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Abstract In asymmetric war scenarios (e.g., counter-terrorism), the adversary usually
invests a significant time to learn the system structure and identify vulnerable components,
before launching attacks. Traditional game-theoretic defender-attacker models either ignore
such learning periods or the entailed costs. This paper fills the gap by analyzing the strate-
gic interactions of the terrorist’s costly learning and defender’s counter-learning and defense
strategies in a gamewith private defender information. Ourmodel allows six possible attacker
strategies: (a) attack immediately; (b) learn and attack; (c) learn and not attack; (d) learn and
attack when appearing vulnerable and not attack when appearing invulnerable; (e) learn and
not attack when appearing vulnerable and attack when appearing invulnerable; and (f) not
attack. Our results show that four of the six strategies (a, d, e, f) are possible at equilibrium
and the other two (b, c) are strictly dominated. Interestingly, we find that the counterintuitive
strategy (e) could be at equilibrium, especially when the probability that the target appears
vulnerable given it is invulnerable is sufficiently high. Our results also show that the attacker’s
learning cost has a significant impact on both the attacker’s best responses and the defender’s
equilibrium deception and defense strategies. Finally, we study the attacker’s values of per-
fect information and imperfect information, which provide additional insights for defense
and counter-learning strategies.

Keywords Defender-attacker games · Costly learning · Counter-learning · Game theory ·
Value of perfect information · Value of imperfect information
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1 Introduction

Since the 9/11 attacks, many researchers have studied protection against terrorism. Some
works address the defender’s optimization problem with exogenous attacker effort levels
(Bier et al. 2005; Sandler and Siqueira 2006; Zhuang 2010; Bier and Haphuriwat 2011).
However, attackers can strategically respond to government’s defensive strategies. There-
fore, some researchers have considered endogenous attacker efforts (Zhuang and Bier 2007;
Hausken and Zhuang 2011), using game theory (Alpern et al. 2011) or adversarial risk
analysis (Insua et al. 2009). Since information asymmetry is common in conflict scenarios,
defender-attacker games of incomplete information have been studied in the literature. For
example, Powell (2007) studies a defender-attacker, multi-target game where the defender
has private information about asset vulnerabilities. Roberson (2006) considers symmetric
and asymmetric configurations of the players’ aggregate levels of force and constructs equi-
librium variate distributions in Colonel Blotto games. Powell (2009) studies the allocation
problem of confronting a defender who decides how to distribute limited resources across
multiple sites before an attacker chooses where to strike. Bohme and Moore (2009) devise a
model for dynamic interaction between a defender and an attacker, compare optimal security
investments over multiple periods, and explore the delicate balance between proactive and
reactive security investments.

In addition to endogenous attack efforts, an important reflection of attacker intelligence and
adaptiveness is that the attacker can learn and test the system. In general, attackers could both
monitor government defense activities (e.g., using cameras, taking notes, drawing diagrams,
eliciting information from phone calls, mails, or in person), and test security (e.g., measuring
reaction times to security breaches or penetrating physical security barriers or procedures).

Table 1 summarizes several real stories in which attackers made serious efforts to acquire
information. For example, CNN (2010) reports that two passengers on a flight from Chicago
to Amsterdam were arrested for testing the airport security by putting electronic devices
inside bottles in their checked baggage, which was a clear attacker learning endeavor; two
gunmen spent three days in monitoring and learning the Isabela election supervisor activities
before killing the supervisor (Global Terrorism Database 2013); a terrorist named Hanjour
received training on a Boeing 737 simulator in Arizona to prepare for the 9/11 attack (NCTA
2004). Al Qaeda carried out a test in September, 2010 to see how long it would take for a
“package containing books, a computer disc and religious literature” to arrive in the U.S; by
running such a test, bombmakers were able to work out “the timing to trigger the device” in
order to maximize damage (Mail Online 2010). All the above activities costed the attackers
significant amount of effort, even to the extent of risking arrest or death.

On the other hand, the defender could use disclosure to counter attacker’s efforts.
“Defender discloses only a subset of the defenses, in an attempt to route attacks to heavily-
defended locations” is defined as “deception” (Hespanha et al. 2000; Brown et al. 2005;

Table 1 Examples of terrorists’ learning activities

Year Country Activity Target type Source

2010 UK Time testing Transportation Mail Online (2010)

2010 US/Netherlands Telephone bomb and
testing security

Transportation CNN (2010)

