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Optimizing resource allocation in interdependent security problems is a
serious challenge for homeland security. In this article, we present the
equilibrium strategies for multiple interdependent defenders in a model
where threats occur over time. We show that the existence of myopic agents
can make it undesirable for non-myopic agents to invest in security when
it would otherwise be in their interests to do so. The phenomena of tipping
and cascading are discussed, and we explore how to target subsidies for
security investment in order to achieve the best results from tipping. The
above findings are illustrated in numerical examples, and their policy
implications are discussed.

INTRODUCTION

After September 11, 2001, homeland security has received a great deal
of attention in the United States. Since security-related resources are al-
ways limited, maximizing security subject to limited resources is a key
challenge. Many security problems (including aviation security, computer
security, and supply-chain security) involve interdependence among po-
tential defenders, meaning that one agent’s strategy can affect the security
environment for other agents. For example, poor security on the part of one
airline, computer user, or supply-chain partner can increase the risk to other
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agents. Game theory has already been applied to such interdependent se-
curity problems. In particular, Heal and Kunreuther (2002) and Kunreuther
and Heal (2003) discuss an interdependent security model in which agents
are subjected both to direct attacks (which can be prevented by investment
in security) and to indirect attacks (resulting from direct attacks on other
agents, which we assume can be prevented only by the actions of those
other agents).

However, the model of Kunreuther and Heal is static, in the sense that
all attacks are assumed to occur at a single instant in time. Such a model
does not adequately address real-world situations in which attacks happen
over time. By contrast, in a time-dependent model, protection against a
subset of attacks (such as direct attacks) would postpone the expected time
until an attack but might not decrease the probability of succumbing to
an attack eventually. This suggests that agents’ discount rates may play a
key role in determining equilibrium investment strategies. Thus, a revised
analysis is needed to explain the effects of time preferences on the part
of the agents in the model. In particular, this allows us to investigate the
effects of heterogeneity in discount rates.

Kunreuther and Heal (2003) have noted that methods of coordination
(such as regulation) are sometimes needed to help ensure that the optimum
is achieved. However, it may be virtually impossible to enforce investment
in security in some situations (especially when the number of agents is
extremely large, as in computer security). In such cases, subsidizing or
incentivizing non-investing agents in some fashion to encourage them to
invest may be a reasonable alternative. In particular, “tipping” (Schelling,
1978; Gladwell, 2002) has been suggested as a cost-effective way to en-
courage security investment since, if successful, a subsidy or other incentive
to encourage a relatively small number of agents to invest can induce other
agents to also invest in security, which may be beneficial when investing
is the social optimum.

One way of incentivizing investment is for security to be “bundled” with
other goods and services (e.g., provided by one’s Internet service provider).
Another way in which non-investing agents might be given an incentive
to invest in security would be if such investment were a requirement for
lucrative federal contracts or for preferred-supplier relationships with in-
dustrial clients. (By analogy, federally funded academic researchers are
often encouraged to engage in socially desirable practices such as educa-
tional outreach to underrepresented minorities—either as a requirement of
funding or to increase the ratings of their proposals.) The analysis in this
article shows that providing such incentives to a limited number of firms
(e.g., government contractors) can make security investment sufficiently
widespread that it becomes the norm even for firms that are not subject to
such incentives.
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In this article, incentives for security investment are modeled as outright
subsidies. However, we believe that the results also apply to other types
of incentives besides direct subsidies (e.g., bundling of security with other
services or making security investment a requirement to be competitive for
certain contracts).

We begin by formulating a general interdependent security model for
an arbitrary number of agents, with attacks occurring over time. We then
solve this model and identify dominant and equilibrium solutions—first
for two agents, and then for arbitrary numbers of agents, focusing on the
general case of agents with heterogeneous time preferences. We discuss the
phenomena of tipping and cascading and determine the minimal number
of agents that must receive subsidized security in order to cause tipping.
We also discuss which agents should be targeted in order to maximize the
beneficial effects of tipping and cascading. Finally, we discuss the policy
implications of our work.

