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a b s t r a c t

In this paper, we apply game theory to model strategies of secrecy and deception in a multiple-period
attacker–defender resource-allocation and signaling game with incomplete information. At each period,
we allow one of the three possible types of defender signals—truthful disclosure, secrecy, and deception.
We also allow two types of information updating—the attacker updates his knowledge about the defen-
der type after observing the defender’s signals, and also after observing the result of a contest (if one
occurs in any given time period). Our multiple-period model provides insights into the balance between
capital and expense for defensive investments (and the effects of defender private information, such as
defense effectiveness, target valuations, and costs), and also shows that defenders can achieve more
cost-effective security through secrecy and deception (possibly lasting more than one period), in a multi-
ple-period game.

This paper helps to fill a significant gap in the literature. In particular, to our knowledge, no past work
has studied defender secrecy and deception in a multiple-period game. Moreover, we believe that the
solution approach developed and applied in this paper would prove useful in other types of multiple-per-
iod games.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Most applications of game theory to homeland-security re-
source allocation so far have involved only one-period games (in
which the payoffs are realized all at once, even if the players move
sequentially). Dresher (1961) was among the first researchers to
apply game theory to military strategic interactions. However, he
did not explicitly model deception and secrecy. More recently,
Hausken (2008) has applied game theory to study the strategic
interaction between a defender and an attacker for series and par-
allel reliability systems, and Levitin and Hausken (2009) studied
the benefits of using ‘‘false” targets that the attacker cannot distin-
guish from the desired targets in an attacker–defender game.

Crawford (2003) modeled an attacker–defender sequential
game allowing for bounded rationality. In particular, bounded
rationality can yield an equilibrium with deceptive signals even
when signaling is costless and noiseless. Powell (2007) studied
an attacker–defender, multiple-target game where the defender
has some private information about the vulnerability of the various
targets. He found an equilibrium in which the defender always
‘‘pools”; i.e., the defender allocates her defensive investments
ll rights reserved.

: +1 716 645 3302.
without regard to the vulnerability of various targets, so that the
attacker cannot infer their vulnerability. We interpret this as a
form of secrecy.

Secrecy has also been modeled as simultaneous play in game
theory (see for example Zhuang and Bier, 2007), since in a simulta-
neous game, each player moves without knowing the moves of
other players. Note that this does not actually require both players
to make their decisions at the same time—the players can be
viewed as being engaged in a simultaneous game as long as neither
party knows the other’s decision at the time he makes his own
decision.

Brown et al. (2005) studied secrecy in a zero-sum attacker–de-
fender game in the context of ballistic missile deployment, but
failed to include the potential for the attacker to endogenously up-
date his beliefs. In particular, in Brown et al. (2005), the attacker is
assumed to be unaware of even the defender options when the de-
fender chooses secrecy, while a typical endogenous model usually
assumes only that the attacker is unaware of the specific choice
made by the defender.

While the definition of secrecy is relatively straightforward,
many kinds of deception have been discussed in the literature.
Some researchers have modeled deception as sending noisy or
imperfect signals to mislead one’s opponents. For instance,
Hendricks and McAfee (2006) and Oliveros (2005) used the

http://dx.doi.org/10.1016/j.ejor.2009.07.028
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Normandy invasion as an example to argue that the first mover
(the Allies) optimally allocated resources to targets that they did
not intend to attack, in order to mislead the Germans about their
true landing place by sending noisy signals. Similarly, Hespanha
et al. (2000) and Brown et al. (2005) defined deception in a zero-
sum attacker–defender game as occurring when the defender dis-
closes only a subset of the defenses, in an attempt to route attacks
to heavily-defended locations.

There is a substantial economics literature on principal-agent
(or, more generally, mechanism-design) problems, which addresses
how the first mover (principal) can provide incentives (usually by
contract) to the second mover (agent), to ensure that the second
mover chooses the preferred action. This literature usually allows
hidden actions and/or private information on the part of the sec-
ond mover (Zhang and Zenios, 2008; Doepke and Townsend,
2006), and may further address the issue of information disclosure
by the second mover (Prat, 2005), but not the first mover. By con-
trast, Zhuang and Bier (in press) argued that hidden actions and
private information on the part of the second mover did not change
the defender’s preference for truthful disclosure in their model.

Another body of economics literature focuses on revelation of
private information, addressing how individual players might either
truthfully or deceptively disclose their private information (but not
their actions); See for example Neeman, 2004. Likewise, several
researchers have addressed the question of information disclosure
about player attributes (rather than actions) in supply-chain man-
agement (see for example Li, 2002; Raghunathan, 2003; Chu et al.,
2006; Yao et al., 2008; Leng and Parlar, 2009).

Zhuang and Bier (2007) studied the balance between protecting
from natural disasters and protecting from terrorism in a one-per-
iod game; their results indicate that truthful disclosure should al-
ways be (weakly) preferred to secrecy, which is not surprising,
since their model is a game of complete information. Much other
work to date (e.g., Bier et al., 2007) also recommends disclosure.
By contrast, Zhuang and Bier (in press) found that defender secrecy
and/or deception could be strictly preferred in a one-period game
in which the defender has private information (i.e., the attacker
is uncertain about the defender type).

In the real world, however, attackers and defenders frequently
interact repeatedly over time either through successive attacks
(as in Israel, for example), or through successive attacker attempts
to ‘‘probe” a system before a successful attack (as in the case of
computer security). Moreover, many critical defender decisions
(e.g., whether to invest in capital defenses versus short-term ex-
penses such as police patrol) also involve time as a critical
dimension.

To our knowledge, non-zero-sum, multiple-period, attacker–de-
fender resource-allocation and signaling games with incomplete
information and hidden actions have not yet been extensively
studied in the literature. The model developed by Coleb and
Kocherlakotad (2001) might be the closest to ours. They assumed
that at the beginning of each period, the players learn the complete
history of the previous period, including both private information
and hidden actions. Like Coleb and Kocherlakotad (2001), in Sec-
tion 3, we assume that the players learn the hidden actions in
the history, an assumption that is then relaxed in Section 4. Unlike
Coleb and Kocherlakotad (2001), our model also allows private
information (such as the defender discount rate, the target valua-
tion, or the relative effectiveness of defensive capital versus ex-
pense) to remain secret throughout the game.