2009 Philippines Monitoring Government GTD (2013)

2000–2001 US Flight training Transportation NCTA (2004)
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Zhuang et al. 2010). The attackers’ uncertainty about the defender’s private information can
create opportunities for either defender secrecy or deception (Zhuang and Bier 2010, 2011;
Zhuang et al. 2010), in order tomislead the attackers. Secrecy and deception have beenwidely
studied in military analysis (Joint Chiefs of Staff 1996), psychology (DePaulo et al. 2003),
and computer science (Swire 2001), as well as economics and political science. Brown et al.
(2005) discuss the benefits of secrecy in a zero-sum defender-attacker game in the context of
ballistic missile deployment. Powell (2007) studies that the defender has private information
about the vulnerability of targets in a defender-attacker game. Hausken and Levitin (2009)
examine a defender-attacker game in which the defender builds both genuine and false targets
while the attacker chooses the targets to attack in such a way as to maximize the system vul-
nerability. Cobb and Basuchoudhary (2009) define a modified decision-theoretic approach
to solve games of strategic interaction between two players whose choices are modeled with
separate decision trees comprised entirely of chance nodes.

To the best of our knowledge, no previous study has investigated the attackers’ costly
learning behavior before launching an attack, although this scenario is important and realis-
tic. This paper aims at supporting the defender to help her making optimal or better decisions.
One of the critical findings are how optimal attack and deception levels depend on various
system parameters. This paper fills the gap bymodeling the attacker’s costly learning, and the
defender’s counter-learning and strategies in a sequential game. The next section describes the
notation, themodels, and a decision tree for the attacker. Section 3 provides the attacker’s best
response strategy, and the values of perfect and imperfect information. Section 4 provides the
defender’s optimal deception effort and defense level, and conducts sensitivity analyses. Sec-
tion 5 summarizes the paper and discusses future research directions. An appendix provides
definitions of all conditions, and sensitivity analysis of equilibrium strategies as functions of
different parameters.

2 The model

Table 2 lists the notations that are used throughout this paper, including parameters, decision
variables, functions and the notation for six attacker strategies.

The sequence of moves and the decision tree are illustrated in Fig. 1. We consider a
game between one attacker and one defender. Common knowledge about the rules of the
game is assumed among the players (Dutta 1999). In particular, as shown in Fig. 1, at the
beginning of the game, nature randomly chooses the defender’s type: being vulnerable and
being invulnerable with probabilities PV and 1 − PV , respectively.1 Both players know the
value of PV and do not know the defender’s actual type. The defender could use the deception
effort d and the defense level l, at unit costs α and β respectively, to strengthen the target
and deceive the attacker. The deception effort would be used to make the target appear less
vulnerable so as to confuse the attacker. The defense level would be used to increase the
strength of the target. After costly learning and updating, the attacker decides whether to
attack.2 In particular, as shown in the right-hand side of Fig. 1, the attacker has six possible

1 This assumption is reasonable inmany security scenarios (especially those involving new and less-than-fully
tested technology), where even the defender could be uncertain about the system vulnerability (USDepartment
of Homeland Security 2011).
2 For simplicity, we focus on binary attacker effort (i.e., attack or not attack). This might be relevant in some
high-level strategic decision-making situations, concerning which targets are likely to be attacked (rather than
the level of attack effort on each targets). However, we acknowledge that the attack effort may be different
among attacked targets and future work could consider continuous-level attack.
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Table 2 Notations used in this paper

Notation Explanation

Six attacker strategies
A Attack

N A Not attack

L A,A Learn and A

L A,N A Learn and A when ‘vulnerable’ and N A when ‘invulnerable’

L N A,A Learn and N A when ‘vulnerable’ and A when ‘invulnerable’

L N A,N A Learn and N A

Parameters

VD, VA Defender’s and attacker’s target valuations, respectively

W Attacker’s cost of attacking invulnerable target

α Defender’s unit cost of deception effort

λ Effectiveness coefficient of defender’s deception effort

β Defender’s unit cost of defense level

k Attacker’s unit cost of learning

γ Effectiveness coefficient for defender’s defense level

PV Probability of target being vulnerable on the attacker’s belief

PV ′|N V Given the target is invulnerable, the probability that it appears vulnerable

Decision variables

a Attacker’s strategy, a ∈ {A, N A, L A,A, L A,N A, L N A,A, L N A,N A}
d Defender’s deception effort

l Defender’s defense level

Functions

C(d) Attacker’s cost of learning

P0(l) Probability of success when attacking the vulnerable defender

PV ′ (d) Probability that the target appears vulnerable when d is the deception effort

PV |V ′ (d) Given the target appears vulnerable, the probability that it is vulnerable

PV ′|V (d) Given the target is vulnerable, the probability that it appears vulnerable

PV |N V ′ (d) Given the target appears invulnerable, the probability that it is vulnerable

UD(a, d, l) Defender’s expected utility

UA(a, d, l) Attacker’s expected utility

VP I (d, l) Attacker’s value of perfect information

VI I (d, l) Attacker’s value of imperfect information

strategies: attack immediately (A), not attack (N A), learn and launch an attack (L A,A), learn
and not attack (L N A,N A), learn and attack when perceived as vulnerable and not attack when
perceived as invulnerable (L A,N A), and learn and not attack when perceived as vulnerable
and attack when perceived as invulnerable (L N A,A).

