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Abstract

Model verification and validation (V&V) are essential before a model can be
implemented in practice. Integrating model V&V into the process of model
development can help reduce the risk of errors, enhance the accuracy of the
model, and strengthen the confidence of the decision-maker in model results.
Besides V&V, uncertainty quantification (UQ) techniques are used to verify
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and validate computational models. Modeling intelligent adversaries is different
from and more difficult than modeling non-intelligent agents. However, modeling
intelligent adversaries is critical to infrastructure protection and national security.
Model V&V and UQ for intelligent adversaries present a big challenge. This
chapter first reviews the concepts of model V&V and UQ in the literature
and then discusses model V&V and UQ for intelligent adversaries. Some
V&V techniques for modeling intelligent adversaries are provided which could
be beneficial to model developers and decision-makers facing with intelligent
adversaries.

Keywords
Decision making • Intelligent adversaries • Model validation and verification •
Validation techniques

1 Introduction

Models have been extensively used in research when describing systems and pre-
dicting scenarios. Model verification and validation (V&V) can quantify confidence
in the accuracy of model-based predictions under certain assumptions.

Verification refers to building the system right, while validation refers to building
the right system [47]. Verification is conducted before validation. The verification
process includes assessing code verification and calculation verification. Validation
consists of conceptual model validity and operational validity. There are many
approaches to validation, such as validation by assumption, validation by results,
and validation by common sense. Validation techniques include animation, compari-
son to models, degenerate tests, event validity, extreme condition, face validity, fixed
values, historical data validation, historical methods, internal validity, multistage
validation, operational graphics, parameter variability, predictive validation, traces,
and turning tests [58]. See the explanations of the techniques in Table 1.

Academia, industry, and government have been interested in model validation.
Some terms related to the model, such as “reliability,” “credibility,” “confidence,”
and “applicability,” have become common in academic and industrial studies, as
well as government reports and implementations. A Standards Committee for the
development of model V&V procedures for computational solid mechanics models
has been formed by the American Society of Mechanical Engineers (ASME); a
V&V model for all safety-related nuclear facility design, analyses, and operations
has been supported by the Defense Nuclear Facilities Safety Board (DNFSB); and
validation of complex models has been a key concern of the military simulation
community for over three decades [39].

Considerable attention has been paid to model verification and validation.
Numerous articles have appeared in the literature expressing different concerns of
the validity of the models that have been proposed. The advances in the techniques
of modeling and solution have impacted how people perceive model validation.
For details about model V&V and about computational simulation models [57–59],
see [44]. Validation methods, procedures for economic and financial models, urban
and transportation models, government and criminology models, and medical and
physiological models have also been studied [16].
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Table 1 Common model validation techniques (Source: [58])

Techniques Explanation

Animation Use graphs to show the model’s behavior through time

Comparison to models Compare model results to the results of other valid models

Degenerate test Test model behavior using appropriate values of input/internal
parameters

Event validity Compare model event to real system to see the similarity

Extreme condition Check model plausibility in extreme and unlikely levels of the
system

Face validity Ask knowledgeable people about the reasonability of the model

Fixed values Fix values for variables/parameters to check against easily calcu-
lated values

Historical data validation Use part of the data to build model, and the rest of data to test
model

Historical methods Three historical methods: rationalism, empiricism, positive eco-
nomics

Internal validity Implement several runs to determine the amount of variability in
the model

Multistage validation Combine the three historical methods into a multistage process

Operational graphics Display values of various performance measures

Parameter variability Use sensitivity analysis to determine the parameters’ effect

Predictive validation Check the prediction of the model with the system behavior

Traces Trace entities in the model to see whether the model logic is
correct

Turning tests Ask people to discriminate the outputs of the model and system

The V&V approach quantifies degree of the accuracy and confidence inferred
from the comparison of the prediction from the model with the results from reality
or experiments. There can be no validation if there is no experimental data with
which to compare the result of the model [6]. However, for intelligent adversaries,
deficiencies of data and the incompleteness of understanding adversaries’ behavior
hinder the modeler from building the model and obtaining credible predictions.
Taking the characteristics of the intelligent adversaries into consideration, is it
possible to obtain sufficient data to build and validate such models? If not, is model
validation even possible for intelligent adversary analysis in the absence of outcome
data? These questions will be discussed in this chapter.

2 Model Verification vs. Validation

2.1 Terminology

We first introduce the terms of “verification” and “validation” before discussing
the relationships between them. Model V&V methods and procedures have been
defined by multiple organizations. In the development of fundamental concepts and
terminology for V&V, the Department of Defense (DoD) Modeling and Simulation
Office (DMSO) has been the leader and played a major role in attempting to
standardize the definitions of V&V [7, 8]. In addition, DMSO developed the
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Table 2 Definitions of verification and validation by DMSO and IEEE (Source: [7, 24])

Verification Validation

DMSO The process of determining that a model
implementation accurately represents the
developer’s conceptual description and
specifications

The process of determining the degree to
which a model is an accurate representa-
tion of the real world from the perspective
of the intended uses of the model

IEEE The process of evaluating a system or
component to determine whether the prod-
ucts of a given development phase satisfy
the conditions imposed at the start of that
phase

The process of evaluating a system or
component during or at the end of the
development process to determine whether
it satisfies specified requirements

US fundamental concepts and terminology for model V&V applied to high-level
systems such as ballistic missile defense and battle management simulations [71].

There is a variety of formal definitions. The Defense Modeling and Simulation
Organization (DMSO) of the Department of Defense (DoD) and the Institute of
Electrical and Electronics Engineers (IEEE) give the most widely used definitions
of the terms of verification and validation [44]; see Table 2.

Software engineering and software quality assurance use the IEEE definitions
[44]. By contrast, computational simulations in science and engineering and
operation research use the DMSO definitions. The DMSO definitions are widely
adopted by [1, 32, 33, 55, 63, 71] as well as in this chapter. [71] states “Software
V&V is fundamentally different from model V&V. Software V&V is required when
a computer program or code is the end product. Model V&V is required when a
predictive model is the end product. A code is the computer implementation of
algorithms developed to facilitate the formulation and approximate solution of a
class of models.”

