
1. Show	that	the	Verlet	and	velocity	Verlet	algorithms	lead	to	identical	trajectories.	
	
Velocity	Verlet:	

   

(A)  r(t +δ t) = r(t)+ v(t)δ t + 1
2m F(t)δ t2

(B)  v(t +δ t) = v(t)+ 1
2m F(t)+F(t +δ t)⎡⎣ ⎤⎦δ t

		

Then,	from	(B),	evaluated	for	the	previous	time	step	

   (C)  v(t) = v(t −δ t)+ 1
2m F(t −δ t)+F(t)⎡⎣ ⎤⎦δ t 		

Insert	(C)	into	(A)	for	v(t):	

   

(D)  r(t +δ t) = r(t)+ v(t −δ t)+ 1
2m F(t −δ t)+F(t)⎡⎣ ⎤⎦δ t⎡⎣ ⎤⎦δ t + 1

2m F(t)δ t2

= r(t)+ v(t −δ t)δ t + 1
2m F(t −δ t)δ t2 + 1

m F(t)δ t2

	

Also,	from	(A),	one	time	step	previous:	

   (E)  r(t) = r(t −δ t)+ v(t −δ t)δ t + 1
2m F(t −δ t)δ t2 	

Subtract	(E)	from	respective	sides	of	(D):	

   

(F)  r(t +δ t)− r(t) = r(t)+ v(t −δ t)δ t + 1
2m F(t −δ t)δ t2 + 1

m F(t)δ t2

− r(t −δ t)+ v(t −δ t)δ t + 1
2m F(t −δ t)δ t2( )

 r(t +δ t)− r(t) = r(t)− r(t −δ t)+ 1
m F(t)δ t2

r(t +δ t) = 2r(t)− r(t −δ t)+ 1
m F(t)δ t2

	

We	recognize	the	last	line	as	the	formula	for	the	Verlet	algorithm.		Q.E.D.	
	 	



2. Derive	the	leap-frog	algorithm	by	using	Taylor	expansions	for	  v(t + Δt
2 ) ,	  v(t − Δt

2 ) ,	

  x(t + Δt) ,	and	  x(t) .	
	

  

(A) v(t + δ t
2 ) = v(t)+ 1

m F(t) δ t
2 +O(δ t)2

(B) v(t − δ t
2 ) = v(t)− 1

m F(t) δ t
2 +O(δ t)2

(C) r(t +δ t) = r(t)+ v(t)δ t +O(δ t)2

(D) r(t −δ t) = r(t)− v(t)δ t +O(δ t)2

		

	
(A)	and	(C)	combine	to	give:	
	

  

(E) r(t +δ t) = r(t)+ v(t + δ t
2 )− 1

m F(t) δ t
2 +O(δ t)2( )⎡

⎣
⎤
⎦δ t +O(δ t)2

= r(t)+ v(t + δ t
2 )δ t +O(δ t)2

	

	
while	(B)	and	(D)	combine	to	give:	
	

  

(F) v(t + δ t
2 ) = v(t − δ t

2 )− − 1
m F(t) δ t

2 +O(δ t)2( )⎡
⎣

⎤
⎦ +

1
m F(t) δ t

2 +O(δ t)2

= v(t − δ t
2 )+ 1

m F(t)δ t +O(δ t)2
	

	
(E)	and	(F)	when	truncated	at	O(δt)	are	the	leap-frog	equations.		Q.E.D.	
	
	
	 	



3. One	should	be	very	careful	with	calculation	of	diffusion	constant	via	the	mean	
squared	displacement	when	periodic	boundaries	are	used.	Why?	

	
The	MSD	requires	calculation	of	the	distance	a	particle	has	traveled	at	time	t	relative	
to	an	origin	at	t	=	0.		Whenever	the	particle	undergoes	the	central	image	
transformation	when	it	leaves	the	box,	the	total	net	distance	it	traveled	is	no	longer	
given	by	a	simple	difference	from	r(0).		The	amount	it	was	displaced	during	the	
central	image	move	must	be	added	back	to	its	current	position,	before	taking	the	
difference.	So	the	total	net	central-image	shifting	done	to	the	atom	must	be	tracked	
during	its	trajectory.		
	
An	alternative	is	to	not	use	the	central-image	algorithm	at	all,	which	is	possible	if	the	
minimum-image	is	programmed	to	allow	for	this	(i.e.,	handling	transformation	by	
more	than	one	box	length).	
	 	



4. The	accompanying	file	contains	data	for	the	trajectory	of	a	single	Lennard-Jones	
atom	in	an	NVE	simulation.	The	first	three	columns	list	the	x,	y,	z	coordinates	of	
the	atom	at	each	MD	step,	and	the	last	three	columns	are	the	corresponding	
velocity	components.	The	time	step	is	0.01	(in	LJ	units	where	σ	and	ε/k	are	
unity).	

	
Averages	for	temperature	and	pressure	are	0.925	and	0.659,	respectively	(in	
Lennard-Jones	units).	The	simulated	system	contains	2700	atoms	at	a	density	of	
0.8.	
	
Compute	the	velocity	autocorrelation	function	from	these	data,	and	estimate	the	
diffusivity	from	this.	Compare	your	result	to	the	following	correlation	in	terms	of	
pressure	and	temperature.	

 
  
log10 D = 0.05+ 0.07 p − 1.04+ 0.1p

T
  

	
Optional bonus question: evaluate and plot the mean-squared displacement as a 
function of time, and examine the limiting (long-time) slope to estimate the 
diffusivity from this result. Beware of the issue in problem 3. 
 
Note: even though there appears to be a lot of data in the file, it really is not sufficient 
to obtain results with good precision, so do not worry too much if your results seem 
less than perfect.  

	
See	Mathematica	file	for	analysis	of	data.	
	
Integration	of	velocity	autocorrelation	function	gives	D	of	about	0.060	(LJ	units).	We	
do	not	have	repeated	data	to	evaluate	uncertainty.	
	
Correlation	gives	0.079.	