We assume that the attacker will succeed with probability P0(l), which depends on the
defense level l, when attacking a vulnerable target and will not succeed when attacking
an invulnerable target. If the attacker chooses to learn the system structure and identify its
vulnerability, he needs to pay for the cost of learning C(d) > 0. In this paper, learning is
referred to (a) obtaining knowledge on how to best attack a given target by recognizing the
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Fig. 1 Decision tree

target’s vulnerability. We acknowledge that the term “learning” could have other meanings,
including (b) acquiring new, or modifying existing, knowledge, behaviors, skills, values, or
preferences; and (c) exploring the equilibrium in some game theoretic models. The attacker
tries to maximize the expected damage to the target subtracting his learning cost C(d) and
expected cost of attacking the invulnerable target W . Prior to the learning period, the attacker
has beliefs PV (d) about the target being vulnerable, which get updated, using Bayes’ rule,
to PV |V ′(d) (or PV |N V ′(d)) depending on the observation. In this paper, we use the concept
of subgame perfect Nash Equilibrium (SPNE, see Mas-Colell et al. 1995) and backwards
induction to solve themodel. In particular, Sect. 3 solves the attacker’s best response functions
and values of perfect and imperfect information, and then Sect. 4 derives the defender’s
equilibrium strategies considering the attacker’s best responses.

3 Attacker’s best response strategy

As discussed in Sect. 2, the attacker has six strategies: a ∈ {A, N A, L A,A, L A,N A, L N A,A,

L N A,N A}. Evaluating the decision tree in Fig. 1, the attacker’s expected utility (when the
defender’s deception effort is d and the defense level is l) for each strategy is:
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UA(a, l, d) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[P0(l)VA + W ]PV − W if a = A

[P0(l)VA + W ]PV − W − C(d) if a = L A,A

[(P0(l)VA + W )PV |V ′ (d) − W ]PV ′ (d) − C(d) if a = L A,N A

[(P0(l)VA + W )PV |N V ′ (d) − W ][1 − PV ′ (d)] − C(d) if a = L N A,A

−C(d) if a = L N A,N A

0 if a = N A

(1)

Although the terrorist has six potential strategies, it is clear that strategies L A,A and
L N A,N A are strictly dominated by strategies A and N A, respectively. For simplicity, in the
equilibrium analysis, we shall assume: (a) when the attacker is indifferent between A and
L N A,A, he chooses L N A,A; (b) when the attacker is indifferent between L N A,A and L A,N A,
he chooses L A,N A; and (c) when the attacker is indifferent between L A,N A and N A, he
chooses N A.

3.1 Attacker’s best response

In this subsection, we derive the attacker’s best response and corresponding optimal utilities.
By comparing the attacker’s expected utility of choosing the four possible non-dominated
strategies, we have his best responses as follows:

a∗(d, l) =
⎧
⎨

⎩

A if C1(d, l) holds
L A,N A if C2(d, l) holds
L N A,A if C3(d, l) holds
N A if C4(d, l) holds

(2)

where the conditions Ci (d, l), i = 1, . . . , 4, are defined in “Appendix”. Then, the corre-
sponding optimal attacker’s expected utilities are:

U∗
A(d, l) =

⎧
⎪⎪⎨

⎪⎪⎩

(P0(l)VA + W )PV − W if C1(d, l) holds

[(P0(l)VA + W )PV |V ′ (d) − W ]PV ′ (d) − C(d) if C2(d, l) holds

[(P0(l)VA + W )PV |N V ′ (d) − W ][1 − PV ′ (d)] − C(d) if C3(d, l) holds

0 if C4(d, l) holds

(3)

We use the following baseline parameter values to illustrate themodel. In realistic applica-
tions, such parameters could be estimated based on historical data (Shan and Zhuang 2013b),
or expert elicitation (Wang and Bier 2013). In addition, the players’ target valuation could be
approximated using the expected economic losses or casualties (Shan and Zhuang 2013a);
unit costs of defending, learning, and attacking could be based on the cost estimations on
labor, equipment, supply, and other costs necessary for the corresponding operations; and
the coefficients for defense effectiveness, probabilities and likelihood functions could be
estimated using experiments. The defender and the attacker have the same target valuation
(VA = VD = 15), which is higher than the cost of attacking (W = 8). The defender’s unit
cost of the deception effort is set at α = 0.5; the attacker’s unit cost of learning is set at
k = 0.1; the effectiveness coefficient of the defender’s deception effort is set at λ = 0.1; the
defender’s unit cost of the defense level is set at β = 0.1; the effectiveness coefficient of the
defender’s defense level is set at γ = 0.01; the probability of the target being vulnerable is set
at PV = 0.4; and the probability that the target appears vulnerable, given it is invulnerable,
is set at PV ′|N V = 0.4.

