
CE 530 

Assignment #4 Solution 

1. Evaluate the integral of f(x) = 3x2 for x = 0..1 using Monte Carlo integration with 
importance sampling. Use the following weighting functions 
(a) p(x) = 1 
(b) p(x) = 2x 
(c) p(x) = 4x3 

Pick a sample size and perform multiple runs of your program (taking care not to 
begin all runs with the same random-number seed), taking statistics to compute the 
variance of the values given by the runs. Compare these results with the variances 
you would expect from the formula given by Frenkel and Smit (and in class).  

 

A Java code for completing this assignment follows below.  It makes use of the 
Quadrature, Function, and MyRandom classes in the montecarlo package. 

The Java code below simply sets up an instance of Quadrature with the desired integrand 
and specifying that it use 1000 sample points to evaluate the integral.  It then sets up the 
weighting functions and random-number generators to sample on these distributions.  It 
calls the sampling method of Quadrature 1000 times and it computes the standard 
deviation of the results.  The following table summarizes the outcomes. 

 

Weight Observed Average Observed Std. 
Deviation 

Standard deviation from 
Frenkel & Smit formula 

1.0 0.9997 0.028 0.028 

2x 0.99997 0.011 0.011 

4x3 1.0002 0.011 0.011 

 

The observed standard deviation is in perfect agreement with the theoretical value.   



import montecarlo.*; 

import java.awt.*; 

import java.applet.*; 

 

//Evaluate the integral of f(x) = 3x^2 for x = 0..1 using Monte Carlo integration with importance 
sampling.   

//Use the following weighting functions 

//   (a) p(x) = 1 

//   (b) p(x) = 2x 

//   (c) p(x) = 4x^3 

//Pick a sample size and perform multiple runs of your program (taking care not to begin all  

//runs with the same random-number seed), taking statistics to compute the variance of the  

//values given by the runs.  Compare these results with the variances you would expect from  

//the formula given by Frenkel and Smit (and in class). 

 

//Output goes to the console (nothing shows up in the applet window)  

 

public class Assignment5_1 extends Applet { 

 

  //The Quadrature class can perform various types of numerical integrations 

  //on its function.  We create it here with its function defined as 3x^2 

    Quadrature quad = new Quadrature(new Function() { 

        public double f(double x) {return 3.0*x*x;} 

    }); 

     

  //Set up the weight functions and random number generators based on them 

    Function p1 = new Function() {public double f(double x) {return 2*x;}}; 

    Function p3 = new Function() {public double f(double x) {return 4*x*x*x;}}; 

    MyRandom r1 = new MyRandom(new Function() {public double f(double x) {return Math.sqrt(x);}}); 

    MyRandom r3 = new MyRandom(new Function() {public double f(double x) {return Math.pow(x,1./4.);}}); 

     



  //Number of sample points in each MC calculation 

    int nSample = 1000; 

     

  //Number of times MC calculation is repeated to measure error statistics 

    int nRepeat = 1000; 

     

    public void start() { 

        quad.setN(nSample); 

         

      //Unbiased MC calculation 

        double sum1 = 0.0; 

        double sum2 = 0.0; 

        System.out.println("Unbiased MC calculation..."); 

        for(int i=0; i<nRepeat; i++) { 

            double value = quad.simpleMC(); 

            sum1 += value; 

            sum2 += value*value; 

        } 

        double average = sum1/(double)nRepeat; 

        double std = Math.sqrt(sum2/(double)nRepeat - average*average); 

        System.out.println("Unbiased average:  "+average); 

        System.out.println("Unbiased std dev: "+std);    

 

      //Linear-bias MC calculation 

        System.out.println(""); 

        System.out.println("Linear-bias MC calculation..."); 

        sum1 = sum2 = 0.0; 

        for(int i=0; i<nRepeat; i++) { 

            double value = quad.importanceMC(r1, p1); 

            sum1 += value; 

            sum2 += value*value; 



        } 

        average = sum1/(double)nRepeat; 

        std = Math.sqrt(sum2/(double)nRepeat - average*average); 

        System.out.println("Unbiased average:  "+average); 

        System.out.println("Unbiased std dev: "+std);    

 

      //Cubic-bias MC calculation 

        System.out.println(""); 

        System.out.println("Cubic-bias MC calculation..."); 

        sum1 = sum2 = 0.0; 

        for(int i=0; i<nRepeat; i++) { 

            double value = quad.importanceMC(r3, p3); 

            sum1 += value; 

            sum2 += value*value; 

        } 

        average = sum1/(double)nRepeat; 

        std = Math.sqrt(sum2/(double)nRepeat - average*average); 

        System.out.println("Unbiased average:  "+average); 

        System.out.println("Unbiased std dev: "+std);    

    } 

} 

 
 

 

 

 

 

 

 



 
2. Here is a transition probability matrix for a four-state system: 

 

0.5 0.1 0.1 0.3
0.25 0.25 0.25 0.25
0.1 0.2 0.3 0.4
0.2 0.1 0.35 0.35

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

(a) Compute analytically the limiting distribution corresponding to these transition 
probabilities. Use an algebraic approach, in which you solve the balance 
equations and normalization, as presented in class. 