Different papers have defined model V&V differently according to specific
contexts. For example, [59] defines model validation as “substantiation that a
computerized model within its domain of applicability possesses a satisfactory
range of accuracy consistent with the intended application of the model”; according
to [15], model validation refers to activities “to establish how closely the model
mirrors the perceived reality of the model use/developer team”; [36] defines model
as “activities designed to determine the usefulness of a model; i.e., whether it
is appropriate for its intended uses(s); whether the benefits of improving model
usefulness exceed the costs; whether the model contributes to making “better”
decisions; and possibly how well the particular model performs compared to
alternative models”; [46] defines verification and validation as “the process of
determining the accuracy with which a computational model can produce results
deliverable by the mathematical model on which it is based: code verification and
solution verification” and “the process of determining the accuracy with which a
model can predict observed physical events (or the important features of a physical
reality)” respectively.
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2.2 Relationships Between Verification and Validation

Model verification and validation (V&V) are the primary processes for quantifying
and building credibility in numerical models and essential parts of the model
development process if models are accepted and used to support decision-making.
Verification and validation are often mentioned together in requirements to test
models, yet they are fundamentally different.

Verifying a model means checking if the model produces the intended output as
a function of the inputs, and whether it is mathematically correct. The focus here
is on the model implementation and coding [18]. Verification is a critical activity,
but is not the same as validation. Fundamentally, model validation is subjective
and different perspectives on model validation could have very different meanings.
The assertion “the model was judged valid” can mean almost anything, since the
modelers choose “the validity tests, the criteria for passing those tests, what models
outputs to validate, what setting to test in, what data to use, etc.”[37].

Verification is a matter of asking “Did I build the thing right?” and “Have
the model and the simulation been built so that they fully satisfy the developer’s
intent?”. By contrast, validation asks “Did I build the right thing?” and “Will the
model be able to adequately support its intended use?” “Is its fidelity appropriate
for that?” [49].

The purpose of model verification and validation is to assess and improve
credibility, accuracy, and trustworthiness. Model verification and validation cannot
certify a model to be accurate for all scenarios; but can provide evidence that a
model is sufficiently accurate for its intended use [71].

3 Validation, Verification, and UQ in the Literature

3.1 Validation, Verification, and UQ in Model Development
Process

[76] introduces basic steps in the modeling process, which includes (1) describing
problem, (2) isolating system, (3) adopting supporting theory, (4) formulating
model, (5) analyzing data requirements, collecting data, (6) developing computer
program, (7) debugging computer program, (8) developing alternative solutions,
(9) evaluating model output/results, (10) presenting results/plans, (11) developing
model maintenance procedures, and (12) transferring system to users. According to
[76], steps (1)–(7) are covered by model verification, and steps (1)–(11) are covered
by model validation. Yet, the absence of the necessary information often makes
it hard to follow the steps to validate models. [15] adopts this modeling process
which aims at indicating how “the research community concerned policy models
is attempting to develop and test procedures for improving the role of models as
decision aids.”

Over the past three decades, new dimensions have been brought to the notion
of model V&V by large-scale computer-based mathematical and simulation models
[30]. The “Sargent Circle” in simulation validation is one of the earliest and most
influential among all the paradigms of the relationships among V&V activities [56].
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In the Sargent Circle [56], conceptual model validation is defined as “determining
that the theories and assumptions underlying the conceptual model are correct and
that the model representation of the problem entity is reasonable for the intended
purpose of the model”; computerized model verification is defined as “assuring
that the computer programming and implementation of the conceptual model is
correct”; and operational validation is defined as “determining that the model’s
output behavior has sufficient accuracy for the model’s intended purpose over
the domain of the model’s intended applicability.” Most validation takes place in
operational validation. In order to obtain a high degree of confidence in the model
and its results, the model developers need to compare the input-output behaviors of
the model and the system. There are three basic comparison approaches: (1) graphs
of the model and system behavior data, (2) confidence intervals, and (3) hypothesis
tests. For details of the methodologies, see [2, 4, 31, 33].

A detailed schematic of the model V&V in model development process is given
by [71]. There are two branches in the procedure of model V&V: the first is to obtain
relevant and high-quality experimental data via physical testing; and the second is
to develop and exercise the model.

Because of inherent randomness, uncertainties cannot be ignored. Uncertainty
quantification (UQ) exists in the processes of both performing experiments and
developing models, which emphasizes the importance of UQ in improving confi-
dence in both the experiment and model outcomes.

By comparison with experimental data, validation is able to quantify the confi-
dence in the predictive capability of the model. For more definitions, uncertainties,
and model explanations, see [1, 45, 52, 53, 70, 71].

3.2 Quantitative Model Validation Techniques

With the development of computing capacity, computational models become exten-
sively used to solve practical problems in various disciplines and play an important
role as predictive models for complex systems. Imprecise data and model assump-
tions could impact the quality of the model prediction. It is important to quantify the
uncertainty in the model prediction [55]. Although qualitative validation methods
such as graphical comparison between model prediction and experimental data are
widely used, statistics-based quantitative methods are essential to systematically
account for the uncertainty in both model prediction and experimental observation
[43]. [21] claims that the ability to quantify uncertainty is essential for the success
of any model validation.

Many previous papers have studied the application of statistical hypothesis
testing methods in the context of model validation [22,51], as well as the validation
metrics, which provide quantitative measures of agreement between a predictive
model and physical/experimental observations [13, 33, 42]. Yet there remain some
unclear issues in the practice of model validation. [32] studies the quantitative
model validation techniques from the perspectives of both hypothesis testing-based
and non-hypothesis testing-based methods and gives a systematic procedure for
quantitative model validation. The quantitative model validation techniques include
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classical hypothesis testing, Bayesian hypothesis testing, confidence intervals,
reliability-based metric, and area metric-based method. For details and examples
of these quantitative model validation techniques, see [13, 26, 32].

4 Validation for Intelligent Adversary Models

4.1 Difficulties in Validating Intelligent Adversary Models

Model validation, together with verification, is critical for models intended to
be used in practice. They are required by many organizations such as the US
Department of Defense that uses adversary models [18]. After the attacks on
September 11, 2001, billions of dollars have been spent on homeland security. To
better understand intelligent adversary behaviors and to better study the strategic
interactions between defenders and adversaries (e.g., attackers and terrorists),
numerous models have been developed. Unfortunately, because of the deficiency
of empirical data, few (if any) such models have yet been validated, which limits
the application of those models in practice.

In defense and homeland security, decisions are made about allocating resources
to prevent attacks by adversaries and protect the public. Risks from such intelligent
adversaries, like terrorists, must be assessed prior to guiding defensive resource
allocation; otherwise the effectiveness of resource allocation would be unreliable.
Intelligent adversary risk assessment aims to prevent adversary attacks or mitigate
the effects of adversary attacks by allocating resource efficiently. The risk assess-
ment has significant importance in protecting the public safety. When a model is
adopted to predict the adversaries’ behavior and to instruct resource allocations,
decision-makers should be confident that the model adequately represents the real
situation. Poor risk assessment could lead to ineffective resource allocations and
vulnerable targets.