This paper begins to fill the gap in analysis of multi-period secu-
rity games by analyzing an N-period game between a single attack-
er and a single defender. In particular, this paper extends the
model in Zhuang and Bier (in press) to an N-period game. Since
Zhuang and Bier (in press) suggested that the defender should al-
ways prefer truthful disclosure to secrecy and deception when
she does not have private information, in this paper we focus on
the case where the defender does have private information (i.e.,
the attacker does not know some defender attributes, such as asset
values, costs, or the relative effectiveness of capital versus ex-
penses), while the attacker does not. In this case, we allow two
types of updates about the defender type—the attacker updates
his knowledge about the defender type after observing the defen-
der’s signals, and also after observing the result of a contest (if one
occurs in any given time period). Our analysis shows that there ex-
ist equilibria in which secrecy and/or deception are strictly pre-
ferred by some types of defenders, in order to mimic defender
types that are of less interest to attackers (e.g., defender types that
may be less valuable, less cost-effective to attack, or better de-
fended), or to distinguish themselves from defender types that
are of greater interest to attackers. To take advantage of the multi-
ple-period nature of our model, we specifically explore secrecy and
deception regarding the tradeoff between capital investments ver-
sus short-term defenses, since this tradeoff can be studied only in a
multi-period model. For simplicity, we consider only a binary
choice between capital and expense, but our model could be
adapted to non-binary decision variables (e.g., differing levels of
investment).

The next section puts forth an N-period model of secrecy and
deception in the case where the defender has private information,
while the attacker does not. Due to its complexity, our model is not
in general analytically tractable. However, some special cases of
our model are readily solvable using numerical methods. In partic-
ular, Sections 3 and 4 present special cases of our model, and use
numerical simulation to show that defender secrecy and deception
can sometimes be strictly preferred to truthful disclosure. In e we
assume that the attacker learns the defender’s defensive invest-
ment in any given period at the beginning of the next period; in
Section 4, the defensive investment can remain unknown to the at-
tacker. Our numerical simulations provide insights into the most
appropriate balance between short-term expenses and capital
investments in homeland security, as well as the possible benefits
of secrecy and deception. Section 5 summarizes the results of this
paper.
2. Model formulation for repeated game

Our game has two players: an attacker (he, signal receiver, A);
and a defender (she, signal sender, D). Our model involves a N-per-
iod game with private defender information. Fig. 1 provides the se-
quence of actions for this game. At the beginning of the first period
ðt ¼ 1Þ, nature chooses the defender type h, which could include
numerous defender attributes (e.g., the target valuation, relative
effectiveness of short-term expenses versus long-term capital
investment, the fraction of capital investment that remains effec-
tive in subsequent periods, etc.). For simplicity, we consider only
a two-type model; i.e., the defender type h equals h1 with probabil-
ity p1 and h2 with probability 1� p1, respectively, where pt is the
attacker’s probability that the defender is of type h1 at the begin-
ning of period t. We assume that p1, the attacker’s prior probability
at the beginning of the period 1, is common knowledge to both the
attacker and the defender.

For each period t ¼ 1; . . . ;N, the decision process is as follows:
First, a defender of type h chooses a strategy dtðhÞ and a signal
stðhÞ for h ¼ h1; h2. We let dtðhÞ 2 f0;1g be a binary decision vari-
able; dtðhÞ ¼ 0 if a defender of type h 2 fh1; h2g invests in short-
term expenses (such as police patrol) in period t, and dtðhÞ ¼ 1 if
the defender invests in capital defenses in period t. We also let
stðhÞ 2 f0;1; Sg be the signal sent by a defender of type h about
its defensive choice (where the ‘‘signal” is allowed to include se-
crecy; or the absence of a signal). We occasionally use quotation



Fig. 1. Sequence of actions for the N-period game with private defender information.
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marks, ‘�’, to distinguish a signal from the actual defense, to avoid
confusion.

The attacker observes the signal st , updates his belief from the
prior pt 2 ½0;1� (the attacker’s prior probability that the defender
type is h1 at the beginning of period t) to the posterior p0t (the at-
tacker’s posterior probability that the defender type is h1), and
chooses an attacker response atðstÞ 2 f0;1g, where atðstÞ ¼ 0 is
the decision to do nothing during period t, and atðstÞ ¼ 1 represents
the decision to launch an attack. Note that after observing the de-
fender signal, the attacker’s belief is updated in a discrete manner
(provided that the defenders do not choose which signal to send at
random in a mixed-strategy equilibrium). In particular, if both de-
fender types send the same signal at equilibrium, stðh1Þ ¼ stðh2Þ,
then the attacker is not able to update his belief about the defender
type, and we have p0t ¼ pt; by contrast, if different defender types
send different signals at equilibrium, stðh1Þ – stðh2Þ, then the at-
tacker is able to recognize the defender type with certainty, in
which case p0t equals 1 with probability pt (which happens when
the observed signal st is the equilibrium signal for a defender of
type h1), and 0 with probability 1� pt (when the observed st is
the equilibrium signal for a defender of type h2).

Then, the attacker and defender payoffs in period t are realized.
We assume for simplicity that the actual level of damage to the tar-
get is either 100% or zero; therefore, the expected payoffs to the at-
tacker and defender, respectively, are given by

uA
t ½atðstÞ; etðhÞ; h� ¼

0 if atðstÞ ¼ 0
�gA þ c½atðstÞ; etðhÞ�vA if atðstÞ ¼ 1

�
ð1Þ

and

uD
t ½atðstÞ;dtðhÞ; etðhÞ; stðhÞ; h� ¼ �gD½dtðhÞ; stðhÞ; h�

� c½atðstÞ; etðhÞ�vD: ð2Þ

Here, vA and vD are the attacker’s and defender’s target valuations,
respectively (assuming that these valuations are stationary over
time); etðhÞ is the effective total defense for a defender of type h
in period t, as given by

etðhÞ ¼ a½1� dtðhÞ� þ
Xt

k¼1

qt�kdkðhÞ; ð3Þ

where a > 1 is the effectiveness of defender short-term expenses
(e.g., police patrol) relative to defender capital investment in secu-
rity; qt�k is the fraction of defensive capital from period k that is still
effective in period t and we assume q0 ¼ 1; gA is the cost to the at-
tacker of choosing to attack; gD½dtðhÞ; stðhÞ; h� is the cost to a defen-
der of type h of choosing the signal stðhÞ in period t, given the actual
defense dtðhÞ (i.e., the cost of implementing truthful disclosure, se-
crecy, or deceptive disclosure); and c½atðstÞ; etðhÞ� is the conditional
probability that an attack would succeed, given the attacker effort
at and the effective defense et . This contest success function is as-
sumed to be of the form

c½atðstÞ; etðhÞ� ¼ Prfwt ¼ 1jatðstÞ; etðhÞg ¼
atðstÞ

atðstÞ þ etðhÞ
: ð4Þ

Hence, the success probability is zero if the attacker chooses not to
attack, and is decreasing in the effective defense etðhÞ if the attacker
does choose to attack. The above functional form is a special case of
a contest success function given in Skaperdas (1996).

Finally, if t ¼ N, then the game ends, since we are assuming a
finite number of periods. Otherwise, if the attacker has chosen to
attack, he updates his belief from p0t to ptþ1 based on observing
the result of the contest (as discussed in detail in the next section),
and the game moves to the next period.