ASSUMPTIONS

Our basic model allows both direct attacks on an agent and indirect attacks
(e.g., contamination from another agent in the system), as illustrated in
Figure 1. We assume that the time, t , of a direct attack on any agent follows
an exponential distribution, and that direct attacks can lead to indirect
attacks with some probability.

Of course, in the real world, terrorist attacks do not occur randomly,
but as the result of careful planning by attackers. However, considering
attacks to be random with a constant rate of occurrence may not be unre-
alistic for some types of serious security threats, such as computer viruses.
Therefore, for simplicity, our model views security solely as a game be-
tween defenders deciding whether to invest, and treats attacker behavior
as exogenous. While this is obviously a somewhat limiting assumption,

Figure 1. Model structure.
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we believe that our model will be valuable in generating insight into the
relationships among defender choices and as a building block in develop-
ing more complex models that include endogenous attacker behavior as
well as interactions among defenders. Models that treat security as a game
between an intelligent attacker and a single defender include Bier et al.
(in press), Konrad (2004), Woo (2002), Major (2002), Sandler and Arce
(2003), Sandler and Lapan (1988), Lapan and Sandler (1993), and Zhuang
and Bier (2006).

Like Kunreuther and Heal (2003), we assume that the loss is the same for
both direct and indirect attacks, and that any attack is catastrophic (so that
subsequent attacks affecting the same agent can be neglected). To justify
the first assumption, we note, for example, that the loss from a computer
virus is likely to be the same regardless of whether it is received directly
from the virus developer or inadvertently from another infected computer.
Similarly, the loss from exposure to an infectious bio-terrorism agent (such
as smallpox or foot-and-mouth disease) may be the same regardless of
whether the exposure is the result of an intentional attack or accidental
contamination. To justify the assumption that even a single attack is catas-
trophic, we propose as examples situations in which a single successful
attack might result in bankruptcy, death, loss of reputation, or theft of a
valuable trade secret.

NOTATION AND MODEL FORMULATION

We define the system parameters as follows:

� N : Number of agents in the system, where N ≥ 2.
� h: Number of agents receiving subsidized security, where 0 ≤ h ≤ N .
� M : Number of agents having security measures (either choosing to

invest or receiving subsidized security from a third party), where 0 ≤
M ≤ N .

� x : Number of agents making erroneous choices, where 0 ≤ x ≤ N −
h.

� λi : Rate of direct attacks on agent i , for i = 1, . . . , N .
� λ̃i : Total rate of all attacks on agent i (including indirect attacks), for

i = 1, . . . , N .
� qij: Probability that an attack on agent i infects agent j (where we

define qii = 1), for i, j = 1, . . . , N .
� ri : Discount rate of agent i , where ri ≥ 0, for i = 1, . . . , N .
� Li : Loss suffered by agent i if it is attacked, either directly or indirectly,

for i = 1, . . . , N .
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� Ci : Cost of investing in security for agent i . This investment is assumed
to eliminate the risk of direct attacks, but have no effect on the risk
of infection by indirect attacks from other agents. We assume that
0 < Ci < Li∀i = 1, . . . , N .

� si : Investment strategy for agent i , for i = 1, . . . , N , where si = 1 if
agent i invests in security, and si = 0 otherwise. We also denote S and
N as si = 1 and si = 0, respectively.

� s−i ≡ {s j , j �= i}: Set of strategies of all agents other than agent i .
� Pi (si ,s−i ): Total expected cost borne by agent i , for i = 1, . . . , N ,

when it chooses strategy si (including both the cost of investment, if
any, and the expected loss due to attacks), given the strategies of the
other agents.