3.1.1 Attacker’s best responses to different deception efforts

Figure 2 shows how the attacker’s best responses change when the defense level is low
(l = 0). It shows that any of the four strategies (A, L A,N A, L N A,A and N A) can be used by
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the attacker as a best response to the deception effort when the defense level is low (l = 0).
As the defender’s deception effort increases, we see that the attacker’s expected utility of
using strategy L A,N A (case #2) decreases, the attacker’s expected utility of using strategy
L A,N A (case #3) increases, and the expected utilities of using strategies A (case #1) and N A
(case #4) remain constant.

The probability of successfully attacking the vulnerable defender when the defense level
is l, P0(l), will be modeled as follows:

P0(l) = e−γ l (4)

where γ is a coefficient representing the effectiveness of the defender’s defense level. When
l = 0, we have P0(l) = 1; and when l → ∞, we have liml→∞ P0(l) = 0.

The attacker’s learning cost is highly correlated with the defender’s deception effort d ,
i.e., the attacker’s learning cost increases with the defender’s deception effort. We assume
that:

C(d) = kd (5)

where k is attacker’s unit cost of learning based on the defender’s deception effort d .
We use the following exponential function to model the probability that the target appears

vulnerable when it is vulnerable, and the defender’s deception effort is d:

PV ′|V (d) = e−λd (6)

where λ is a coefficient representing the effectiveness of the defender’s deception effort.
When d = 0, we have PV ′|V (d) = 1 (the vulnerable target would appear vulnerable with
certainty). When d → ∞, we have limd→∞ PV ′|V (d) = 0 (the vulnerable target would
appear invulnerable with certainty).

In particular, Fig. 2a shows thatwhen the defender’s deception effort level is low (d < 4.5),
meaning that the attacker has a belief close to the truth about the system vulnerability (PN V ′|V
is low), the attacker would choose to learn the system first, and attack if it appears vulnerable
and not to attack if it appears invulnerable (L A,N A, case #2). As d increases, the probability
that the attacker’s false belief on the system vulnerability (PN V ′|V (d)) increases. In this
case, the attacker would choose to attack immediately (A, case #1) because learning is not
beneficial in the presence of much deception.

In Fig. 2b, the probability of the target being vulnerable, PV , decreases from the baseline
value 0.4 to 0.3. When the defender’s deception effort level is high (d ≥ 6), we no longer
have case #1, but have case #4 (not attack, N A) instead. This is because the expected utility of
using strategy A increases in PV . When PV decreases, the expected utility of using strategy
A decreases, while the expected utility of using strategy N A remains constant at zero which
is greater than the expected utility of using strategy A. Therefore, the attacker would use N A
(#4) when the deception effort d becomes sufficiently high.

In Fig. 2c, the probability that the target appears vulnerable when it is invulnerable,
PV ′|N V (d), increases from the baseline value 0.4 to 0.6. This implies that when the target is
invulnerable, it is more likely to appear vulnerable. Interestingly, the attacker would use the
strategy L N A,A (case #3; learn and choose to attack when it appears vulnerable and not to
attack when it appears vulnerable) when 15 ≤ d ≥ 24. This is because the more vulnerable
the target appears, the more invulnerable it is. However, as the deception effort increases, the
attacker’s learning cost increases. Thus, when d is sufficiently high (d > 24), the attacker
would choose case #1 instead of case #3 due to the increasing learning cost.
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3.1.2 Attacker’s best responses to different defense levels

Figure 3 shows the attacker’s best response to the defense level when the deception effort is
low (d = 0). As the defender’s defense level increases, we see that the attacker’s expected
utilities of choosing strategies A (case #1) and L A,N A (case #2) decrease, and the attacker’s
expected utilities of choosing strategies L A,N A (case #3) and N A (case #4) remain constant.
In Fig. 4, the attacker’s expected utility of choosing strategies L A,N A (case #3) decreases in
the defense level when the deception effort is high (d = 10).

Comparing Figs. 3a and 4a, and 3b and 4b, we see that case #2 (L A,N A) disappears and
the ranges of other cases get larger when the deception effort is higher (d = 10). This is
because the probability that the attacker’s false belief on the system vulnerability increases
in the defender’s deception effort (see Eq. 6); thus the attacker is more likely to be deceived.