2.1. Definition of equilibrium

We let aðsÞ � fa1ðs1Þ; . . . ; aNðsNÞg; dðhÞ � fd1ðhÞ; . . . ; dNðhÞg; s �
fs1; . . . ; sNg; p � fp1; . . . ; pNg, and p0 � fp01; . . . ; p0Ng be vectors of
state variables and decision variables. Recall that the prior proba-
bility p1 at the beginning of the game is assumed to be common
knowledge. Let bA and bD be the attacker and defender discount
factors, respectively. We also let UA½aðsÞ; dðh1Þ; dðh2Þ; p0� and
UD½aðsÞ; dðhÞ; sðhÞ� be the objective functions maximized by the at-
tacker and a defender of type h, respectively, which are assumed
to be sums of the (expected) discounted total payoffs:

UA½aðsÞ; dðh1Þ;dðh2Þ;p0� ¼
XN

t¼1

bt�1
A

X
h¼h1 ;h2

uA
t ½atðstÞ; etðhÞ; h�p0tðhÞ; ð5Þ

UD½aðsÞ;dðhÞ; sðhÞ� ¼
XN

t¼1

bt�1
D uD

t ½atðstÞ;dtðhÞ; etðhÞ; stðhÞ; h�; ð6Þ

where the effective defense etðhÞ depends on dtðhÞ and dt�1ðhÞ as
specified by Eq. (3).

By analogy to perfect Bayesian equilibrium for signaling games
without first-mover hidden actions, we define the equilibrium of
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our game with defender hidden actions as follows. As in Zhuang
and Bier (in press), for computational simplicity, we do not con-
sider mixed-strategy equilibria here, and focus solely on pure-
strategy equilibria.

Definition 1. We call the collection fa�ðsÞ; d�ðhÞ; s�ðhÞ; p�; p0�g an
equilibrium if the following four conditions are satisfied:

1. A defender of type h chooses both the defense strategy d�ðhÞ and
the signal strategy s�ðhÞ to maximize her expected payoff,
assuming that the attacker will choose his equilibrium response
a�. That is, for all h ¼ h1; h2, we have

d�ðhÞ; s�ðhÞ 2 arg max
d;s

UD½a�ðsÞ; d; s; h�: ð7Þ

2. The attacker chooses his response a�ðsÞ to maximize his
expected payoff, according to his equilibrium posterior distri-
bution p0� for the defender type, assuming that the two defender
types choose their equilibrium defense strategies d�ðhÞ. That is,
we have

a�ðsÞ 2 arg max
a

UA½a;d�ðh1Þ;d�ðh2Þ; p0�ðsÞ�: ð8Þ

3. The attacker may update his beliefs p0�t from p�t in period t after
observing the signals sent by the defender in a discrete manner.
If s�t ðh1Þ ¼ s�t ðh2Þ, then the attacker does not update his beliefs
and we have p0�t ¼ p�t . Otherwise, if s�t ðh1Þ– s�t ðh2Þ, then p0�t
equals 1 with probability p�t (which happens when the signal
observed comes from a defender of type h1), and 0 with proba-
bility 1� p�t (which happens when the signal comes from a
defender of type h2).

4. At the end of period t, if at ¼ 0, then no contest happens and we
have p�tþ1 ¼ p0�t . Otherwise, if at ¼ 1, a contest occurs. The
attacker then observes the outcome wt 2 f0;1g (the random
variable representing success or failure of an attack in period
t; wt ¼ 1 if the attack succeeds, and zero otherwise), and
updates his belief about the defender’s type from p0�t to p�tþ1

using Bayes’ theorem, in which case for all t, we have:

p�tþ1ðwt ;p0tÞ ¼
p0�t c½a�t ðs

�
t ðh1ÞÞ;e�t ðh1Þ�

p0�t c½a�t ðs
�
t ðh1ÞÞ;e�t ðh1Þ�þð1�p0�t Þc½a

�
t ðs
�
t ðh2ÞÞ;e�t ðh2Þ�

if wt ¼ 1;
p0�t ½1�c½a�t ðs

�
t ðh1ÞÞ;e�t ðh1Þ��

p0�t ½1�c½a�t ðs
�
t ðh1ÞÞ;e�t ðh1Þ��þð1�p0�t Þ½1�cða�t ðs

�
t ðh2ÞÞ;e�t ðh2ÞÞ�

if wt ¼ 0:

8<
:

ð9Þ
2.2. Definition of secrecy and deception

Based on the equilibrium concept given in Definition 1, we de-
fine truthful disclosure, secrecy, and deception as follows.

Definition 2. In an equilibrium fa�ðsÞ; d�ðhÞ; s�ðhÞ; p0�; p�g, we say
that in period t, a defender of type h chooses:

1. truthful disclosure if and only if s�t ðhÞ ¼ 0d
�
t ðhÞ

0;
2. secrecy if and only if s�t ðhÞ ¼ fSg; and
3. deceptive disclosure if and only if s�t ðhÞ– fSg and s�t ðhÞ– 0d�t ðhÞ

0.

When the attacker knows the defender type, and the cost of
implementing truthful disclosure is lower than the costs of secrecy
and deception, then Zhuang and Bier (in press) suggests that truth-
ful disclosure will always be preferred to secrecy or deception. An
analogous condition for the case with private defender information
is

gDðdt ;
0d0t ; hÞ 6 gDðdt; st; hÞ 8t;dt ; st: ð10Þ

When inequality (10) is satisfied for a defender of type h, then the
cost of implementing truthful disclosure is lower than the costs of
implementing secrecy and deception, respectively. We focus on
the case when (10) is satisfied, since otherwise it would be trivial
to find an equilibrium in which a defender would prefer secrecy
or deception, for the simple reason that truthful disclosure is costly.

The numerical examples in the rest of this paper show that in
games with private defender information, defenders may strictly
prefer secrecy or deception at equilibrium even if inequality (10)
is satisfied (that is, even if truthful disclosure is less costly to
implement than secrecy or deception, as seems plausible). For sim-
plicity, Section 3 studies the case when the attacker observes the
defensive investment from the previous period at the beginning
of the next period. Section 4 relaxes that assumption.
3. Attacker observes defensive investment from the previous
period

The model presented in Section 2 above does not appear to be
analytically solvable in a straightforward or tractable manner. In
this section, we therefore provide a backward induction algorithm
to solve it numerically. In particular, we solve the model under the
assumption that the attacker can observe the previous period’s
defensive choice, dt�1, at the beginning of period t, as in Coleb
and Kocherlakotad (2001). However, unlike Coleb and Kocherlako-
tad (2001), we still allow the defender’s private information to re-
main secret throughout the entire game, if not revealed by the
defender’s choices. This assumption (that the attacker can observe
the previous defenses, which is relaxed in Section 4) greatly simpli-
fies the computation. However, with this assumption, the defender
cannot choose deception or secrecy at optimality for more than
one time period. Once deception or secrecy occurs in a single per-
iod, the attacker is subsequently able to recognize the defender
type by comparing the signal and the observed defense, so further
deception will not be beneficial after the defender type has been
revealed.