Intelligent adversary risk assessment models are increasingly being developed
and studied. Those models need to be validated. Probabilistic risk assessment
(PRA)/ event-tree-based methods [12,74], decision-analytic methods [14,50], game-
theoretic methods [20, 28, 79], and statistical machine-learning methods [11, 35]
have been proposed for modeling intelligent adversaries. However, these models
are complex and may not be directly tested by comparing model predictions with
the outcome of events in the real world, since there are too few comparable
adversary attack data to support statistical inferences about the model validity.
The Committee on Methodological Improvements to the Department of Homeland
Security’s Biological Agent Risk Analysis cautions that “there may be insufficient
scientific knowledge to verify or validate these models” [41]. When modeling
the intelligent adversary, the modeler needs to consider the strategy and the
rationality of the adversaries; in addition, it is difficult to model the consequences
resulting from terrorist incidents, since it is hard to assess when, where, and how
the terrorists would strike. Meanwhile, as technologies evolve, adaptive terrorists
could mount new types of attacks. In the reality of counterterrorism, there are
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lots of uncertainties; and throughout the built models, there are assumptions and
dubious parameters. Unless the models are validated, the model results may not be
trustworthy.

It is possible to make empirical observations to compare with the prediction
results from the corresponding models. For example, [75] proposes a prospect
theory model of coaches’s utility and estimates the models’ parameters using the
data from the 2009 NFL season; [19] studies parking choice models, which are first
calibrated based on the collected data from video-recorded observations from a set
of parking lots on the University at Buffalo north campus and then used to predict
the drivers’ behavior. Intelligent adversaries are more difficult to model, since
they are adaptive, and may have unknown preferences, beliefs, and capabilities.
[17] indicates that “the key difference between risk assessment for situations with
intelligent adversaries and traditional risk assessment problems is that intelligent
adversaries adapt. They adapt to observed, perceived, and imputed likely future
actions by those defending the system they are attempting to damage. This adaptive
behavior must be considered if risk assessment models are to provide accurate
estimates of future risk from intelligent adversaries and appropriately support risk
management decision making.”

Also, [3] claims that adversary risk analysis has three special uncertainties: (1)
aleatory uncertainty (randomness of outcomes), (2) epistemic uncertainty (strategic
choices of an intelligent adversary), and (3) concept uncertainty (beliefs about how
the problems are framed).

Validating models for the probable behaviors of intelligent adversaries may not
mean comparing the model results with existing data or experimental data as is in
validating traditional models. This is because the data, if any, is often incomplete
and sometimes classified. In terms of validating counter-terrorism models, [65]
states that “for terrorist acts, validation is only possible in a limited sense and may
be more correctly characterized as ensuring the models are reasonable or credible,
performing sanity checks, ensuring consistency with what is known about terrorist
groups, and not being able to invalidate the model. Validity, in this case is viewed as
a range, not a binary valid/invalid assessment.”

4.2 Verification and Validation Methods for Intelligent
Adversary Models

4.2.1 Basic Necessary Conditions for Intelligent Adversary Risk
Analysis

[17] proposes four basic necessary conditions for intelligent adversary risk analysis:

1. Adversary models must be descriptively accurate representations of future
adversary actions to the best of the then-current knowledge of the defender;

2. Adversary models must be computationally tractable to support risk management
decisions in the particular situations being addressed;
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3. Adversary models must explicitly address uncertainty and represent any uncer-
tainty in the predicted adversary actions;

4. There must exist one or more defensible methods for gaining confidence in the
models for practical use.

The methods for gaining confidence in [17] include “validation by common
sense” and “limited case-based validation for historic situation when data is
available.”

4.2.2 Conceptual Processes to Provide Increased Confidence in
Intelligent Adversary Models

[65] presents three conceptual processes that may be used to provide increased con-
fidence in intelligent adversary models, but may fall short of traditional validation:

1. Minimally required components, which include terrorist objectives, attack logis-
tics, decision criteria, and adaptation. Models that fail to address these key factors
are considered less credible or valid;

2. Use of analogy. To obtain the real data could be hard or even impossible.
However, we may infer something about the likely future behaviors of intelligent
adversaries through appropriate use of existing databases, and historical attacks
may be helpful in validating current models. Validating through analogy rather
than using direct data is a reasonable approach. “Adversaries that are influenced
by bias or have philosophical or religious perspectives will apply those perspec-
tives to all their planning.”

3. Use of uncertainty. In modeling intelligent adversaries, we should consider the
uncertainties in the structure and/or parameters. Parameter values should be
evaluated and measured properly.

4.2.3 Transparent Risk Assessment to Improve Confidence
“Risk assessment transparency improves confidence” is suggested by [41], where
the bioterrorism risk assessment (BTRA) model [10] is reviewed. The current use
of the word “transparency” is summarized by [48] as “letting the truth be available
for others to see if they so choose, or perhaps think to look, or have the time, means,
and skills to look” and involving “active disclosure.”

In establishing confidence and trust in the methods of outputs from risk assess-
ment models, transparency is a major factor. Achieving transparency requires the
assumptions, model’s mathematical and structural foundations, and the sources of
data used in the analysis to be made explicit. In [41], it is emphasized that “the
accuracy of quantitative bioterrorism risk assessment models and the confidence
placed in them depend on the validity of the assumptions and the availability of
sound data for each of the biological agentsbeing analyzed.”

4.2.4 Importance of Sensitivity Analysis for Validation
[41] suggests that “sensitivity analysis is important for validation.” [54] defines
sensitivity analysis as the determination of how “uncertainty in the output of a model
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(numerical or otherwise) can be apportioned to different sources of uncertainty in
the model input.”

There exist a lot of uncertainties or even errors in the model variables and
parameters. The decision- maker needs to know how the uncertainties would
impact the outputs of the model and therefore the confidence in the model. Many
researchers have used sensitivity analysis to test uncertainties and evaluate the
validity of the proposed models [60, 61, 80]. Sensitivity analysis has become an
important approach to the testing and validation of risk assessment models of
complex systems [5].

Recent studies [60, 61, 81] use sensitivity analysis for risk assessment to show
how the results of a certain strategy would change when the parameter values
change. In the future, it would be important to use more sensitivity analysis in risk
management. This would be helpful to see, for example, what countermeasure strat-
egy would be adopted if the modeler knew more about the intelligent adversaries’
behavior.

4.2.5 Comparing Models to Obtain Validity
Many models have been developed to study intelligent adversaries, and there are
many variants and examples of these models in the literature [27,60,61,66,79,81]. If
some model has been proved to be valid, comparing other models with the validated
model may be an effective way to do model verification and validation.