Figure 5 shows the attacker’s best response when the deception effort d and the defense
level l vary. As shown in Fig. 5a, when the deception effort d is low (d < 5), the attacker
would use the strategy L A,N A (case #2) because he is more likely to successfully attack after
learning when PV ′|N V is higher; e.g., PV ′|N V = 0.4. When l is lower (l < 23) and d is
higher (d > 6), the attacker would use the strategy A (case #1) because he is more likely
to be deceived, and thus he gives up learning and chooses the strategy of attacking directly.
When both l and d are sufficiently high, the attacker would give up immediately (case #4)
because, in this case, he is less likely to succeed in either learning or attacking. By comparing
Fig. 5a, b, we see that when the defender becomes more likely to be invulnerable, the attacker
would give up attacking. By comparing Fig. 5a, c, we see that L N A,A (case #3) appears when
l is relatively low (l < 30) and d is in the middle (14 < d < 23). This is because the attacker
would like to choose strategies L A,N A (case #3) when l is relatively low and d is in themiddle
range due to the increasing learning cost C caused by the high deception effort.

Figure 6a–c show the contour of the attacker’s optimal expected utilities when d and l
vary. We see that the attacker’s expected utility decreases in l because the probability of
successful attack decreases in l. In Fig. 6a, b, the attacker’s expected utility decreases in d;
while in Fig. 6c, the attacker’s expected utility increases in d . This is because the attacker is
more likely to be deceived when PV ′|N V is lower.

3.2 Values of perfect and imperfect information

Sections 3.2.1 and 3.2.2 calculate the value of perfect information and of imperfect infor-
mation, respectively. These values provide benchmark guidelines. For example, the defender
could compare them with the (expected) attacker’s learning costs. If the values are signifi-
cantly high, the defender should expect the attacker to use the costly learning strategies and
vice versa.

3.2.1 Value of perfect information

Figure 7 shows the decision tree under the option for the attacker to purchase perfect infor-
mation about the target vulnerability. Based on Fig. 1, a new branch of purchasing perfect
information is added in Fig. 7. After purchasing perfect information, the attacker would know
whether the target is vulnerable or not. Then, the attacker makes a decision: attack, learn or
not attack, although learning is always dominated after purchasing perfect information. In
the calculation from the game tree in Fig. 7, we get the attacker’s value of perfect information
as shown in Eq. (7) subtracting the value without perfect information from the value when
purchasing perfect information:
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Fig. 6 Contours: attacker’s optimal expected utility as a function of deception effort d and defense level l

VP I (l, d) = PV P0(l)VA︸ ︷︷ ︸
Value of purchasing perfect information

−

max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(P0(l)VA + W )PV − W
︸ ︷︷ ︸

A

, [(P0(l)VA + W )PV |V ′ (d) − W ]PV ′ (d) − C
︸ ︷︷ ︸

L A,N A

, [(P0(l)VA + W )PV |N V ′ (d) − W ][1 − PV ′ (d)] − C
︸ ︷︷ ︸

L N A,A

, 0
︸︷︷︸

N A

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

︸ ︷︷ ︸

Value without perfect information

(7)

Using the definition of Ci (d, l), i = 1, . . . , 4 in “Appendix”, Eq. (7) becomes:

VP I (d, l)=

⎧
⎪⎪⎨

⎪⎪⎩

W (1 − PV ) if C1(d, l) holds
P0(l)PV VA[1 − PV ′|V (d)] + W PV ′|N V (1 − PV ) + C(d) if C2(d, l) holds
P0(l)PV VA PV ′|V (d) + W (1 − PV ′|N V )(1 − PV ) + C(d) if C3(d, l) holds
P0(l)PV VA if C4(d, l) holds

(8)
Figure 8a–c show the contours of the attacker’s value of perfect information as functions

of d and l for three scenarios (baseline value, lower PV , and higher PV ′|N V ). We see that
the value of perfect information decreases in l. This is because when l is high enough, the
probability of successful attack is low and the attacker is more likely to not attack. In Fig.
8a–c, the value of perfect information increases in d . This is because the attacker is more
likely to be deceived and thus the value difference between purchasing perfect information
and without perfect information becomes larger.
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Fig. 7 Decision tree under the option of purchasing perfect information
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Fig. 8 Contours: value of perfect information as a function of deception effort d and defense level l

3.2.2 Value of imperfect information

Figure 9 shows the decision tree under the option for the attacker to purchase imperfect
information about the vulnerability of the attacker’s target. Based on Fig. 1, the corresponding
new branch is added in Fig. 9. After purchasing imperfect information, the attacker would
have his own belief on the vulnerability of the target. The attacker could choose one of these
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Fig. 9 Decision tree under imperfect information

three decisions: attack immediately, learning, and not attack. By subtracting the valuewithout
imperfect information from the value of purchasing imperfect information, we could get the
value of imperfect information as shown in Eq. (9):

VI I (d, l)