For computational convenience, we assume that capital can be
carried over only to the immediate next period; that is, we have
qk ¼ 0 for k P 2, and q1 ¼ q. (Note that this assumption is not a
major limitation of our model, and is made only for computational
convenience; cases where capital investment is carried over for
more than one period can be analyzed in a straightforward manner
simply by expanding the state space of our model, although this
significantly increases the computational burden.) Under this
assumption, Eq. (3) becomes

etðhÞ ¼ a½1� dtðhÞ� þ dtðhÞ þ qdt�1ðhÞ: ð11Þ

Since the player payoffs in period t depend only on the previous
defensive investment dt�1, the attacker prior belief pt at the begin-
ning of period t, and the player strategies atðstÞ, dtðhÞ, and stðhÞ in
period t, there must exist a Markovian optimal strategy (see
Strauch, 1966; Puterman, 1994). That is, if we let the ‘‘state” of
the system consist of the variables dt�1 and pt , the current-period
payoff depends only on the current state and the current strategies.
If we model the case where the capital defense can be carried over
to more than one period, this property still holds, provided that we
have a suitable state space (assuming that the attacker knows all of
the previous-period defenses). The backward algorithm (Puterman,
1994) is therefore guaranteed to find an optimal equilibrium strat-
egy (if one exists).

One element of the state of the system in this model is the at-
tacker’s belief about the defender type, pt , at the beginning of per-
iod t. In order to use the backward algorithm to solve for the
optimal strategy in period t � 1, we need to calculate the payoff
for each possible value of pt . Note that although the attacker up-
dates his beliefs about the defender type, p0t , in a discrete manner
after observing the defender’s signal (p0t ¼ 0; pt , or 1), the update



Fig. 2. Overview of the algorithm when attacker observes defensive investment.

Table 1
Attacker and defender strategies at period t.

Eight attacker strategies Six defender strategies

atð‘0’Þ ¼ 0 atð‘1’Þ ¼ 0 atðSÞ ¼ 0 dtðhÞ ¼ 0 stðhÞ ¼ ‘0’
atð‘0’Þ ¼ 0 atð‘1’Þ ¼ 0 atðSÞ ¼ 1 dtðhÞ ¼ 0 stðhÞ ¼ ‘1’
atð‘0’Þ ¼ 0 atð‘1’Þ ¼ 1 atðSÞ ¼ 0 dtðhÞ ¼ 0 stðhÞ ¼ S
atð‘0’Þ ¼ 0 atð‘1’Þ ¼ 1 atðSÞ ¼ 1 dtðhÞ ¼ 1 stðhÞ ¼ ‘0’
atð‘0’Þ ¼ 1 atð‘1’Þ ¼ 0 atðSÞ ¼ 0 dtðhÞ ¼ 1 stðhÞ ¼ ‘1’
atð‘0’Þ ¼ 1 atð‘1’Þ ¼ 0 atðSÞ ¼ 1 dtðhÞ ¼ 1 stðhÞ ¼ S
atð‘0’Þ ¼ 1 atð‘1’Þ ¼ 1 atðSÞ ¼ 0
atð‘0’Þ ¼ 1 atð‘1’Þ ¼ 1 atðSÞ ¼ 1
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after observing the contest outcome wt is continuous. Therefore,
for reasons of computational tractability, we discretize the
resulting probability ptþ1. In particular, for a step size given by
0 < d << 1 where 1

d is an integer, we approximate pt by pt
d

� �
d, where

the floor function bxc returns the largest integer less than or
equal to x. We use d ¼ 0:01 in the numerical examples of this
section.

3.1. Overview of the algorithm

Fig. 2 provides an overview of our backward algorithm for the
case when the attacker observes the previous-period defensive
investment. This algorithm consists of four steps, as specified
below:

1. Set the optimal attacker and defender payoffs earned at the end
of the game (denoted as period N þ 1), U�A;Nþ1ðpNþ1; dNÞ and
U�D;Nþ1ðpNþ1; dN; hÞ, to zero for all possible states (i.e., all possible
values of pNþ1 and dN) and for both defender types h. (Recall that
the states of the game in period t are the attacker’s beliefs pt and
the previous defense dt�1, and that p1 and d0 are assumed to be
common knowledge.) Then set the current period to be t ¼ N.

2. Create a set Xt whose elements consist of pairs of the form
ðdt�1; ptÞ. In particular, when t ¼ 1, define Xt ¼ fðd0; p1Þg. When
t > 1, let the set Xt consist of all possible combinations of the
defensive investment dt�1 ¼ 0;1 and the (discretized) probabil-
ity pt . Thus the set of possible probabilities is either
f0; d;2d; . . . ;1� d;1g (if the contest result depends on the
defender type h) or f0; p1;1g otherwise.

3. For each pair ðdt�1; ptÞ in the set Xt , construct a one-period game
in period t in which the player strategies include the attacker
response atðstÞ, the defense dtðhÞ, and the defender signal stðhÞ
for all st ¼ 0;1; S and h ¼ h1; h2. These player strategies will (sto-
chastically) determine the states of the model (dt and ptþ1) in
the next period t þ 1. The (stochastic) attacker and defender
payoffs of this one-period game include the current payoffs
uA;t and uD;t , as well as the optimal discounted future payoffs
bAU�A;tþ1ðptþ1; dtÞ and bDU�D;tþ1ðptþ1; dt ; hÞ, respectively. Then cal-
culate the Nash equilibrium of this one-period normal-form
game, and let the equilibrium player payoffs equal
U�A;tðpt ; dt�1Þ and U�D;tðpt ; dt�1; hÞ for h ¼ h1; h2. (Section 3.2
describes how to construct the strategies and payoffs of this
game in more detail.)
4. If t ¼ 1, end the algorithm and retrieve the optimal equilibrium
path (if one exists). Otherwise, let t equal t � 1, and go back to
Step 2.

3.2. Solving the one-period games in period t

In this section, we explain how to implement Step 3 in the
above algorithm; i.e., how to construct and solve the game in per-
iod t corresponding to any possible pair of the previous-period de-
fense dt�1 and the attacker belief pt . Depending on whether the
attacker already knows the defender type at the beginning of per-
iod t, there are two possibilities:

Case A (pt ¼ 0 or pt ¼ 1): In this case, at the beginning of period t,
the attacker already knows whether the defender is of type h ¼ h2 or
h ¼ h1 (corresponding to pt ¼ 0 or pt ¼ 1, respectively). Therefore,
we have an 8� 6 game between the attacker and one known defen-
der. The attacker has eight possible strategies; for each of the three
possible signals st ¼ 0;1; S, he can respond with one of the two pos-
sible actions, atðstÞ ¼ 0;1. The known defender of type h has six pos-
sible strategies; she can choose one of the two possible defense
levels, dtðhÞ ¼ 0;1, and one of three possible signals, stðhÞ ¼ 0;1;2.
See Table 1 for all possible attacker and defender strategies.

