3. Analysis of Detailed Balance 

¡ Formulate acceptance criterion to satisfy detailed balance for 
the real potential 

1 2 3 n 
State i State j 

( ) ( )n na a
i jij jiπ π π π=

( ) ( )min(1, ) min(1,1/ )n n
i jij jiπ π χ π π χ= Approximate-potential 

detailed balance 

( ( )) min(1, ) min(1,1/ )
a
j n

jia
i

n
i j jiπ χ π π
π

π χ
π

⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠

=
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Approximation Potential 
3. Analysis of Detailed Balance 

¡ Formulate acceptance criterion to satisfy detailed balance for 
the real potential 

1 2 3 n 
State i State j 

( ) ( )n na a
i jij jiπ π π π=

( ) ( )min(1, ) min(1,1/ )n n
i jij jiπ π χ π π χ= Approximate-potential 

detailed balance 

( ( )) min(1, ) min(1,1/ )
a
j n

jia
i

n
i j jiπ χ π π
π

π χ
π

⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠

=
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Approximation Potential 
3. Analysis of Detailed Balance 

¡ Formulate acceptance criterion to satisfy detailed balance for 
the real potential 

1 2 3 n 
State i State j 

( ) ( )min(1, ) min(1,1/ )n n
i jij jiπ π χ π π χ=

Close to 1 if approximate potential is good 
description of true potential 

( ( )) min(1, ) min(1,1/ )
a
j n

jia
i

n
i j jiπ χ π π
π

π χ
π

⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠

=

a
j i
a

ij

π πχ
ππ

= ×
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Summary 
¡ Good Monte Carlo keeps the system moving among a wide 

variety of states 
¡ At times sampling of wide distribution is not done well 

•  many states of comparable probability not easily reached 
•  few states of high probability hard to find and then escape 

¡ Biasing the underlying transition probabilities can remedy 
problem 
•  add bias to underlying TPM 
•  remove bias in acceptance step so overall TPM is valid 

¡ Examples 
•  insertion/deletion bias in GCMC 
•  force bias 
•  association bias 
•  using an approximate potential 