= max

⎧
⎪⎪⎨

⎪⎪⎩

(P0(l)VA + W )PV − W
︸ ︷︷ ︸

attack

, [(P0(l)VA + W )PV |V ′ (d) − W ]PV ′ (d)
︸ ︷︷ ︸

attack when it appears vulnerable

, [(P0(l)VA + W )PV |N V ′ (d) − W ](1 − PV ′ (d))
︸ ︷︷ ︸

attack when it appears invulnerable

, 0
︸︷︷︸

not attack

⎫
⎪⎪⎬

⎪⎪⎭

︸ ︷︷ ︸

Value of purchasing imperfect information

−max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(P0(l)VA + W )PV − W
︸ ︷︷ ︸

A

, [(P0(l)VA + W )PV |V ′ (d) − W ]PV ′ (d) − C
︸ ︷︷ ︸

L A,N A

, [(P0(l)VA + W )PV |N V ′ (d) − W ][1 − PV ′ (d)] − C
︸ ︷︷ ︸

L N A,A

, 0
︸︷︷︸

N A

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

︸ ︷︷ ︸

Value without imperfect information

(9)
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Fig. 10 Contours: value of imperfect information as a function of deception effort d and defense level l

Substituting Eqs. (4) and (6) to (9), we get Eq. (10):

VI I (d, l) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if C5(d, l) or C6(d, l) holds
C(d) if C7(d, l) or C8(d, l) holds
P0(l)VA PV (1 − e−λd ) − W (1 − PV )(1 + PV ′|N V ) if C9(d, l) holds
P0(l)VA PV e−λd + W (1 − PV )PV ′|N V if C10(d, l) holds
[(P0(l)VA + W )PV |V ′ (d) − W ]PV ′ (d) if C11(d, l) holds
[(P0(l)VA + W )PV |N V ′ (d) − W ][1 − PV ′ (d)] if C12(d, l) holds

(10)
where conditions Ci (d, l), i = 5, . . . , 12 are defined in “Appendix”.

Figure 10a–c show the contours of the value of imperfect information as functions of the
deception effort d and the defense level l for three scenarios (baseline value, lower PV , and
higher PV ′|N V ) in this simplified example. We see that the value of imperfect information
first increases and then decreases in d in Fig. 10a, b, while the value of imperfect information
increases ind in Fig. 10c. Thevalue of imperfect informationfirst increases and thendecreases
in l in Fig. 10a, c, while the value of imperfect information decreases in l in Fig. 10b.

4 Defender’s optimal deception effort and defense level

Using the attacker’s best response function Eq. (2), the defender’s expected utility as a
function of d and l is:

UD(d, l) = UD(a∗(d, l), d, l) =

⎧
⎪⎪⎨

⎪⎪⎩

−dα − lβ − VD PV if C1(d, l) holds
−dα − lβ − VD PV ′(d)PV if C2(d, l) holds
−dα − lβ − VD PN V ′(d)PV if C3(d, l) holds
−dα − lβ if C4(d, l) holds

(11)

and the optimal defender’s deception effort and defense level are given as follows:

(d∗, l∗) = arg max
d≥0,l≥0

UD(d, l)

Figure 11a shows the equilibrium defender effort d∗, the equilibrium defense level l∗, the
attacker’s strategies a∗, and the two utilitiesU∗

D andU∗
A, as the parameter PV ′|N V varies from

its baseline value as introduced in Sect. 3.1. The vertical dashed lines indicate different equi-
librium attacker strategies. The vertical solid lines indicate baseline values for each parameter.
Figure 11b shows the attacker’s values of perfect information and imperfect information at
equilibrium. The first case before the arrow (→) means the strategy that the attacker actually
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Fig. 11 Equilibrium strategies and value of perfect and imperfect information

takes in the game, while the seconde case after the arrow (→) means the strategy that the
attacker would take if he has imperfect information about the system vulnerability. Note that
when the attacker has the option of purchasing perfect information, he would always attack
when it appears vulnerable and not attack otherwise.

In Fig. 11a, when PV ′|N V is low (PV ′|N V < 0.65), the attacker would choose to learn and
attack when it appears vulnerable and not to attack when it appears invulnerable (case #2,
as defined in Sect. 3.1). The defender would use relatively low deception effort and defense
level since the attacker would learn (using case #2) and update his belief. The defender’s and
the attacker’s utilities decrease in PV ′|N V because the attacker is more likely to be confused
even without the deception with the increase of PV ′|N V . When PV ′|N V is sufficiently high
(PV ′|N V > 0.65), it is more likely that the target appears vulnerable when in fact it is
invulnerable. Interestingly, the attacker would learn and attack when it appears invulnerable
and not attack when it appears vulnerable (case #3), which seems counter-intuitive. In this
case, the defender would decrease her deception effort to decrease the probability of being
vulnerable in the attacker’s belief.