The expected loss experienced by agent i due to attacks is given
by Li

∫ ∞
0 fi (t) exp(−ri t)dt, where fi (t) = λ̃i exp(−λ̃i t) is the probabil-

ity density function for the time of the first attack on agent i , and
λ̃i = (1 − si )λi + ∑

j �=i (1 − s j )qjiλ j is the total rate of attacks against
agent i . Hence, the net present value of the expected loss due to attacks
experienced by agent i is

E(Loss) = Li

∫ ∞

0
λ̃i exp(−λ̃i t − ri t)dt

=
{

0 if λ̃i = 0

Li/(1 + ri/λ̃i ) if λ̃ > 0
(1)

and the total expected cost to agent i is given by

Pi (si , s−i ) =
{

si Ci if λ̃i = 0

si Ci + Li/(1 + ri/λ̃i ) if λ̃i > 0
(2)

DEFINITION 1. A pure-strategy Nash equilibrium (abbreviated as equilibrium
in our paper) is a set of strategies {si , i = 1, . . . , N } such that no one agent
would be better off by switching strategies unless at least one other agent
also switched. Thus, at equilibrium, the following system of inequalities
must be satisfied:

Pi (si ,s−i ) ≤ Pi (1 − si ,s−i )∀i = 1, . . . , N (3)

DEFINITION 2. Strategy si is a (weakly) dominant strategy for agent i if and
only if Pi (si ,s−i ) ≤ Pi (1 − si ,s−i ) for all s−i . Strategy si is a strictly dom-
inant strategy for agent i if and only if Pi (si ,s−i ) < Pi (1 − si ,s−i ) for all
s−i .
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For simplicity, in the remainder of this article, we consider the case where
only the discount rates ri of the agents differ. In other words, we letλi = λ >
0, Ci = C > 0, Li = L > 0, and qij = q > 0 for i, j = 1, . . . , N , i �= j ,
since the effects of these parameters have already been extensively inves-
tigated by Kunreuther and Heal (2003). Thus, Equation (2) becomes:

Pi (si ,s−i ) =
{

si C if λ̃ = 0

si C + L/(1 + ri/λ̃i ) if λ̃ > 0
(4)

where λ̃ = (1 − si )λ + ∑
j �=i (1 − s j )(qλ).

EQUILIBRIUM SOLUTIONS FOR TWO AGENTS

For simplicity, we begin our analysis with the case of N = 2. Table 1 cal-
culates the total expected costs borne by agent i = 1, 2 for all four possible
cases (with each agent either investing or not), using Equation (4). Invest-
ment in security will be a dominant strategy for agent i (i = 1, 2) when

C ≤ Lλ

λ + ri
(5)

and

C ≤ Lλri

(λ + λq + ri )(λq + ri )
(6)

Note that the right-hand side of (5) will always be greater than the right-
hand side of (6), since the inequality

Lλ

λ + ri
>

Lλri

(λ + λq + ri )(λq + ri )

can be simplified to yield λ2q + λ2q2 + 2λqri > 0, which always holds.
Hence, inequality (6) is the sufficient condition for investment to be the
dominant strategy for agent i ; when this inequality holds, agent i will pre-
fer to invest in security regardless of the investment decision made by the

Table 1. Costs for agents for N = 2

Agent 2 invests Agent 2 does not invest

s2 = 1 s2 = 0

Agent 1 invests s1 = 1 C ; C C + Lλq
λq+r1

; Lλ
λ+r2

Agent 1 invests s1 = 0 Lλ
λ+r1

; C + Lλq
λq+r2

L(λ+λq)
λ+λq+r1

; L(λ+λq)
λ+λq+r2
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other agent. However, even when inequality (6) is not satisfied, investing in
security can still be an equilibrium strategy for agent i (although not a dom-
inant strategy), depending on the investment decision of the other agent.

We now analyze the equilibrium strategies of the two agents for different
values of r1 and r2. There are four possible cases, as discussed below.