For all 48 cases, we calculate et using Eq. (11), and let
p0t ¼ ptþ1 ¼ pt . The attacker and defender total expected payoffs
are calculated as the sum of the current payoff plus the discounted
future equilibrium payoff:

uA
t ½atðstÞ; et ; h� þ bAU�A;tþ1½ptþ1; dt� ð12Þ

and

uD
t ½atðstÞ; dt; et ; st; h� þ bDU�D;tþ1½ptþ1;dt ; h�: ð13Þ
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We now determine the Nash equilibrium of the above two-player
game. In this case, U�A;tðpt;dt�1Þ is the attacker’s equilibrium payoff.
If pt ¼ 0, then U�D;tðpt; dt�1; h2Þ is the defender’s equilibrium payoff,
and we set U�D;tðpt ;dt�1; h1Þ to a large negative number. Otherwise,
if pt ¼ 1, then U�D;tðpt; dt�1; h1Þ is the defender’s equilibrium payoff,
and we set U�D;tðpt;dt�1; h2Þ to a large negative number.

Note that multiple equilibria will typically occur in tandem
with multiple possible off-equilibrium signals. For example, if
a�t ðstÞ and s�t ðhÞ are part of an equilibrium in which s�t ðhÞ ¼ 0, then
there may exist up to four equilibria in which a�t ð1Þ ¼ 0 or 1 and
a�t ðSÞ ¼ 0 or 1, since the attacker’s responses to off-equilibrium sig-
nals (1 or S in this example) will not directly change the player
equilibrium payoffs. If there are multiple equilibria, we first find
all equilibria, then discard those that have less than the maximum
total social payoffs, and finally choose any of the remaining equi-
libria. Note, however, that equilibria with the maximum total so-
cial payoffs may not always be realistic, since this is an
adversarial rather than a cooperative game. If no equilibrium exists
for some values of pt and dt�1, then we set the corresponding player
payoffs U�A;tðpt; dt�1Þ and U�D;tðpt ; dt�1; hÞ to be highly negative, to en-
sure that the corresponding strategies will not be accessed as part
of an optimal equilibrium path from the previous period.

Case B (0 < pt < 1): In this case, at the beginning of period t, the
attacker is uncertain about the defender type, and we have a three-
player, 8� 6� 6 game. As in Case A, the attacker has eight possible
strategies, and each defender type has six possible strategies (as
specified in Table 1 above). For all 288 cases, we calculate etðhÞ
using Eq. (11), and then determine p0t stochastically as a function
of stðh1Þ, stðh2Þ, and pt , using condition 3 of Definition 1.

We next calculate the attacker and defender total expected pay-
offs (the current payoff, plus the discounted expected future equi-
librium payoff). In particular, the attacker payoff is given by:

Ep0t
½p0tuA

t ½atðh1Þ; stðh1Þ; etðh1Þ; h1� þ ð1� p0tÞuA
t ½atðstðh2ÞÞ; etðh2Þ; h2�

þ bAEwt U
�
A;tþ1ðptþ1ðwt ;p0tÞ; dtÞ� ð14Þ

and the payoff to a defender of type h is given by

Ep0t
½uD

t ½atðhÞ; dtðhÞ; etðhÞ; stðhÞ; h� þ bDEwt U
�
D;tþ1ðptþ1ðwt ;p0tÞ; dt; hÞ�;

ð15Þ

where the first and second expectations are taken with respect to
the distribution of p0t and wt , respectively. We calculate
Table 2
Equilibrium output when the expense effectiveness a is defender private information.

pt dt�1 dtðh1Þ stðh1Þ dt

gA ¼ 2:
t ¼ 1 0.90 0 0 0 0

w1 ¼ 0 : t ¼ 2 0.88 0 0 0 0
w1 ¼ 1 : t ¼ 2 0.93 0 0 0 0

gA ¼ 4:
t ¼ 1 0.90 0 0 0 0
t ¼ 2 1.00 0 0 0 –
t ¼ 2 0.00 0 – – 0

gA ¼ 6:
No pure-strategy equilibrium exists. The results

t ¼ 1 0.90 0 0 Pf0g ¼ 2
3, 0

PfSg ¼ 1
3

s1 ¼ 0 : t ¼ 2 1.00 0 0 0 –
s1 ¼ S;w1 ¼ 0 : t ¼ 2 0.72 0 0 0 0
s1 ¼ S;w1 ¼ 1 : t ¼ 2 0.83 0 0 0 0

gA ¼ 8:
t ¼ 1 0.90 0 0 0 0
t ¼ 2 0.90 0 0 0 0
Prfwt ¼ 1g at period t for given values of atðstÞ; etðhÞ, and p0t by con-
ditioning on the possible defender types:

Prfwt ¼ 1g ¼ Prfwt ¼ 1jh1gp0t þ Prfwt ¼ 1jh2gð1� p0tÞ
¼ c½atðstðh1ÞÞ; etðh1Þ�p0t þ c½atðstðh2ÞÞ; etðh2Þ�ð1� p0tÞ:

Finally, to determine the Nash equilibrium of the above three-
player game, we let U�A;t½pt ;dt�1ðhÞ� be the equilibrium attacker pay-
off, and U�D;t½pt; dt�1ðhÞ; h� be the equilibrium defender payoff for a
defender of type h. Cases with multiple equilibria or no equilibrium
are handled as in Case A above.

3.3. Baseline parameter values

In the examples in the following sections, we use the following
baseline parameter values: N ¼ 2; p1 ¼ 0:9; bA ¼ 0:9; bDðh1Þ ¼ bD

ðh2Þ ¼ 0:9;qðh1Þ ¼ qðh2Þ ¼ 0:5;aðh1Þ ¼ aðh2Þ ¼ 2; vAðh1Þ ¼ vAðh2Þ ¼
20; vDðh1Þ ¼ vDðh2Þ ¼ 20. Moreover, we use the following baseline
costs:
ðh2

be
Þ stð

0
0
0

S
–
0

low show a

S

–
0
0

0
0

gDðd; s; h1Þ
h2Þ atð‘0’Þ atð‘1’Þ

1 1
1 1
1 1

1 1
1 1
0 0

mixed strategy in period 1

1 1

1 1
0 0
1 1

0 0
0 0
gDðd; s; h2Þ
s ¼ ‘0’
 s ¼ ‘1’
 s ¼ S
 s ¼ ‘0’
atðSÞ

1
1
1

1
1
0

Pf0g ¼ 3
20,

Pf1g ¼ 17
20

1
0
1

0
0

s ¼ ‘1’
Rem

–
–
–

h2 Se
–
–

Secr

–
–
–

–
–

s ¼ S
d ¼ 0
 0
 2
 1
 0
 2
 1

d ¼ 1
 2
 0
 1
 2
 0
 1
Note that these values ensure that implementing truthful dis-
closure is less costly than implementing deception or secrecy. Also,
in practice, defenders must usually spend more resources to imple-
ment deception than secrecy, since a successful deception requires
both keeping the truth secret, and publicizing the deceptive infor-
mation. We have therefore chosen the cost of secrecy to be less
than the cost of deception.