In Fig. 11b, when PV ′|N V is low (PV ′|N V < 0.65), the value of perfect information
increases because PV |V ′ decreases in PV ′|N V when the attacker chooses to learn the system
first, and attack if it appears vulnerable and not to attack if it appears invulnerable (case #2)
while the value of imperfect information remains constant. When PV ′|N V is sufficiently high
(PV ′|N V > 0.65), the value of imperfect information decreases.

The defender would be better off by knowing how she should balance efforts between
counterintelligence and direct defenses for critical infrastructures, facing strategic adversaries
with options of learning. For example, the defender should increase her deception effort to
confuse the attacker in cases #1, #2, and #4. However, in the counterintuitive case #3, the
defender should lower her deception effort.

5 Conclusion and future research directions

Asymmetric player relationship in modern terrorism is a key difference from the one in the
coldwar literature (seeSchelling 1966, for anoverview). In particular, such asymmetric player
relationship in modern terrorism literature includes the different choices and information.

In this paper, we consider the scenario in which the attacker spends a considerable amount
of time and effort learning the system vulnerability before launching real attacks. We con-
tribute to the literature by analyzing the terrorist’s costly learning and the defender’s simul-
taneously counter-learning (using deception) and defense strategies in a sequential game
of imperfect information. Interestingly, we find that four out of six possible strategies for
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the attacker are at equilibrium; and the strategy “learn and not attack when apparently vul-
nerable and attack when apparently invulnerable” could be at equilibrium, which might
be counterintuitive. In addition, we study the values of perfect information and imperfect
information.

This paperwould help the defendermake better decisions by providing insights on: (a) how
the attacker’s learning and attacking strategies depend on defense and deception efforts and
other system parameters; and (b) how to decide the optimal defense and deception strategies
facing with uncertainties and adaptive adversaries; e.g., the defender would know when she
should increase her deception effort and/or defense level to confuse the attacker and induce
him to make wrong decisions.

Future research direction includes a continuous-time game. In particular, the theory of
learning curves (Zangwill and Kantor 1998) could be used to model the real-time attacker’s
belief about the system vulnerability and how long the attacker would spend on learning, as
well as the corresponding real-time defender’s counter-learning strategies. Another research
direction is the study of costly learning in repeated games, where the attacker would have to
balance short-term loss and long-term gains. It is also promising to investigate a multiple-
target game, and studywhich target the attackermightwant to learn first, and the government’s
corresponding counter-learning and defense strategies. In addition, how would the attacker’s
behavior be affected by the attacker’s or the defender’s risk preferences (e.g., risk averse or
risk seeking) could be further discussed.

Appendix: Definitions for the Ci (d, l), i = 1, . . . , 12

C1(d, l) ≡ {[P0(l)VA + W ]PV − W > [(P0(l)VA + W )PV |V ′ (d) − W ]PV ′ (d) − C(d);
[P0(l)VA + W ]PV − W > [(P0(l)VA + W )PV |N V ′ (d) − W ][1 − PV ′ (d)] − C(d);
[P0(l)VA + W ]PV − W > 0} ;

C2(d, l) ≡ {[(P0(l)VA + W )PV |V ′ (d) − W ]PV ′ (d) − C(d) ≥ W (1 − PV )(1 − PV ′ |N V );
[(P0(l)VA + W )PV |V ′ (d) − W ]PV ′ (d) ≥ [(P0(l)VA + W )PV |N V ′ (d) − W ][1 − PV ′ (d)];
[(P0(l)VA + W )PV |V ′ (d) − W ]PV ′ (d) − C(d) > 0

} ;
C3(d, l) ≡ {[(P0(l)VA + W )PV |N V ′ (d) − W ][1 − PV ′ (d)] − C(d) ≥ W (1 − PV )PV ′ |N V ;

[(P0(l)VA + W )PV |N V ′ (d) − W ][1 − PV ′ (d)] > [(P0(l)VA + W )PV |V ′ (d) − W ]PV ′ (d);
[(P0(l)VA + W )PV |N V ′ (d) − W ][1 − PV ′ (d)] − C(d) > 0

} ;
C4(d, l) ≡ {[P0(l)VA + W ]PV − W ≥ 0; [(P0(l)VA + W )PV |V ′ (d) − W ]PV ′ (d) − C(d) ≥ 0;

[(P0(l)VA + W )PV |N V ′ (d) − W ][1 − PV ′ (d)] − C(d) ≥ 0
} ;

C5(d, l) ≡ {[P0(l)VA + W ]PV − W > [(P0(l)VA + W )PV |V ′ (d) − W ]PV ′ (d);
[P0(l)VA + W ]PV − W > [(P0(l)VA + W )PV |N V ′ (d) − W ](1 − PV ′ (d));
[P0(l)VA + W ]PV − W > 0} ;