Case (A) Both Agents Invest in Security, (S, S)

(S, S) will be the unique equilibrium strategy when the cost of investing in
security is low:

C ≤ min
i=1,2

[
Lλ

λ + ri

]
;

and also

C ≤ max
i=1,2

[
Lλri

(λ + λq + ri )(λq + ri )

]

Case (B) Neither Agent Invests in Security, (N, N)

(N, N) will be the unique equilibrium strategy when the cost of investing
in security is high:

C ≥ max
i=1,2

[
Lλri

(λ + λq + ri )(λq + ri )

]
;

and also

C ≥ min
i=1,2

[
Lλ

λ + ri

]

Case (C) One Agent Invests but the Other Does Not, (N, S) or (S, N)

There will be a unique Nash equilibrium strategy, either (N, S) or (S, N),
when the cost of investing in security is high relative to the expected net
present value of the loss due to direct attack for one agent, C ≥ Lλ/(λ + ri ),
but low relative to the increased loss of the other agent, C ≤ Lλr j/
((λ + λq + r j )(λq + r j )), where i �= j . In this situation, the decisions of
the two agents are independent of each other. Agent i (with the higher
discount rate) will prefer not to invest in security, while agent j (with the
lower discount rate) will prefer to invest regardless of the actions of the
other agent.
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Case (D) Both Agents Either Invest or Don’t Invest in Security,
(S, S) or (N, N)

This game can have multiple equilibrium strategies, (S, S) and (N, N),
when the cost of investing in security is intermediate for both agents:
Lλri/((λ + λq + ri )(λq + ri )) ≤ C ≤ Lλ/(λ + ri ), nor i = 1, 2. In this
case, neither agent has a dominant strategy; instead, each agent will prefer
to adopt whichever strategy is chosen by the other agent. Thus, if one agent
decides to invest, the other agent will also find it profitable to invest, and
conversely. Of these two equilibrium strategies, we would prefer for the
one that is socially optimal to be adopted. Investment in security will be
the socially optimal decision when C ≤ L(λ + λq)/2(1/(λ + λq + r1) +
1/(λ + λq + r2)).

Table 2 summarizes all possible equilibrium strategies, where for sim-
plicity, we let ai = Lλri/([λ + λq + ri ][λq + ri ]) and bi = Lλ/(λ + ri ).
To see the implications of the agents’ discount rates on their equilibrium
strategies, we also show the equilibrium strategies as a function of the
agents’ discount rates instead of the investment cost.

When agent i has a high discount rate, ri ≥ λ
(
L/C − 1

)
, future losses

due to attacks will have a low present value, so agent i will not find it
worthwhile to invest in security. Similarly, when agent i has a moderately
small discount rate,

λ

2

{(
L
C

− 1

)
− 2q −

√(
L
C

− 1

)2

− 4
q L
C

}

≤ ri ≤ λ

2

{(
L
C

− 1

)
− 2q +

√(
L
C

− 1

)2

− 4
q L
C

}

the losses due to future attacks will tend to loom relatively large, so agent
i will find investing in security to be worthwhile. When the discount rate

Table 2. Equilibrium strategies as a function of the investment cost

C ≤ a2 a2 ≤ C ≤ b2 C ≥ b2

(S, S) (S, S) (S, N)

C ≤ a1 Dominant strategy Nash equilibrium Nash equilibrium

(S, S) (S, S) or (N, N) (N, N)

a1 ≤ C ≤ b1 Nash equilibrium Multiple Nash equilibria Nash equilibrium

(N, S) (N, N) (N, N)

C ≥ b1 Nash equilibrium Nash equilibrium Dominant strategy
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of agent i is in the intermediate range,

λ

2

{(
L
C

− 1

)
− 2q +

√(
L
C

− 1

)2

− 4
q L
C

}
≤ ri ≤ λ

(
L
C

− 1

)

agent i will be ambivalent about whether to invest. If the other agent de-
cides to invest (and hence eliminates the risk of indirect losses to agent i),
investing will become more cost effective for agent i , since investing will
now eliminate all risk, rather than only a subset of the total risk. However,
if the other agent decides not to invest, investing will no longer be cost
effective for agent i , since it can prevent only direct losses, not losses due
to indirect attacks. Thus, agent iwill prefer to adopt the same strategy as
the other agent in this case.