Sections 3.4 and 3.5 show that secrecy can be an equilibrium
strategy when the attacker is uncertain about the defender ex-
pense effectiveness and the asset valuation. In those cases, the
stronger (or less valuable) defender type uses secrecy to differenti-
ate herself from the weaker (or more valuable) defender type, in
order to deter (or disinterest) the attacker. Section 3.6 shows that
deception can also be an equilibrium strategy when the attacker is
uncertain about the defender costs; however, in this case, we find
deception used to mimic the other defender type.
ark

crecy

ecy
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3.4. Effectiveness of expenses as defender private information

When the defender private information h involves parameters
affecting the contest result (such as a or qk), the attacker may be
able to update his beliefs in a continuous manner. Here, we let
aðh1Þ ¼ 2 and aðh2Þ ¼ 4 be the defender private information. Table
2 gives results for attack costs gA ¼ 2, 4, 6, and 8.

Case of gA ¼ 2: In this case, the attack cost is relatively low, so
that at optimality, the attacker chooses to attack for any observed
signal in all periods. Therefore, there is no benefit to deception,
since the attacker response is independent of the signals, and a con-
test occurs in each period. In period 1, both defender types choose
to invest in short-term expenses, and choose truthful disclosure.
After observing the result of the contest, the attacker updates his
knowledge about the defender type in a continuous manner. In par-
ticular, when the attack fails ðw ¼ 0Þ, the attacker concludes that
the defender is more likely to be of the strong type (in this case,
type h2), resulting in p2 ¼ 0:88 at the beginning of period 2 (in other
words, the probability that the defender is of type h1 has decreased
from p1 ¼ 0:9 in period 1 to p2 ¼ 0:88 in period 2). By contrast,
when the attack succeeds ðw ¼ 1Þ, the attacker concludes that the
defender is more likely to be of the weak type (in this case, type
h1), resulting in p2 ¼ 0:93 at the beginning of period 2.

Case ofgA ¼ 4: In this case, the attack cost is intermediate, so the
attacker would be deterred by investment in expenses by the de-
fender of type h2 (if the defender type were known), but not by
the (weaker) defender of type h1. We observe secrecy by the defen-
der of type h2 in the first period. The purpose of this secrecy is for
the defender of type h2 to distinguish herself from the defender of
type h1, and thereby benefit from attack deterrence in future peri-
ods. Note also that when the discount factor of the defender of type
Table 4
Equilibrium output when the cost is defender private information.

pt dt�1 dtðh1Þ stðh1Þ dtðh2Þ

gA ¼ 4:
t ¼ 1 0.90 0 0 0 1
t ¼ 2 1.00 0 0 0 –
t ¼ 2 0.00 1 – – 1

gA ¼ 6:
t ¼ 1 0.90 0 1 1 1

w1 ¼ 0 : t ¼ 2 0.90 1 0 0 1
w1 ¼ 1 : t ¼ 2 0.90 1 0 0 1
gA ¼ 8:

t ¼ 1 0.90 0 0 0 1
t ¼ 2 1.00 0 0 0 –
t ¼ 2 0.00 1 – – 1

gA ¼ 10:
t ¼ 1 0.90 0 0 0 1
t ¼ 2 1.00 0 0 0 –
t ¼ 2 0.00 1 – – 1

Table 3
Equilibrium output when the target valuation is defender private information.

pt dt�1 dtðh1Þ stðh1Þ dtðh2

gA ¼ 2:
t ¼ 1 0.90 0 0 0 0

w1 ¼ 0 : t ¼ 2 0.90 0 0 0 0
w1 ¼ 1 : t ¼ 2 0.90 0 0 0 0

gA ¼ 4:
t ¼ 1 0.90 0 0 S 0
t ¼ 2 1.00 0 0 0 –
t ¼ 2 0.00 0 – – 0

gA ¼ 6:
t ¼ 1 0.90 0 0 0 0
t ¼ 2 0.90 0 0 0 0
h2 is sufficiently small (so that she places little value on future at-
tack deterrence), we no longer obtain secrecy in this case.

Case of gA ¼ 6: In this case, the attack cost is moderately high and
there exists no pure-strategy equilibrium. This is because the weak
defender type always wants to mimic the stronger defender type
in the first period, in order to deter the attacker, while the stronger
defender type wants to differentiate herself from the weaker type.

Although there exists no pure-strategy equilibrium in this case,
we have a mixed-strategy equilibrium, as follows: In period 1, both
defender types choose to invest in expenses, d1ðh1Þ ¼ d1ðh2Þ ¼ 0. The
strong defender of type h2 chooses secrecy (as in the case where
gA ¼ 4) with probability one. The weak defender of type h1 chooses
a truthful signal of having invested in expenses with probability 2

3,
and a signal of secrecy with probability 1

3, in order to decrease the
chance of being attacked by (probabilistically) mimicking the stron-
ger (secretive) defender. The attacker will respond to a signal of ex-
pense defense by attacking, since he will know that this signal can
come only from a weak defender; he will respond to a signal of se-
crecy by attacking with probability 17

20, and not attacking with prob-
ability 13

20, respectively. Note that when observing a signal of
secrecy, the attacker is indifferent about whether to attack, since
he cannot determine whether the secrecy is coming from a weak
or a strong defender. Given the attacker’s mixing probabilities at
equilibrium, the weaker defender is also indifferent between secrecy
(which is costly, but achieves attack deterrence) or a truthful signal
(which avoids any signaling cost, but results in an attack).

Case of gA ¼ 8: In this case, the attack cost is sufficiently high
that the attacker will not attack regardless of the nature of the de-
fender’s investment (capital or expense). Therefore, we do not find
deception or secrecy at equilibrium, and both defender types
choose to invest in expenses.
stðh2Þ atð‘0’Þ atð‘1’Þ atðSÞ Remark

1 1 1 1 –
– 1 1 1 –
1 1 1 1 –

1 1 1 1 –
0 0 1 1 h2 Deception
0 0 1 1 h2 Deception

0 0 1 1 h2 Deception
– 0 0 0 –
1 0 0 0 –

1 0 0 0 –
– 0 0 0 –
1 0 0 0 –

Þ stðh2Þ atð‘0’Þ atð‘1’Þ atðSÞ Remark

0 1 1 1 –
0 1 1 1 –
0 1 1 1 –

0 1 1 1 h1 Secrecy
– 0 0 0 –
0 1 1 1 –

0 0 0 0 –
0 0 0 0 –



Table 5
Equilibrium output when the attacker does not observe defensive investment and the
cost is defender private information.

dtðh1Þ stðh1Þ dtðh2Þ stðh2Þ atð‘0’Þ atð‘1’Þ atðSÞ Remark

gA ¼ 6:
t ¼ 1 0 0 1 1 1 1 1 –
t ¼ 2 0 0 1 1 1 1 1 –

gA ¼ 8:
t ¼ 1 0 0 1 0 0 1 1 h2 Deception
t ¼ 2 0 0 1 1 1 1 1 –

gA ¼ 9:
t ¼ 1 0 0 1 0 0 1 1 h2 Deception
t ¼ 2 0 0 1 0 0 1 1 h2 Deception

gA ¼ 10:
t ¼ 1 0 0 1 1 0 0 0 –
t ¼ 2 0 0 1 1 0 0 0 –
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3.5. Target valuation as private information

In this subsection, we consider aðh1Þ ¼ aðh2Þ ¼ 1:5;vAðh1Þ ¼
vDðh1Þ ¼ 10 and vAðh2Þ ¼ vDðh2Þ ¼ 20, and inherit all other param-
eter values from the previous subsection. Therefore, defenders of
type h1 differ from defenders of type h2 only with regard to their
target valuations. Table 3 shows the results for attack costs of
gA ¼ 2, 4, and 6.