In [38], a comparative analysis of probabilistic risk analysis (PRA) and intelligent
adversary methods for counterterrorism risk management is conducted. Defender
event tree and Bayesian network, attacker event tree and Bayesian network, defender
decision tree, attacker decision tree, sequential games, intelligent adversary risk
analysis, adversary risk analysis, and simulation games are reviewed. [38] considers
each application on the same two illustrative example decisions. With respect to
risk assessment, [38] states “Defender event trees and decision trees that represent
attacker decisions as probabilities estimate lower expected consequences than
attacker event trees and decision trees for the highest expected consequence attack,
that is, the one that the attacker would choose.” As for risk communication, it is con-
cluded “Event trees, influence diagrams with just probability nodes, and Bayesian
networks with only probability nodes are all equivalent as they are following the
laws of probability even though they use different solution algorithms.” At last, in
terms of risk management, [38] gets the same conclusion with [41] that “event trees
are less useful for assessing the risk posted by intelligent, adaptive adversaries.”

4.2.6 Simulation Validation with Intelligent Adversary Models
Simulation is a powerful tool for the analysis of complex process and systems. A
growing number of simulation systems have been created to analyze the threats that
terrorist attacks pose for public safety [34].

A National Research Council report [40] urges the Department of Homeland
Security (DHS) to better validate its terrorism risk models. [39] reports the RAND’s
approach to validating the Risk Management Analysis Tool, or RMAT, which is
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one of the Transportation Security Administration’s (TSA) principal terrorism risk
modeling tools developed by the TSA and Boeing Company. RMAT is one of
the growing class of quantitative models which are complex and could not be
validated by comparing model predictions to the outcome of events in the real
world, since the reference statistical data is limited. According to [39], “RMAT
simulates terrorist behavior and success in attacking vulnerabilities in the domestic
commercial air transportation system, drawing on estimates of terrorist resources,
capabilities, preferences, decision processes, intelligence collection, and operational
planning” and “to estimate the terrorism risk-reduction benefits attributable to new
and existing security programs, technologies, and procedures.”

Complex simulation is used to test the validity of the RMAT model [39]. In
validating the defender model in RMAT, four areas are addressed [39]:

1. Identifying and evaluating the validity of key assumptions implicit in the overall
system design;

2. Comparing the world representation in RMAT to external sources;
3. Assessing the completeness of the attack scenarios considered in RMAT, includ-

ing both weapon-target pairings and pathways by which attacks are carried out;
4. Comparing the attack consequences modeled in RMAT to external sources.”

Regarding the data, diverse forms of evidence are used to validate the data, such
as “logic, subject matter expert judgments, and literature searches.

4.2.7 Using Experimental Data to Validate Intelligent Adversary
Models

Validation includes comparing the model output with the real data or experimental
results. In traditional models, experiments usually mimic the real situation and
obtain reliable data. However, for intelligent adversary models, it is typically
impossible to find data from experiments in which the conditions correspond
exactly to the scenario because of the uncertain and adaptive nature of intelligent
adversaries. It may also risk people’s lives and public property to do some of such
experiments. However, data gained based on laboratory experiments could provide
insights into the behaviors of both the defender and attacker during certain hazard
and emergency situations, which could be used to validate models.

An experiment was conducted in [23] to assess the extent to which individual
decisions are consistent with theoretical predictions of misaligned profiling. The
experiments are motivated, in part, by the counterintuitive nature of equilibrium
patterns of the randomized strategies. In particular, the theory produces a paradox of
misaligned profiling: in equilibrium the high reliability categories are searched more
intensively, even though they are used less intensively by the terrorist organization.
Field experiments with professional security officials to test these model predictions
would be expensive and controversial, if possible at all. The results would be
classified. Instead, [23] relies on laboratory experiments, which provide the ability
to replicate and control the environment. The results of the experiment reveal
behavioral patterns that are consistent with the predicted patterns. [23] provides
theoretical analysis and experimental validation to guide policy makers to improve
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the effectiveness of targeted profiled screening and investigates the efficient profiling
andcounterterrorism policy.

4.2.8 Using Historical Data to Conduct Validation
In addition to experimental data, historical data, which may have been recorded
in databases and government reports, can provide other opportunities to validate
intelligent adversary models.

In terms of terrorism, there are some databases available that recorded the terror-
ists’ attacks, such as the Global Terrorism Database (GTD) [64], the International
Terrorism: Attributes of Terrorist Events (ITERATE) [25], and Terrorism in western
Europe: Events Data (TWEED) [69]. Among them, the GTD records incidents from
1970 and includes both domestic and international terror incidents. LaFree and
Dugan [29] states that the GTD “have by far the largest number of events than any of
the other data sets.” Reports from the governments, such as the Federal Emergency
Management Agency (FEMA) [72], the National Research Council (NRC) [73], and
US Government Accountability Office (U.S. GAO) [77], could also provide useful
data to do research on intelligent adversaries.

[78] presents a class of multi-period and multi-target attacker-defender games
where the attackers have multiple attacking options. The attack types considered in
[78] include assassination, armed assault, bombing/explosion, facility/infrastructure
attack, hijacking, hostage taking, and unarmed assault, which is summarized
based on the GTD categories. The percentage of the attack types used by the
attackers is shown in Fig. 1. Different attack types would impact the attack success
probabilities, consequences, as well as the effectiveness of defensive resource
allocation. Sequential games are studied when the defender is faced with multiple
attack types and adaptive attackers and how the defender would distribute a limited
amount of resources to protect multiple urban areas. The objective of the defender
is to minimize the total expected loss.

Based on the historical data from the GTD and UASI (the Urban Area Security
Initiative, a Department of Homeland Security grant program), the parameter values
are estimated in [78], such as the economic loss, fatality loss, success probability,

Fig. 1 Percentage of attack
types in the USA (Source:
[64])
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and the defense cost-effectiveness for different attack types and targets. The authors
estimate that basing defensive planning on the proposed model results in the lowest
expected loss, having an expected loss which is 8–57 % lower than the single attack-
type model and 82–96 % lower than the results of the real allocation [78].

4.3 Validate Intelligent Adversary Models Using Proxy Models

When modeling intelligent adversaries, it is important to construct a representation
of preferences. However, sometimes it is difficult or even impossible to get direct
elicitation from adversaries. Therefore, we could use indirect elicitation to construct
and infer adversary motivations, objectives, preferences, capabilities, and beliefs.
Proxy models are used by [27] to infer and validate models of adaptive adversaries.
In [27], an adversary objective hierarchy and multi-attribute utility (MAU) models
are constructed by proxy, using judgments from an adversary value expert (AVE).
Past adversary behavior, public statements by the adversary, adversary web sites,
and intelligence could be useful sources for the proxy to validate the behavior of the
adversaries.