Finally, when the discount rate of agent i is extremely small,

0 ≤ ri ≤ λ

2

{(
L
C

− 1

)
− 2q −

√(
L
C

− 1

)2

− 4
q L
C

}

eliminating only a subset of the total risk is no longer worthwhile for agent
i , since it only postpones the loss from an attack rather than eliminating it.
Therefore, in this situation, it is again worthwhile for agent i to invest in
security only if the other agent also invests.

For simplicity, we define the following:

ρa = λ

2

{ (
L
C

− 1

)
− 2q −

√(
L
C

− 1

)2

− 4
q L
C

}
;

ρb = λ

2

{ (
L
C

− 1

)
− 2q +

√(
L
C

− 1

)2

− 4
q L
C

}
;

and

ρc = λ

(
L
C

− 1

)
,

where ρa < ρb < ρc. With this notation, Table 3 summarizes all possible
equilibrium strategies as a function of the agents’ discount rates ri .
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Table 3. Equilibrium strategies as a function of the discount rates for N = 2

r2

Moderately

Extremely small small Intermediate High

r1 (0 ≤ r2 ≤ ρa) (ρa ≤ r2 ≤ ρb) (ρb ≤ r2 ≤ ρc) (r2 ≥ ρc)

Extremely (S, S) or (N, N) (S, S) (S, S) or (N, N) (N, N)

small Multiple Nash Nash Multiple Nash Nash

(0 ≤ r1 ≤ ρa) equilibria equilibrium equilibria equilibrium

Moderately (S, S) (S, S) (S, S) (S, N)

small Nash Dominant Nash Nash

(ρa ≤ r1 ≤ ρb) equilibrium strategy equilibrium equilibrium

Intermediate (S, S) or (N, N) (S, S) (S, S) or (N, N) (N, N)

(ρb ≤ r1 ≤ ρc) Multiple Nash Nash Multiple Nash Nash

equilibria equilibrium equilibria equilibrium

High (N, N) (N, S) (N, N) (N, N)

(r1 ≥ ρc) Nash Nash Nash Dominant

equilibrium equilibrium equilibrium strategy

Equilibrium Solutions for Arbitrary Numbers of Agents

To characterize the more general game for N ≥ 3, suppose that in some
equilibrium solution, exactly M agents receive subsidized security or
choose to invest (for some 0 ≤ M ≤ N ). Then there are three possible
cases:

� All agents have security measures in place (M = N );
� Some agents have security measures and some not (1 ≤ M ≤ N − 1);

or
� No agents have security measures in place (M = 0).

For convenience, we renumber the agents so that the first M agents
have security measures, and the remaining N − M agents do not (i.e.,
si = 1 ∀i = 1, . . . , M, and si = 0 ∀i = M + 1, . . . , N ). We begin by con-
sidering a model that does not include the possibility of subsidized security
(i.e., with h = 0). Table 4 gives the costs for the agents in all three of the
above cases for that model. It also specifies the cost to any agent i that
deviates from the equilibrium action si , conditional on the other agents’
strategies; i.e., Pi (1 − si ,s−i ).

Solving the system of inequalities (3) for i = 1, . . . , N using the costs in
Table 4 yields conditions for the discount rates at which agents will be will-
ing to invest in security at equilibrium. These conditions are summarized
in Table 5, using the following notation:
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Table 5. Conditions for an equilibrium in which M agents have security

For investing agents For not-investing agents

(i = 1, . . . , M), si = 1 (i = M+1, . . . , N ), si = 0

Case (1): M = N R1(0) ≤ ri ≤ R2(0) N/A

Case (2):∗ R1(N − M) ≤ ri ≤ R2(N − M) ri ≤ R1(N − M − 1) or

1 + (N − Ñ )+ ≤ M ≤ N − 1 ri ≥ R2(N − M − 1)

ri ≤ R1(N − 1) or

Case (3): M = 0 N/A ri ≥ R2(N − 1)

∗No equilibrium is possible with 1 ≤ M ≤ (N − Ñ )+.