(b) Repeat (a), but by computing the appropriate normalized left eigenvector of the 
matrix. 

(c) Do the transition probabilities and the limiting distribution obey detailed balance? 
(d) Perform a random walk for this set of transition probabilities using the Markov 

process applet here: 
http://www.eng.buffalo.edu/~kofke/applets/MarkovApplet1.html. Take a screen 
shot of the distribution after many steps, and submit that with your assignment. 
 

(a) We solve these equations: 
 

0.5 x@1D + 0.25 x@2D + 0.1 x@3D + 0.2 x@4D ä x@1D
0.1 x@1D + 0.25 x@2D + 0.2 x@3D + 0.1 x@4D ä x@2D
0.1 x@1D + 0.25 x@2D + 0.3 x@3D + 0.35 x@4D ä x@3D
x@1D + x@2D + x@3D + x@4D ä 1  

 
where x[i] is the unknown πi. The solution is 
 8x@1D Æ 0.259501, x@2D Æ 0.147936, x@3D Æ 0.257458, x@4D Æ 0.335104< 

 
(b) The equation for the left eigenvectors is 
 

 x
TΠ = λxT   

 
If you prefer, this can be written as the conventional (right) eigenvectors of the 
transpose of the transition-probability matrix 



 

xTΠ = λxT

xTΠ( )T
= λxT( )T

Π( )T
xT( )T

= λ xT( )T

ΠT x = λx

 

 
The eigenvalues and eigenvectors are 
 

In[102]:= pi êê TableForm

Out[102]//TableForm=
0.5 0.1 0.1 0.3
0.25 0.25 0.25 0.25
0.1 0.2 0.3 0.4
0.2 0.1 0.35 0.35

In[109]:= eig = Eigensystem@Transpose@piDD;
eig êê TableForm

Out[110]//TableForm=
1. 0.341632 0.144475 -0.086107
-0.501453
-0.285867
-0.497504
-0.647545

-0.837976
0.24632
0.472029
0.119626

0.293871
-0.823125
0.0454808
0.483774

-0.218108
0.294341
-0.69496
0.618727  

In the last matrix, the top row are the eigenvalues, and below each is its 
corresponding eigenvector.  We are interested in the eigenvector corresponding to λ =  
1. The eigenvectors are given to within an arbitrary multiplicative constant, so we can 
divide by the sum of its terms to get a set of normalized probabilities 
 
In[114]:= norm = Sum@eig@@2, 1, kDD, 8k, Length@eig@@2, 1DDD<D

limitDist = eig@@2, 1DD ênorm
Out[114]= -1.93237

Out[115]= 80.259501, 0.147936, 0.257458, 0.335104<  
 
These are consistent with the result from (a). 
 

(c) We check whether  
π iπ ij = π jπ ji  .  This is shown by the symmetry of the matrix  PΠ  

(see solution to problem 4).    Here it is: 
 

In[122]:= Ppi = DiagonalMatrix@limitDistD. pi;
TableForm@PpiD

Out[123]//TableForm=
0.129751 0.0259501 0.0259501 0.0778504
0.0369841 0.0369841 0.0369841 0.0369841
0.0257458 0.0514916 0.0772374 0.102983
0.0670208 0.0335104 0.117286 0.117286  

It is not symmetric, so detailed balance is not satisfied. 



(d) 
 

 
 



That looks like the limiting distribution we derived. 
 



  
3. Here is a transition probability matrix for a four-state system: 

 

0.1 0.9 0 0
0.5 0.5 0 0
0 0 0.3 0.7
0 0 0.6 0.4

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

A Markov process that attempts to sample according to these transition probabilities 
will be flawed.  What is wrong? 

 It is not ergodic.  There is no way to get from states 1 or 2 to states 3 or 4, or vice versa. 

 
4. Consider the following probability distribution for a 4-state system: 

 

 
π1 = 0.2 π 2 = 0.1 π3 = 0.5 π 4 = 0.2  

  
(a) Derive a set of transition probabilities according to the Metropolis algorithm that 

will yield this as the limiting distribution of a corresponding Markov process on 
the four states. 