The proxy MAU models provide a relatively complete and accurate represen-
tation of the adversaries’ values, including objectives, trade-offs, risk attitudes,
and beliefs about consequence impacts. [27] conducts two validation studies; good
convergence between the proxy model and the model assessed by direct contact
is demonstrated in both cases, which indicate that the proxy model may provide
insights on intelligent adversaries if constructed and implemented properly.

4.3.1 Evaluating Effectiveness of Real-World Deployments to Validate
Intelligent Adversary Models

Game theory has been playing an important role in modeling adversary behaviors,
and Stackelberg games have been widely used to study terrorism and are in active
use for resource deployment scheduling systems by law enforcements around the
USA. In a Stackelberg game, there are two players, a leader (defender) and a
follower (attacker); the leader chooses a strategy first and the follower subsequently
decides his own strategy after observing the leader’s strategy. According to [62, 66,
67], “the Stackelberg games models have been used to assist the LAX Airport police
in scheduling airport entrance checkpoints and canine patrols of the terminals, the
Federal Air Marshals Service (FAMS) to schedule marshals on international flights,
the United States Coast Guard (USCG) in scheduling patrols around Boston Harbor,
Ports of NY/NJ, and Ports of LA/LB, the Los Angeles Sheriff’s Department (LASD)
for patrolling of the Metro trains, and (in-discussion) the patrolling of the Gulf of
Mexico for illegal fishing for the USCG.” This system has been expanded to all ports
in the USA due to the success of the patrolling schedules [67].

Despite the fact that Stackelberg game-based applications have been deployed in
practice, measuring the effectiveness of the applications remains a difficult problem.
And the data available about the deterrence of real-world terrorist attacks is very
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limited. [67] suggests several methods to evaluate the effectiveness of Stackelberg
games in real-world deployments, including:

1. Computer simulations of checkpoints and canine patrols;
2. Tests against human subjects, including USC students, an Israeli intelligence

unit, and on the Internet Amazon Turk site (which provides some insights into
adversary bounded rationality);

3. comparative analysis of predictability of schedules and methodologies before and
after implementation of a Stackelberg strategy;

4. Red team/adversary team;
5. Capture rates of guns, drugs, outstanding arrest warrants, and fare evaders;
6. User testimonials.

4.3.2 Validation With Subject Matter Experts
According to [9], the Department of Defense’s Modeling and Simulation Coor-
dination Office defines a subject matter expert (SME) as “an individual who, by
virtue of position, education, training, or experience, is expected to have a greater-
than-normal expertise or insight relative to a particular technical or operational
discipline, system or process.” However, [68] shows that many SMEs make very
poor predictions “at predicting elections, wars, economic collapses, and other
events” and are not accountable enough for the accuracy of the forecasts, but the
forecasting skills could be improved through learning and practicing.

Experts may offer help to do subjective (and possibly mistaken) model V&V.
Experts may have a relatively high level of knowledge about what, when, where,
and how the intelligent adversaries may behave. In general, experts may have better
knowledge or more plausible-sounding guesses and narratives about the variables
and parameters than others and know where the potential uncertainties may exist.
Using experts to do model verification and validation is a qualitative technique, and
the judgments made by an expert may be subjective and error prone. Also, each
expert may have a different understanding of the model and could use different
approaches to validate the same model. The benefit of using SME is that the
decision-maker may gain different perspectives on the model and would have a
comprehensive idea of the situation being modeled.

[34] discusses the validation of a counterterrorism simulation of improvised
explosive device (IED) incidents using the SME and concludes “it important to use
the expertise of domain experts not only to compare the simulations to previous
attacks of which they have knowledge, but also to use their knowledge to create new
scenarios that explore the ways in which terrorist attacks could evolve.”

Furthermore, the review process of the bioterrorism risk assessment (BTRA)
model [10] is an example of using subject matter experts to verify and validate
a model. Many good recommendations are given to make the model better [41],
such as “The Department of Homeland Security should use an explicit risk analysis
lexicon for defining each technical term appearing in its reports and presentations,”
and “To assess the probabilities of terrorist decisions, DHS should use elicitation



Validation, Verification, and Uncertainty Quantification for Models with. . . 15

techniques and decision-oriented models that explicitly recognize terrorists as intel-
ligent adversaries who observe U.S. defensive preparations and seek to maximize
the achievement of their own objectives.” [10] concludes that the BTRA is not valid
and suggests the DHS not to continue the development of that model.

5 Conclusion

Modeling plays an important role in guiding exploration in scientific research. This
chapter has reviewed the concepts of model verification and validation (V&V),
illustrated and compared model V&V in the developing process of models, and
also discussed techniques for conducting a successful model V&V. Model V&V
steps should be integrated with the modeling process and not be separated or treated
after the model has been built. In the long run, using a validated model to support
decision-making can sometimes improve decisions and make preferred outcomes
more likely.

Because of inherent randomness of the systems, uncertainties in the model
parameters, and the process of modeling framing, may impact the accuracy of
results. Uncertainty quantification (UQ) should be considered in both the modeling
process and the experiment process. Having a better understanding of the uncertain-
ties can help the modeler build a more accurate model and thus make the model
more effective in practice. This chapter has also illustrated some quantitative model
validation techniques in dealing with uncertainty and deciding whether or not to
accept the model prediction.

Intelligent adversary model V&V and UQ are different from V&V and UQ for
traditional models in literature, where experimental/physical data could be obtained
to compare with the model results. Unlike traditional models, the behavior of
intelligent adversaries cannot be fully understood, and due to the lack of data and
incomplete information about intelligent adversaries’ behavior, it is often the case
that neither models nor experimental studies of adversarial behavior can be truly
validated. This is a new and challenging area in the literature of model V&V.
The model V&V techniques that have been discussed in this chapter include basic
necessary conditions for intelligent adversary risk analysis, conceptual processes
to provide more confidence in intelligent adversary models, risk assessment trans-
parency, comparing models, simulation, experimental data, historical data, proxy
models, evaluating effectiveness of real-world deployments, and using subject
matter experts. These techniques attempt to take the uncertainties and adaptiveness
of the intelligent adversaries into account, which may be helpful in tackling the
dilemma of validating intelligent adversary models.