� Ñ ≡ 	C(L/C − 1)2/(4Lq)
 (where 	x
 is the greatest integer less
than or equal to x);

� R1(k) ≡ λ[L/C − 1 − 2kq −
√

(L/C − 1)2 − 4qkL/C]/2 for k =
0, . . . , Ñ ; and

� R2(k) ≡ λ[L/C − 1 − 2kq +
√

(L/C − 1)2 − 4qkL/C]/2 for k =
0, . . . , Ñ .

Here, Ñ is a bound on the number of agents there can be in a system
for certain properties to hold, and R1(k) and R2(k) are the minimum and
maximum discount rates for which an agent would invest given that exactly
k others are not doing so, respectively. By taking derivatives, it is easy to
show that R1(k) and R2(k) are increasing and decreasing in k, respectively.
Also, note that R1(Ñ ) ≤ R2(Ñ ), and R1(0) = 0. Thus, we have

0 = R1(0) < R1(1) < · · · < R1(Ñ ) ≤ R2(Ñ ) < · · · < R2(1) < R2(0)

as shown in Figure 2.
We define the following sets on the domain of discount rates:

� Sl = (R2(0), ∞) for l = 0
� Sl = (R1(l − 1), R1(l)) ∪ (R2(l), R2(l − 1)) for l = 1, . . . , min(N −

1, Ñ ), and
� Sl = (R1(l − 1), R2(l − 1)) for l = min(N , Ñ + 1)

Figure 2. Illustration of the ranges Sl.
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Intuitively, Sl is the set of those discount rates for which an agent would
want to invest if at most l − 1 others do not invest but would not want
to invest if l or more others do not invest. This notation is represented
graphically in Figure 2 for the case where N ≤ Ñ + 1. Note that for N = 2,
we have R1(1) = ρa , R2(1) = ρb and R2(0) = ρc.

THEOREM 1. Holding all else constant, as the number of agents N in the
system increases, the range of discount rates SN for which investing is a
strictly dominant strategy becomes smaller. If N ≥ Ñ + 2, then there is no
discount rate for which investing in security is a strictly dominant strategy.
The range of discount rates S0 for which not investing is a strictly dominant
strategy does not depend on N .

PROOF. According to Table 5, if ri ∈ SN for some agent i , then not in-
vesting can never be a best response for that agent, no matter how many
or how few other agents choose to invest. Therefore, investing must be
a strictly dominant strategy for agent i . Similarly, if ri ∈ S0, then not
investing must be a strictly dominant strategy. Since R1(k) and R2(k)
are increasing and decreasing in k for k = 1, . . . , Ñ , respectively, the
set SN = [R1(N − 1), R2(N − 1)] becomes smaller as N increases. For
N ≥ Ñ + 2, the set SN is empty. Finally, the set S0 = (R2(0), +∞) does
not depend on N , by the definition of R2(0).

REMARK. This theorem implies that for systems with sufficiently large num-
bers of agents, investing in security will not be a strictly dominant strategy
for any agent. Agents can of course still choose to invest, but will do
so in equilibrium only if other agents also have security in place. This
finding helps to justify the need for coordinating mechanisms (such as
subsidies).

EXAMPLE 1. We use the following parameter values to illustrate the results
in Theorem 1: C = 10; L = 1000; q = 0.01; λ = 0.01; N = 2000; and
therefore Ñ = 2450. Figure 3 shows the regions of discount rates in which
investing and not investing, respectively, are dominant strategies, as func-
tions of the number of agents.

Tipping and Cascading

We now discuss the possibility of tipping, and its effect on the equilibrium
solution. In general, starting with an equilibrium in which M agents invest
(for M ≤ N − 1), ensuring that some additional agents invest will tend
to make investing more attractive for the remaining agents. In practice,
there may be various ways of encouraging those agents to invest, such as
mandating investment in security, or providing subsidized security. In this
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Figure 3. Discount rates for which investing and not investing are domi-

nant, as a function of N.

article, we focus on the latter case and assume in particular that security
becomes free to some agents.

