
CE 530 

Assignment #1 Solution 

1. For this problem you will collect data from the discontinuous molecular dynamics 
applet at http://www.etomica.org/app/modules/sites/swmd/swmd2d.html. 

 
(a) Navigate to this applet, and run it for two state points (different temperatures and/or 

densities) for the ideal-gas model.  Evaluate the group Z = PA/NRT, and report your 
value.  Be sure to include error estimates.  Also, remember to reset the averages 
whenever you change the state parameters. 

(b) Then change to the hard-sphere model.  Evaluate Z for a range of densities, and plot 
your results, showing confidence limits on the values. Run one of the densities at two 
different temperatures, and include both points on your graph. Also include on the 
plot the empirical equation of state given by Wood: 

 

  

PA
NRT

= 1+1.81380 ρ  1− 0.356780ρ + 0.021447ρ 2

1−1.775171ρ + 0.787808ρ 2
 

where  ρ̂ = ρ / ρ0 , with ρ the number density N/A, and   
ρ0 =

2
d2 3

 is the close-packed 
density (d is the disk diameter). 

See results in spreadsheet. 

 

2.  Derive the expression for the impulse given in Slide 9 of Lecture 2, using the 
momentum- and energy-conservation formulas that precede it.  

The equation is
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where mR is the reduced mass. We begin by writing    Δ
!p = a!r12 , where a  is to be 

determined by conservation of energy.  This form ensures that the force acts along the 
direction of the line joining the centers of the atoms. 

Conservation of momentum and energy are written 
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combining these formulas gives us 
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note that the square of the sum of vectors expands as follows 

    
!p + Δ!p 2

= !p 2
+ 2 !p ⋅ Δ!p + Δ!p 2

 

Substitution of this formula in (1) causes the 
2old

ip terms to cancel.  If we now put in the 

expression for Δp in terms of r12 we have  
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which uses v = p/m and the reduced mass ( )1 2
1 1 1
2R m mm = + .  The scalar a can be divided 

out (the zero root corresponds to the spheres passing right through each other), and we 

note that at the collision |r12|2 = σ2.   Then we conclude 12 12
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directly to the desired result. 
 

3.  Derive an expression for the (vector) impulse applied to two square-well atoms as they 
approach each other from outside their wells. Let the diameter of the wells be λ and the 
depth of the wells be ε. 
  

The only change from the previous problem is that the energy conservation equation must 
also consider the change in potential energy that occurs when the two particles enter each 
other’s  wells.  Before they “collide” their pair energy is zero, and after they collide their 
pair energy is -ε.  Thus the energy conservation is 
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Note that the new kinetic energy must be greater (assuming ε is positive), i.e., the 
particles speed up upon their encounter.  Proceeding as above 

   
−ε − av12 ⋅r12 + a2 1

mR
r12

2
= 0  



This is a quadratic equation in a that does not simplify quite as easily as before.  But it is 
of course still easy.  The solution is 
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We want the (+) root here.  The (–) root corresponds to a hard repulsive collision at the 
wells, rather than an attraction.  What happens for ε = 0? (remember that 12 12 0⋅ <v r ) 

4. Surface tension has the units of dynes/cm. Develop a dimensionless surface tension 
variable using molecular constants for a Lennard-Jones fluid 

Surface tension δ has dimensions of force/length, or energy/length2.  To make a 
dimensionless surface tension, we need to divide by the LJ energy, and multiply by the 
LJ diameter.  Thus: 

* 2 /δ δσ ε=  

 
5.  A Lennard-Jones simulation was performed at T* = 1.4 and ρ* = 0.8. The simulation 
produced a dimensionless pressure of 2.856 and a dimensionless internal energy of           
-5.612. To what physical conditions (in K and moles/L) do these state conditions 
correspond, and what are the corresponding values of the pressure and energy (in MPa 
and kJ/mol). Use parameter values for Argon (σ = 3.465 Angstroms, ε/k = 113.5 K). 

Actual temperature:  * ( / ) 1.4 113.5 158.9T T k K Kε= × = × =  

Actual density:  
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Actual pressure: 
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Actual energy: * / )( ) 5.612 113.5K 0.008314 kJ/K-mol 5.3 kJ/molU U k Rε= ( = − × × = −  