Many intelligent adversary models have appeared in the literature recently, but
research on model V&V and UQ with intelligent adversaries is in many ways still
in its infancy, with difficult challenges and limited options for overcoming them.
More accurate adversarial models and more sophisticated V&V and UQ procedures
with respect to adversarial models should be addressed to better understand the risks
from intelligent adversaries and to better assist in surveillance and decision-making.



16 J. Zhang and J. Zhuang

Acknowledgements This research was partially supported by the United States Department
of Homeland Security (DHS) through the National Center for Risk and Economic Analysis
of Terrorism Events (CREATE) under award number 2010-ST-061-RE0001. This research was
also partially supported by the United States National Science Foundation under award numbers
1200899 and 1334930. However, any opinions, findings, and conclusions or recommendations in
this document are those of the authors and do not necessarily reflect views of the DHS, CREATE,
or NSF. The authors assume responsibility for any errors.

References

1. AIAA: AIAA guide for the verification and validation of computational fluid dynamics
simulation. AIAA-G-077-1998, Reston (1998)

2. Balci, O., Sargent, R.G.: A Methodology for cost-risk analysis in the statistical validation of
simulation models. Commun. ACM. 24(4), 190–197 (1981)

3. Banks, D.: Adversarial Risk Analysis: Principles and Practice. Presentation on First Confer-
ence on Validating Models of Adversary Behaviors, Buffalo (2013)

4. Banks, J., Carson II J.S., Nelson, B.L.: Discrete-Event System Simulation, 2nd edn. Prentice
Hall International, London, UK (1996)

5. Borgonovo, E.: Measuring uncertainty importance: investigation and comparison of alternative
approaches. Risk Anal. 20(5), 1349–1361 (2006)

6. Coleman, H.W., Steele, W.G.: Experimentation, Validation, and Uncertainty Analysis for
Engineers. Wiley, Hoboken (2009)

7. DoD: DoD directive No 5000.59: Modeling and Simulation (M&S) Management. Defense
Modeling and Simulation Office, Office of the Director of Defense Research and Engineering
(1994)

8. DoD: Verification, Validation, and Accreditation (VV&A) Recommended Practices Guide.
Defense Modeling and Simulation Office, Office of the Director of Defense Research and
Engineering (1996)

9. DoD: Special Topic on “Subject Matter Experts and Validation, Verification and Accredi-
tation”, DoD Recommended Practices Guide (RPG) for Modeling and Simulation VV&A,
Millennium Edition (2000)

10. DHS: Department of Homeland Security Bioterrorism Risk Assessment: A Call for Change.
Available at http://www.nap.edu/catalog/12206.html (2006). Accessed in Nov 2015

11. Elovici, Y., Kandel, A., Last, M., Shapira, B. Zaafrany, O.: Using Data mining Techniques for
Detecting Terror-Related Activities on the Web. Available at http://www.ise.bgu.ac.il/faculty/
mlast/papers/JIW_Paper.pdf. Accessed in Nov 2015

12. Ezell, B.C., Bennett, S.P., Winterfeldt, D., Sokolowski, J, Collins, A.J.: Probabilistic risk
analysis and terrorism risk. Risk Anal. 30(4), 575–589 (2010)

13. Ferson, S., Oberkampf, W.: Validation of imprecise probability models. Int. J. Reliab. Saf. 3(1),
3–22 (2009)

14. Garrick, B.J., Hall, J.E., Kilger, M., McDonald, J.C., O’Toole, T., Probst, P.S., Parker, E.R.,
Rosenthal, R., Trivelpiece, A.W., Arsdale, L.V., Zebroski, E.L.: Confronting the risks of
terrorism: making the right decisions. Reliab. Eng. Syst. Saf. 86(2), 129–176 (2004)

15. Gass, S.I.: Decision-aiding models: validation, assessment, and related issues for policy
analysis. Oper. Res. 31(4), 603–631(1983)

16. Gruhl, J., Gruhl, H.: Methods and Examples of Model Validation-an Annotated Bibliography.
MIT Energy Laboratory Working Paper MIT-EL 78-022WP (1978)

17. Guikema, S.: Modeling intelligent adversaries for terrorism risk assessment: some necessary
conditions for adversary models. Risk Anal. 32(7), 1117–1121 (2012)

18. Guikema, S., Reilly, A.: Perspectives on Validation of Terrorism Risk Analysis Models.
Presentation on First Conference on Validating Models of Adversary Behaviors, Buffalo (2013)

http://www.nap.edu/catalog/12206.html
http://www.ise.bgu.ac.il/faculty/mlast/papers/JIW_Paper.pdf
http://www.ise.bgu.ac.il/faculty/mlast/papers/JIW_Paper.pdf


Validation, Verification, and Uncertainty Quantification for Models with. . . 17

19. Guo, L., Huang, S., Zhuang, J.: Modeling parking behavior under uncertainty: a static game
theoretic versus a sequential neo-additive capacity modeling approach. Netw. Spat. Econ.
13(3), 327–350(2013)

20. Hausken, K., Zhuang, J.: The impact of disaster on the interaction between company and
government. Eur. J. Oper. Res. 225(2), 363–376(2013)

21. Hemez, F.M., Doebling, S.W.: Model validation and uncertainty quantification. For publication
in the proceeding of IMAC-XIX, the 19th International Model Analysis Conference, Kissim-
mee, 5–8 Feb 2001

22. Hills, R.G., Leslie, I.H.: Statistical validation of engineering and scientific models: validation
experiments to application. Sandia Technical Report (SAND2003-0706) (2003)

23. Holt, C.A., Kydd, A., Razzolini, L., Sheremeta, R.: The Paradox of Misaligned Profiling: The-
ory and Experimental Evidence. Available at http://www.people.vcu.edu/~lrazzolini/Profiling.
pdf (2014). Accessed in Nov 2015

24. IEEE: IEEE Standard Glossary of Software Engineering Terminology. IEEE Std 610.12-1990,
New York (1991)

25. International Terrorism: Attributes of Terrorist Events (ITERATE). Available at http://library.
duke.edu/data/collections/iterate. Accessed in Nov 2015

26. Jiang, X., Mahadevan, S.: Bayesian risk-based decision method for model validation under
uncertainty. Reliab. Eng. Syst. Saf. 92(6), 707–718 (2007)

27. John, R., Rosoff, H.: Validation of Proxy Random Utility Models for Adaptive Adver-
saries. Available at http://psam12.org/proceedings/paper/paper_437_1.pdf (2014). Accessed in
November, 2015

28. Jose, V.R.R., Zhuang, J.: Technology Adoption, Accumulation, and Competition in Multi-
period Attacker-Defender Games. Mil. Oper. Res. 18(2), 33–47 (2013)