DEFINITION 3. Given a system in which exactly M agents have security mea-
sures in place at equilibrium:

� Let Inv(M) be the set of possible discount rates for the investing agents
(note that there may be fewer than M investing agents if subsidized
agents are also considered. However, those agents actually investing
would still need to have discount rates in Inv(M) if a total of M agents
have security in place, regardless of whether some of those M agents
obtained their security through subsidies);

� Let Non(M) be the set of possible discount rates for the (non-
subsidized) agents that do not invest;

� Let Cmpl(M) = [Inv(M) ∪ Non(M)]C be the set of discount rates that
can not be held by any (non-subsidized) agent if exactly M agents
have security measures at equilibrium; and
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Figure 4. Ranges of discount rates possible for investing agents when M

agents invest or receive subsidized security.

� Let Invc (M,h) be the set of possible discount rates for those agents who
would not invest at equilibrium with no subsidy, but would find invest-
ing attractive if the number of other agents having security measures
in place increased from M to M + h.

The ranges Inv(M), Non(M) and Cmpl(M) are illustrated in Figures 4
and 5 for the investing and non-investing agents, respectively. Note that the
existence of an equilibrium strategy with M investing agents implies that
no (non-subsidized) agent has a discount rate in the set Cmpl(M).

Note also that the set Invc(M,h) contains the set Cmpl(M + h), since
there can be an equilibrium strategy with at least M + h agents having
security measures only if no other non-subsidized agents have discount
rates in the set Cmpl(M + h). Thus, we will have

Invc(M,h) = [Inv(M + h) − Inv(M)] ∪ Cmpl(M + h)

Here, “–” is the set operator representing the difference between the
sets Inv(M + h) and Inv(M). If we let �(S) denote the number of agents
with discount rates in the set S, then �[Invc(M,h)] is the number of agents

Figure 5. Ranges of discount rates possible for non-investing agents when

M agents invest or receive subsidized security.



D
ow

nloaded By: [U
niversity of W

isconsin M
adison] At: 17:02 21 February 2007 

16 J. Zhuang et al.

that could be induced to invest by tipping, where �[Invc(M,h)] is non-
decreasing in h for any given value of M , with �[Invc(M, 0)] = 0.

Starting with an equilibrium in which exactly M agents invest, the
number of agents h that must receive subsidized security in order to
lead to tipping must satisfy � [Invc(M,h)] > 0. Moreover, if �{Invc[M +
h, �[Invc(M,h)]]} > 0, then additional agents will choose to invest, in
which case the number of agents having security measures will increase
from M + h to M + h + �[Invc(M,h)], and so on. We call this phenomenon
“cascading.”

No tipping or cascading will occur if �[Invc(M,h)] = 0. The minimal
number of agents that must receive free security in order to lead to tipping is
given by min{h : �[(Invc(M,h))] > 0}. The discount rates of the subsidized
agents are irrelevant to determining whether tipping occurs. However, the
discount rates of the non-subsidized agents do determine whether cascading
occurs, and how far it progresses. Therefore, it makes sense if possible to
target any subsidies at those agents who are least likely to begin investing
without such subsidies (i.e., agents with discount rates in or near the region
where not investing is the strictly dominant strategy). These arguments are
illustrated below; see also Kunreuther and Heal (2003) and Dixit (2003).