Case of gA ¼ 2: In this case, the attack cost is relatively low, so
that at optimality, the attacker chooses to attack for any observed
signal in all periods. Therefore, there is no benefit to deception,
since the attacker response is independent of the signals. A contest
happens in each period. In both periods 1 and 2, both defender
types choose to invest in short-term expenses, and choose truthful
disclosure. However, unlike the result in Table 2, after observing
the result of the contest, the attacker is still not able to update
his knowledge about the defender type, and therefore we have
p2 ¼ p1 ¼ 0:9. This is because the target valuation, which is the de-
fender’s private information in this case, has no direct impact on
the success probability of an attack (and is assumed not to be ob-
servable by the attacker even after a successful attack).

Case of gA ¼ 4: In this case, the attack cost is intermediate. The
attack cannot be deterred in period 1, and both defender types
choose to invest in short-term expenses. However, we observe se-
crecy by the defender of type h1, to differentiate herself from the
more valuable defender of type h2, so that the attacker will not
be interested in attacking her in period 2 (since her asset valuation
is relatively low).

Case of gA ¼ 6: In this case, the attack cost is high, and the at-
tacker will not attack regardless of whether the defender invests
in capital or expense. Therefore, we do not find deception or se-
crecy at equilibrium, and both defender types choose to invest in
short-term expenses.

3.6. Defender costs as private information

In this subsection, we consider aðh1Þ ¼ aðh2Þ ¼ 2. We let the
cost be the defender’s private information. As shown below, the
defender of type h2 has higher costs for all signals than the defen-
der of type h1 when the defenses are given by d ¼ 0.
gDðd; s; h1Þ
 gDðd; s; h2Þ
s ¼ ‘0’
 s ¼ ‘1’
 s ¼ S
 s ¼ ‘0’
 s ¼ ‘1’
 s ¼ S
d ¼ 0
 0
 2
 1
 4
 6
 5

d ¼ 1
 2
 0
 1
 2
 0
 1
The differences between costs for defenders of type h1 and h2

could be justified by opportunity costs or political costs. For exam-
ple, the constituents or stakeholders of the defender of type h2 may
dislike short-term expenses. Table 4 gives the results for attack
costs gA ¼ 4;6;8; and 10.

Case of gA ¼ 4: In this case, the attack cost is relatively low, so
that at equilibrium, the attacker chooses to attack for any observed
signal in all periods, and a contest occurs in each period. Therefore,
there is no benefit of deception, since the attacker response is inde-
pendent of the signals. The defender of type h2 chooses long-term
defense, because it is cheaper for her; the defender of type h1

chooses short-term expenses, for the same reason. Since we as-
sume that the attacker observes the previous-period defense, at
the beginning of period 2 the attacker recognizes the defender type
with certainty (either p2 ¼ 1 or p2 ¼ 0), as reflected in the two rows
for t ¼ 2 in Table 4.

Case of gA ¼ 6: In this case, the attack cost is intermediate. The
attack cannot be deterred in period 1, and both defender types
choose capital defenses (which are partially carried over to period
2). However, unlike in Table 2, after observing the result of the con-
test, the attacker is still not able to update his knowledge about the
defender type (p2 ¼ 0:9). This is because the cost, which is the de-
fender’s private information in this case, has no direct impact on
the success of an attack. In period 2, the attacker is deterred by ex-
pense defenses, but not by capital defenses. We observe deception
by the defender of type h2, to mimic the defender of type h1. This is
because the cost of truthfully disclosing an expense defense is
higher for the defender of type h2 than the cost of choosing a cap-
ital defense but signaling that expense was chosen.

Case of gA ¼ 8: In this case, the attack cost is relatively high. The
attacker can be deterred by expense defenses in each period. Since
the expense defense is costly to the defender of type h2, she chooses
deception to mimic the defender of type h1 in period 1, which suc-
cessfully deters the attacker. This reveals her type at the beginning
of period 2 (and therefore we have either p2 ¼ 1 or p2 ¼ 0, as re-
flected by the two rows for t ¼ 2 in corresponding section of Table
4). Benefiting from the carried over defense in period 1, the defender
of type h2 is then able to deter the attacker in period 2.

Case of gA ¼ 10: In this case, the attack cost is high, and the at-
tacker will not attack regardless of whether the defensive invest-
ment is capital or expense. Therefore, we do not find either
deception or secrecy at equilibrium, and defenders of type h1 and
h2 choose to invest in expenses and capital, respectively.

3.7. Other parameters as defender private information

In cases where the defender’s private information is associated
only with future payoffs (such as the carry-over coefficients qk and
the discount rate bD), we have not found deception or secrecy in
our numerical model, despite an extensive computer search. Fur-
ther, we speculate that deception and secrecy will not be equilib-
rium strategies in such cases, because we have assumed that the
attacker always observes the defenses from the previous period;
deception or secrecy seem unlikely to be beneficial if the defen-
der’s private information affects only the defender’s future payoffs.

4. Attacker does not observe defensive investment

In this section, we consider the case where the attacker does not
learn the previous-period defense dt�1 at the beginning of period t.
For simplicity, we also assume that the attacker does not observe
the result of the contest from the previous period. In this case,
the strategies of the game must consist of the defenses in all peri-
ods. Therefore, we need to solve a three-player 8N � 6N � 6N game,
where N is the number of periods. The attacker has 8N possible
strategies; for each period t ¼ 1; . . . ;N, and for each of the three
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possible signals st ¼ 0;1;2, he can respond with one of the two
possible actions atðstÞ ¼ 0;1. Each defender type has 6N possible
strategies; for each period t ¼ 1; . . . ;N, she can choose one of the
two possible defense levels dtðhÞ ¼ 0;1, and one of three possible
signals, stðhÞ ¼ 0;1;2.