29. LaFree, G., Dugan, L.L.: Introducing the global terrorism database. Terror. Political Violence
19(2), 181–204 (2007)

30. Landry, M., Malouin, J.L., Oral. M.: Model validation in operations research. Eur. J. Oper. Res.
14(3), 207–220 (1983)

31. Law, A.M., Kelton, W.D.: Simulation Modeling and Analysis, 2nd edn. McGraw-Hill, New
York (1991)

32. Ling, Y., Mahadevan, S.: Quantitative model validation techniques: new insights. Reliab. Eng.
Syst. Saf. 111, 217–231 (2013)

33. Liu, Y., Chen, W., Arendt, P., Huang, H.: Toward a better understanding of model validation
metrics. J. Mech. Des. 133(7), 1–13(2011)

34. Louisa, N., Johnson, C.W.: Validation of Counter-terrorism Simulation Models. Available at
http://www.dcs.gla.ac.uk/~louisa/Publications_files/ISSC09_Paper_2.pdf (2009). Accessed in
Nov 2015

35. Mason, R., McInnis, B., Dalal, S.: Machine Learning for the Automatic Identification of
Terrorist Incidents in Worldwide News Media. In: 2012 IEEE International Conference on
Intelligence and Security Informatics (ISI), Washington, DC, pp. 84–89 (2012)

36. McCarl, B.A.: Model validation: an overview with some emphasis on risk models. Rev. Market.
Agric. Econ. 52(3), 153–173 (1984)

37. McCarl, B.A., Spreen, T.H.: Validation of Programming Models. Available at http://agecon2.
tamu.edu/people/faculty/mccarl-bruce/mccspr/new18.pdf (1997). Accessed in Nov 2015

38. Merrick, J., Parnell, G.S.: A comparative analysis of PRA and intelligent adversary methods
for counterterrorism risk management. Risk Anal. 31(9), 1488–1510 (2011)

39. Morral, A.R., Price, C.C., Ortiz, D.S., Wilson, B., LaTourrette, T., Mobley, B.W., McKay,
S., Willis, H.H.: Modeling Terrorism Risk to the Air Transportation System: An Independent
Assessment of TSA’s Risk Management Analysis Tool and Associated Methods. RAND report.
Available at http://www.rand.org/content/dam/rand/pubs/monographs/2012/RAND_MG1241.
pdf (2012). Accessed in Nov 2015

40. NRC: Review of the Department of Homeland Security’s Approach to Risk Analysis. Available
at https://www.fema.gov/pdf/government/grant/2011/fy11_hsgp_risk.pdf (2010). Accessed in
Nov 2015

http://www.people.vcu.edu/~lrazzolini/Profiling.pdf
http://www.people.vcu.edu/~lrazzolini/Profiling.pdf
http://library.duke.edu/data/collections/iterate
http://library.duke.edu/data/collections/iterate
http://psam12.org/proceedings/paper/paper_437_1.pdf
http://www.dcs.gla.ac.uk/~louisa/Publications_files/ISSC09_Paper_2.pdf
http://agecon2.tamu.edu/people/faculty/mccarl-bruce/mccspr/new18.pdf
http://agecon2.tamu.edu/people/faculty/mccarl-bruce/mccspr/new18.pdf
http://www.rand.org/content/dam/rand/pubs/monographs/2012/RAND_MG1241.pdf
http://www.rand.org/content/dam/rand/pubs/monographs/2012/RAND_MG1241.pdf
https://www.fema.gov/pdf/government/grant/2011/fy11_hsgp_risk.pdf


18 J. Zhang and J. Zhuang

41. NRC: Bioterrorism Risk Assessment. Biological Threat Characterization Center of the
National Biodefense Analysis and Countermeasures Center. Fort Detrick, MD (2008)

42. Oberkampf, W., Barone, M.: Measures of agreement between computation and experiment:
validation metrics. J. Comput. Phys. 217(1), 5–36 (2006)

43. Oberkampf, W., Trucano, T.: Verification and validation in computational fluid dynamics.
Progr. Aerosp. Sci. 38(3), 209–272 (2002)

44. Oberkampf, W.L.: Bibliography for Verification and Validation in Computational Simulation.
Sandia Report (1998)

45. Oberkampf, W.L., Trucano, T.G., Hirsch, C.: Verification, validation, and predictive capability
in computational engineering and physics. Appl. Mech. Rev. 57(5), 345–384 (2004)

46. Oden, J.T.: A Brief View of Verification, Validation, and Uncertainty Quantification. Avail-
able at http://users.ices.utexas.edu/~serge/WebMMM/Talks/Oden-VVUQ-032610.pdf (2009).
Accessed in Nov 2015

47. O’Keefe, R.M., O’Leary, D.E.: Expert system verification and validation: a survey and tutorial.
Artif. Intell. Rev. 7, 3–42 (1993)

48. Oliver, R.W.: What Is Transparency? McGraw-Hill, New York (2004)
49. Pace, D.K.: Modeling and simulation verification and validation challenges. Johns Hopkins

APL Technical Digest. 25(2), 163–172 (2004)
50. Rakesh, K., Sarin, L. Keller, R.: From the editors: probability approximations, anti-terrorism

strategy, and bull’s-eye display for performance feedback. Decis. Anal. 10(1), 1–5(2013)
51. Rebba, R., Mahadevan, S.: Validation of models with multivariate output. Reliab. Eng. Syst.

Saf. 91(8), 861–871 (2006)
52. Roach, P.J.: Verification and Validation in Computational Science and Engineering. Hermosa

Publishers, Albuquerque (1998)
53. Salari, K., Knupp, P.: Code Verification by the Method of Manufactured Solutions. Sandia

National Laboratories, SAND2000-1444 (2000)
54. Saltelli, A., Tarantola, S.: On the relative importance of input factors in mathematical models:

safety assessment for nuclear waste disposal. J. Am. Stat. Assoc. 97(459), 702–709 (2002)
55. Sankararaman, S., Mahadevan, S.: Model validation under epistemic uncertainty. Reliab. Eng.