C6(d, l) ≡ {[P0(l)VA + W ]PV − W ≤ 0; [(P0(l)VA + W )PV |V ′ (d) − W ]PV ′ (d) ≤ 0;
[(P0(l)VA + W )PV |N V ′ (d) − W ](1 − PV ′ (d)) ≤ 0

} ;
C7(d, l) ≡ {[(P0(l)VA + W )PV |V ′ (d) − W ]PV ′ (d) − C(d) ≥ [P0(l)VA + W ]PV − W ;

[(P0(l)VA + W )PV |V ′ (d) − W ]PV ′ (d) ≥ [(P0(l)VA + W )PV |N V ′ (d) − W ][1 − PV ′ (d)];
[(P0(l)VA + W )PV |V ′ (d) − W ]PV ′ (d) − C(d) > 0

} ;
C8(d, l) ≡ {[(P0(l)VA + W )PV |N V ′ (d) − W ][1 − PV ′ (d)] − C(d) ≥ [P0(l)VA + W ]PV − W ;

[(P0(l)VA + W )PV |V ′ (d) − W ]PV ′ (d) < [(P0(l)VA + W )PV |N V ′ (d) − W ][1 − PV ′ (d)];
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[(P0(l)VA + W )PV |N V ′ (d) − W ][1 − PV ′ (d)] − C(d) > 0
} ;

C9(d, l) ≡ {[(P0(l)VA + W )PV |V ′ (d) − W ]PV ′ (d) ≥ [P0(l)VA + W ]PV − W ;
[(P0(l)VA + W )PV |V ′ (d) − W ]PV ′ (d) ≥ [(P0(l)VA + W )PV |N V ′ (d) − W ][1 − PV ′ (d)];
[(P0(l)VA + W )PV |V ′ (d) − W ]PV ′ (d) > 0;
[P0(l)VA + W ]PV − W > [(P0(l)VA + W )PV |V ′ (d) − W ]PV ′ (d) − C(d);
[P0(l)VA + W ]PV − W > [(P0(l)VA + W )PV |N V ′ (d) − W ][1 − PV ′ (d)] − C(d);
[P0(l)VA + W ]PV − W > 0} ;

C10(d, l) ≡ {[(P0(l)VA + W )PV |N V ′ (d) − W ][1 − PV ′ (d)] − C(d) ≥ [P0(l)VA + W ]PV − W ;
[(P0(l)VA + W )PV |V ′ (d) − W ]PV ′ (d) < [(P0(l)VA + W )PV |N V ′ (d) − W ][1 − PV ′ (d)];
[(P0(l)VA + W )PV |N V ′ (d) − W ][1 − PV ′ (d)] − C(d) > 0;
[P0(l)VA + W ]PV − W > [(P0(l)VA + W )PV |V ′ (d) − W ]PV ′ (d) − C(d);
[P0(l)VA + W ]PV − W > [(P0(l)VA + W )PV |N V ′ (d) − W ][1 − PV ′ (d)] − C(d);
[P0(l)VA + W ]PV − W > 0} ;

C11(d, l) ≡ {[(P0(l)VA + W )PV |V ′ (d) − W ]PV ′ (d) ≥ [P0(l)VA + W ]PV − W ;
[(P0(l)VA + W )PV |V ′ (d) − W ]PV ′ (d) ≥ [(P0(l)VA + W )PV |N V ′ (d) − W ][1 − PV ′ (d)];
[(P0(l)VA + W )PV |V ′ (d) − W ]PV ′ (d) > 0; [(P0(l)VA + W )PV |V ′ (d) − W ]PV ′ (d) ≤ 0;
[P0(l)VA + W ]PV − W ≤ 0; [(P0(l)VA + W )PV |N V ′ (d) − W ](1 − PV ′ (d)) ≤ 0

} ;
C12(d, l) ≡ {[(P0(l)VA + W )PV |N V ′ (d) − W ][1 − PV ′ (d)] − C(d) ≥ [P0(l)VA + W ]PV − W ;

[(P0(l)VA + W )PV |V ′ (d) − W ]PV ′ (d) < [(P0(l)VA + W )PV |N V ′ (d) − W ][1 − PV ′ (d)];
[(P0(l)VA + W )PV |N V ′ (d) − W ][1 − PV ′ (d)] − C(d) > 0;
[P0(l)VA + W ]PV − W ≤ 0; [(P0(l)VA + W )PV |V ′ (d) − W ]PV ′ (d) ≤ 0;
[(P0(l)VA + W )PV |N V ′ (d) − W ](1 − PV ′ (d)) ≤ 0

}
.
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