EXAMPLE 2. Consider an N -agent system with h = 0, N ≤ Ñ + 1, and
ri ∈ Si−1 ∀i = 1, . . . , N . Perusal of Figure 4 indicates that for this exam-
ple, there exists no equilibrium with a non-zero number of agents investing.
Furthermore, Figure 5 shows that the solution with M = 0 agents invest-
ing, {none invest}, is an equilibrium for this example. Now suppose that
agent 1 receives free security. Then agent N will also choose to invest,
because rN ∈ SN−1 ⊂ Invc (0,1). In other words, since agent 1 is receiving
subsidized security, not investing is no longer optimal for agent N (from
Figure 5). Since agent N is better off investing, there will now be M = 2
agents having security measures. Therefore, agent N − 1 will also begin
investing, because rN−1 ∈ SN−2 ⊂ Invc (1,1). Similarly, agent N − 2 will
begin investing once there are M = 3 agents having security measures,
and so on. Thus, if agent 1 receives free security, {all invest} becomes the
unique equilibrium in this example. Note also that the discount rate of the
subsidized agent determines how many agents will decide to invest as a re-
sult of cascading. In this example, it is straightforward to see that if agent i
is the one that receives free security, then the system will end up in a unique
equilibrium with M = N + 1 − i agents adopting security measures.

CONCLUSIONS

In the real world, agents may have different discount rates for a variety of
reasons. First, firms in different industries (with differing levels of risk)
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or with differing conditions of their physical plant (and hence different
opportunities for investing in modernization) will tend to apply differing
minimum acceptable rates of return in their decisions (Grant et al., 1998;
Fabrycky et al., 1998). This can create challenges for supply-chain partner-
ships that cross industry lines. For example, a computer manufacturer or
software vendor (in a high-risk industry with a high minimum acceptable
rate of return) may invest less in security than some of its clients (say,
electric utilities, in an industry with a historically low rate of return) would
prefer.

Secondly, firms facing impending bankruptcy may have high discount
rates (Golbe, 1981) and be willing to take much greater risks (including
security risks) than firms that are financially stable. Woo (2004) has pointed
out that much the same logic may apply to financially or otherwise unstable
nation states with regard to the risk of terrorism.

Finally, of course, agents may simply be myopic (Kunreuther et al., 1998;
Thaler et al., 1997; Langer and Weber, 2005), in the sense of adopting higher
effective discount rates and shorter time horizons than would be in their
own (enlightened) self-interest. The fact that the existence of such myopic
players can eliminate the incentives for more prudent agents to invest in
security is analogous to the results of Smith et al. (1988), who found that
a non-zero probability of there being an irrational agent in a market can
make investment in speculative bubbles a rational choice for other agents.

Thus, extending the model of Heal and Kunreuther (2002) and Kun-
reuther and Heal (2003) to one in which attacks occur stochastically over
time shows that heterogeneity in discount rates can complicate the task of
achieving rational security strategies in an interdependent world. Recog-
nition of this phenomenon will hopefully contribute to both an improved
understanding of the security challenges that we face and an enhanced
ability to identify promising solutions to those challenges.

This article formulates and solves an interdependent security model for
an arbitrary number of defenders with attacks occurring over time, focusing
on the case of agents with heterogeneous time preferences. Results show
that when multiple equilibrium solutions exist, the social optimum is for
all agents to invest, as long as that is an equilibrium solution.

The role of tipping and cascading in helping to achieve this social op-
timum is also discussed. In particular, we explore the minimal number of
agents who would need to receive subsidized (free) security in order for
tipping to occur and which agents should ideally receive such free security.
(However, we recognize that the mechanisms by which subsidies could be
implemented in the real world may not allow such careful targeting.) More
generally, our results emphasize the potential importance of coordination
mechanisms—not only subsidies and incentives, but also regulation, trade
associations, social norms, contracts, insurance, etc. Moreover, our results
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suggest that attempts to encourage investment should be targeted at those
agents least likely to begin investing on their own—which in general will
be those with discount rates that are either extremely low or (perhaps more
realistically) extremely high.

In this article, we focus primarily on the effect of discount rates; in
particular, we show that the mere existence of agents with extreme discount
rates (e.g., due to myopia) can make it undesirable for other agents to invest.
However, we expect that similar results would also hold for heterogeneity
in other parameters (such as the cost of investing in security, or the loss
resulting from a successful attack).
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