Syst. Saf. 96(9), 1232–1241(2011)
56. Sargent, R.G.: An assessment procedure and a set of criteria for use in the evaluation of

computerized models and computer-based modeling tools. Final technical report RADC-TR-
80-409, U.S. Air Force (1981)

57. Sargent, R.G.: Some subjective validation methods using graphical displays of data. In:
Proceedings of the 1996 Winter Simulation Conference, Coronado, California (1996)

58. Sargent, R.G.: Verification and validation of simulation models. In: Proceedings of the 2009
Winter Simulation Conference, Austin, Texas, pp. 162–176 (2009)

59. Schlesinger, S., Crosbie, R.E., Innis, G.S., Lalwani, C.S., Loch, J., Sylvester, R.J., Wright,
R.D., Kheir, N., Bartos, D.: Terminology for model credibility. Simulation 32(3), 103–104
(1979)

60. Shan, X., Zhuang, J.: Cost of equity in homeland security resource allocation in the face of a
strategic attacker. Risk Anal. 33(6), 1083–1099 (2013)

61. Shan, X., Zhuang, J.: Hybrid defensive resource allocations in the face of partially strategic
attackers in a sequential defender-attacker game. Eur. J. Oper. Res. 228(1), 262–272 (2013)

62. Shieh, E., An, B., Yang, R., Tambe, M., Baldwin, C., DiRenzo, J., Maule, B. , Meyer, G.:
PROTECT: a deployed game theoretic system to protect the ports of the United States. In:
AAMAS, Valencia, Spain (2012)

63. Sornette, D., Davis, A.B., Vixie, K.R.,Pisarenko, V., Kamm, J.R.: Algorithm for model
validation: theory and applications. Proc. Natl. Acad. Sci. U. S. A. 104(16), 6562–6567 (2007)

64. START: Global Terrorism Database[data file]. Available at http://www.start.umd.edu/gtd.
Accessed in Nov 2015

65. Streetman, S.: The Art of the Possible in Validating Models of Adversary Behavior for Extreme
Terrorist Acts. Presentation on First Conference on Validating Models of Adversary Behaviors,
Buffalo (2013)

http://users.ices.utexas.edu/~serge/WebMMM/Talks/Oden-VVUQ-032610.pdf
http://www.start.umd.edu/gtd


Validation, Verification, and Uncertainty Quantification for Models with. . . 19

66. Tambe, M.: Security and Game Theory: Algorithms, Deployed Systems, Lessons Learned.
Cambridge University Press, New York (2011)

67. Tambe, M., Shieh, E.: Stackelberg Games in Security Domains: Evaluating Effectiveness of
Real-World Deployments. Presentation on First Conference on Validating Models of Adversary
Behaviors, Buffalo (2013)

68. Tetlock, P.E., Gardner, D.: Superforecasting: The Art and Science of Prediction. Crown, New
York (2015)

69. Terrorism in Western Europe: Events Data (TWEED). Available at http://folk.uib.no/sspje/
tweed.htm. Accessed in Nov 2015

70. Thacker, B.H., Riha, D.S., Millwater, H.R., Enright, M.P.: Errors and uncertainties in prob-
abilistic engineering analysis. In: Proceedings of the 42nd AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics, and Materials Conference and Exhibit, Seattle, Washington
(2001)

71. Thacker, B.H., Doebling, S.W., Hemez, f. M., Anderson, M.C., Pepin, J.E., Rodriguez, E.A.:
Concepts of Model Verification and validation. Available at http://www.ltas-vis.ulg.ac.be/
cmsms/uploads/File/LosAlamos_VerificationValidation.pdf (2004). Accessed in Nov 2015

72. The Federal Emergency Management Agency (FEMA). Available at http://www.fema.gov/.
Accessed in Nov 2015

73. The National Research Council (NRC). Available at http://www.nationalacademies.org/nrc/.
Accessed in Nov 2015

74. Toubaline, S., Borrion, H., Sage, L.T.: Dynamic generation of event trees for risk modeling of
terrorist attacks. In: 2012 IEEE Conference on Technologies for Homeland Security (HST),
Waltham, MA, pp. 111–116 (2012)

75. Urschel, J., J. Zhuang.: Are NFL coaches risk and loss averse? Evidence from their use of
kickoff strategies. J. Quant. Anal. Sports 7(3), Article 14(2011)

76. U.S. GAO: Guidelines for Model Evaluation. PAD-79-17, Washington, DC (1979)
77. U.S. Government Accountability Office (U.S. GAO). Available at http://www.gao.gov/.

Accessed in Nov 2015
78. Zhang, J., Zhuang, J.: Modeling a Multi-period, Multi-target Attacker-defender Game with

Multiple attack types. Working paper (2015)
79. Zhang, J., Zhuang, J.: Defending Remote Border Security with Sensors and UAVs based on

Network Interdiction Methods. Working paper (2015)
80. Zhuang, J., Bier, V.: Balancing terrorism and natural disasters-defensive strategy with endoge-

nous attacker effort. Oper. Res. 55(5), 976–991(2007)
81. Zhuang, J., Saxton, G., Wu, H.: Publicity vs. impact in nonprofit disclosures and donor

preferences: a sequential game with one nonprofit organization and N donors. Ann. Oper. Res.
221(1), 469–491(2014)

http://folk.uib.no/sspje/tweed.htm
http://folk.uib.no/sspje/tweed.htm
http://www.ltas-vis.ulg.ac.be/cmsms/uploads/File/LosAlamos_VerificationValidation.pdf
http://www.ltas-vis.ulg.ac.be/cmsms/uploads/File/LosAlamos_VerificationValidation.pdf
http://www.fema.gov/
http://www.nationalacademies.org/nrc/
http://www.gao.gov/

	Validation, Verification, and Uncertainty Quantification for Models with Intelligent Adversaries
	Contents
	1 Introduction
	2 Model Verification vs. Validation
	2.1 Terminology
	2.2 Relationships Between Verification and Validation 

	3 Validation, Verification, and UQ in the Literature
	3.1 Validation, Verification, and UQ in Model Development Process
	3.2 Quantitative Model Validation Techniques

	4 Validation for Intelligent Adversary Models
	4.1 Difficulties in Validating Intelligent Adversary Models
	4.2 Verification and Validation Methods for Intelligent Adversary Models
	4.2.1 Basic Necessary Conditions for Intelligent Adversary Risk Analysis
	4.2.2 Conceptual Processes to Provide Increased Confidence in Intelligent Adversary Models 
	4.2.3 Transparent Risk Assessment to Improve Confidence
	4.2.4 Importance of Sensitivity Analysis for Validation
	4.2.5 Comparing Models to Obtain Validity 
	4.2.6 Simulation Validation with Intelligent Adversary Models
	4.2.7 Using Experimental Data to Validate Intelligent Adversary Models
	4.2.8 Using Historical Data to Conduct Validation

	4.3 Validate Intelligent Adversary Models Using Proxy Models 
	4.3.1 Evaluating Effectiveness of Real-World Deployments to Validate Intelligent Adversary Models 
	4.3.2 Validation With Subject Matter Experts 


	5 Conclusion
	References