 
Here’s the Mathematica code that does this.  It also evaluates the λ=1 eigenvector to 
show it does correspond to the desired distribution (you didn’t have to do this for the 
problem). 
 



In[128]:= pij@i_, j_, p_ListD := Min@1, p@@jDD êp@@iDDD ê HLength@pD - 1L ê; i π j
pij@i_, j_, p_ListD := 1 - Sum@pij@i, k, pD, 8k, 1, j - 1<D -

Sum@pij@i, k, pD, 8k, j + 1, Length@pD<D
metropolis@p_ListD := Table@pij@i, j, pD, 8i, 1, Length@pD<, 8j, 1, Length@pD<D

In[145]:= met = metropolis@82ê10, 1ê10, 5ê10, 2ê10<D;
met êê TableForm
eig = Eigensystem@Transpose@metDD;
eig êê TableForm êê Chop
eig@@2, 1DD êSum@eig@@2, 1, kDD, 8k, Length@eig@@2, 1DDD<D

Out[146]//TableForm=
1

6

1

6

1

3

1
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1
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15
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Out[148]//TableForm=

1 1

3
- 1
6

- 1
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1
1
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2
1

1
1
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1

-1
0
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1
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>

 
 

(b) Use these transition probabilities in the Markov applet to show that they do 
indeed give the desired limiting distribution. Submit a screenshot of the 
distribution you get. 

 



 



 
5. It is common practice in Monte Carlo simulations to increment a running sum not 

after each and every elementary Monte Carlo step, but instead to do the increment 
only after some fixed number of elementary steps have been taken.  This might be 
done, for example, because the calculation involved in getting a value for the current 
configuration is expensive, and it is not worth doing after every little change in the 
configuration. 
 
In effect, this procedure describes a “super-Markov” sequence, in which each 
subsequent configuration in the sequence is obtained by an intervening series of 
simpler Markov steps.  Show that if the transitions probabilities for the simpler 
Markov steps obey detailed balance, then the transition probabilities for this super-
Markov sequence also obey detailed balance for the same limiting distribution. 

The transition probabilities for the multi-step move are given by nΠ , where Π is the 
transition-probability matrix (TPM) for the elementary (single-step) Markov process.  We 
want to show that nΠ  obeys detailed balance for the same limiting distribution as Π .  
Note that it is pretty easy to argue that they both correspond to the same limiting 
distribution: 

lim lim
kn k

k k→∞ →∞
⎡ ⎤Π = Π⎣ ⎦  

and this is really all that matters practically in the question at hand. Detailed balance is a 
sufficient condition for a set of transition probabilities to give a particular limiting 
distribution, but it is not necessary.  So the fact that both TPMs correspond to the same 
limiting distribution does not imply that they both obey detailed balance.  Let us show 
that they do. 

The detailed balance condition can be written compactly in matrix form.  Let the matrix P 
be a diagonal matrix with diagonal terms given the probabilities in the limiting 
distribution 

 
1

2

3

0 0
0 0
0 0

P
π

π
π

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎝ ⎠

 

where we take a 3-state system for the illustration.  The matrix PΠ is  

 
1 11 1 12 1 13

2 21 2 22 2 23

3 31 3 32 3 33

P
π π π π π π
π π π π π π
π π π π π π

⎛ ⎞
⎜ ⎟Π = ⎜ ⎟
⎜ ⎟⎝ ⎠

 



Clearly, a simple statement of detailed balance is that this matrix is symmetric 

 ( )TP PΠ = Π  

We want to show that this condition implies the same for nΠ .  Let us do this by showing 
that if nΠ  obeys detailed balance then 1n+Π  does also.  Then by induction it will hold for 
any n since it holds for n = 1.  We begin with the matrix identity 

 
( )

( )

1n n

TTT n

P P

P

+Π = Π Π

⎡ ⎤Π Π⎢ ⎥⎣ ⎦

 

Given that nΠ  obeys detailed balance this is  

 ( )1 Tn T nP P+ ⎡ ⎤Π = Π Π⎣ ⎦
 

and since P is symmetric 

 1 Tn T T nP P+ ⎡ ⎤Π = Π Π⎣ ⎦  

with another matrix identity we have 

 ( )1 TTn nP P+ ⎡ ⎤Π = Π Π⎢ ⎥⎣ ⎦
 

and finally, invoking detailed balance for Π 

 
1

1

Tn n

Tn

P P

P

+

+

⎡ ⎤Π = ΠΠ⎣ ⎦

⎡ ⎤= Π⎣ ⎦

 

Proving that 1n+Π  obeys detailed balance too. 

 

 