For each of the 8N � 6N � 6N attacker–defender strategies
fatðstÞ; dtðhÞ; stðhÞgN

t¼1 ¼ fa; d; sg, we calculate the beliefs p0�t using
condition 3 in Definition 1, and calculate p�tþ1 using Eq. (9), recur-
sively for each period t. Then we calculate the player payoffs
UAða; d; p0�Þ and UDða; d; s; hÞ using Eqs. (5) and (6). Finally, we iden-
tify the Nash equilibrium of the above three-player 8N � 6N � 6N

game. Cases with multiple equilibria or no equilibrium are handled
as in Section 3. Note that the computational demands of this model
increase exponentially in N, so we consider only N ¼ 2;3.

Using the same parameter values as in Section 3.6, we get the
equilibrium outcomes specified in Table 5, showing that deception
can be an equilibrium strategy when the attacker is uncertain
about the defender cost. As in Section 3.6, deception is used here
only to mimic the other defender type. However, it is noteworthy
that we are able to get deception over more than one period in this
case.

Case of gA ¼ 6: In this case, the attack cost is relatively low, so
that at equilibrium, the attacker chooses to attack for any observed
signal in all periods, and a contest occurs in each period. Therefore,
there is no benefit of deception, since the attacker response is inde-
pendent of the signals.

Case of gA ¼ 8: In this case, the attack cost is intermediate. In
period 1, the defender of type h1 chooses short-term expenses,
which deters the attacker. The defender of type h2 chooses long-
term defense, but deceptively discloses a short-term expenses in
order to deter the attacker. The defender of type h1 chooses
short-term expenses because it is more effective, and the defender
of type h2 chooses long-term defense because short-term expenses
is more costly for that defender type.

Case of gA ¼ 9: In this case, the attack cost is relatively high. The
attacker can be deterred by an expense defense in each period.
However, since the expense defense is costly to the defender of
type h2, she chooses deception in both periods in order to mimic
the defender of type h1, which successfully deters the attacker.

Case of gA ¼ 10: In this case, the attack cost is high, and the at-
tacker will not attack regardless of whether the defensive invest-
ment is capital or expense. Therefore, we do not find deception
or secrecy at equilibrium, and defenders of type h1 and h2 choose
to invest in expenses and capital, respectively.

5. Conclusions and future research

This work uses game theory and dynamic programming to
model a multiple-period, attacker–defender, resource-allocation
and signaling game with incomplete information. Our numerical
examples show that defenders can sometimes achieve more cost-
effective security through secrecy and deception in a multiple-per-
iod game. In particular, Sections 3.4 and 3.5 show that secrecy can
be an equilibrium strategy when the attacker is uncertain about
the defender expense effectiveness a and the asset valuation v,
respectively. In those cases, the stronger (or less valuable) defender
type uses secrecy to differentiate herself from the weaker (or more
valuable) defender type, in order to deter (or disinterest) the
attacker.

Section 3.6 shows that deception can also be an equilibrium
strategy when the attacker is uncertain about the defender costs;
however, in that case, deception is used by the defender with high-
er costs for short-term expenses, to mimic the other defender type
when that defender chooses to invest in expenses rather than cap-
ital. In other words, the deceiver gets both the deterrence benefit of
appearing to invest in short-term expenses (without the high cost
of actually doing so), and also the long-term benefit of having actu-
ally invested in capital defenses.

Section 4 shows results similar to those in Section 3.6 for the
case where the attacker is again uncertain about the defender
costs, but now assuming that the attacker does not learn the pre-
vious-period defense dt�1 at the beginning of period t. With that
assumption, we are able to find equilibria that involve sustained
deception over more than one period.

This paper helps to fill a significant gap in the literature. In par-
ticular, to our knowledge, no past work has studied defender se-
crecy and deception in a multiple-period game. Moreover, we
believe that the solution approach developed in this paper will
prove useful in other types of multiple-period games.

One limitation to this paper is that our algorithm does not auto-
matically identify mixed strategies. (However, we provided an
example of a mixed-strategy equilibrium in one case where a
pure-strategy equilibrium does not exist.) This limitation should
ideally be relaxed. In fact, we anticipate that secrecy and/or decep-
tion may be observed at equilibrium for a wider range of parame-
ter values if we allow mixed strategies (i.e., if the defender is
allowed to choose secrecy and/or deception with some probability
less than one).

Our multiple-period model can be used to address several other
important considerations in homeland security, such as: (1) defen-
der reputation effects (in which, for example, deception might be
desirable in the short-term, but lead to loss of credibility in the
long-term); and (2) attacker learning over time (e.g., through re-
peated attacks) regarding defender private information. A slight
modification of our model could also be used to address evolving
attacker and defender ‘‘technologies” (e.g., new attack strategies,
or changing cost functions).

Our multiple-period model of capital versus expenses could also
be extended to cases in which the effectiveness of capital defenses
decays as a result of damage due to attacks. Similarly, the level of
damage could be modeled using a continuous variable rather than
a binary variable. Finally, our multiple-period model could be ex-
tended to incorporate multiple targets and/or multiple defensive
measures, in which (for example) the defender might disclose part
of her resource allocation and keep the rest secret, or disclose the
total investment (perhaps over a subset of the targets) but not the
detailed allocation among targets.

In cases with multiple equilibria, it would also be interesting to
explore results involving objectives other than the maximum total
social payoffs. While the maximum total social payoffs provide a
convenient focal equilibrium in cases with multiple equilibria, this
may not be a realistic equilibrium in this context, since defenders
and attackers will in general have no reason to cooperate to help
achieve high total payoffs.

Although we found secrecy and deception as equilibrium strate-
gies, which is somewhat unusual in the literature, such equilibria
were relatively rare and difficult to obtain in our model, compared
to the frequency with which secrecy and deception are observed in
practice. We suspect that this may be at least in part because of some
of the more unrealistic assumptions of game theory (e.g., common
knowledge, full rationality). Therefore, it may be worthwhile to de-
velop models of optimal strategies for rational defenders when fac-
ing non-strategic (irrational and/or behaviorally realistic) players,
making it possible to explore the sensitivity of optimal defender
strategies to assumptions about the behavior of other players.

Moreover, once it is known that secrecy or deception may be
optimal strategies, this opens up the question of whether it may
sometimes be optimal for the defender to allocate defensive re-
sources to targets that are not among those most attractive to
attackers (unlike the recommendations in Bier et al., 2007). For
example, if some targets can be defended more cost-effectively
than the most attractive targets, then resources devoted to those
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targets may not be wasted if the attacker can be misled about their
attractiveness.

Although this paper studies secrecy and deception specifically
in the homeland-security context, we believe that our model can
also provide useful insights in other contexts, such as business
competition or sustainability. For example, in a business-entry
game, an established company (first mover, analogous to the de-
fender in our model) may have some private information (such
as cost structure, market information, or proprietary technology),
and choose secrecy or deception rather than truthfully disclosing
her actions (e.g., production and marketing plans), in order to opti-
mally deter a possible entrant (second mover, analogous to the at-
tacker in our model), who wants to enter the industry and compete
for the same scarce market. Finally, we also believe that the solu-
tion approach adopted in this paper will prove useful in analyzing
a wide variety of multiple-period games.
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