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Abstract Large-scale disasters typically result in a shortage of essential medical resources,
and thus it is critical to optimize resource allocation to improve the quality of the relief
operations. One important factor that has been largely neglected when optimizing the avail-
able medical resources is the deterioration of victims’ health condition in the aftermath of a
disaster; e.g., a victim’s health condition could deteriorate from mild to severe if not treated
promptly. In this paper, we first present a novel queueing network to model this deterioration
in health conditions. Second, we provide both analytical solutions and numerical illustrations
for this queueing network. Finally, we formulate two resource allocation models in order to
minimize the total expected death rate and total waiting time, respectively. Numerical exam-
ples are provided to illustrate the properties of optimal policies.
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1 Introduction

Man-made and natural disasters cause a large number of casualties, especially in highly
inhabited areas (Zhuang and Bier 2007). The Indian Ocean tsunami in 2004 killed more than
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225,000 people and relocated millions more in countries spread around the Ocean’s rim from
Kenya to Indonesia (Altay and Green 2006). Hurricane Katrina made landfall along the Gulf
Coast on Aug 25, 2005. At least 1,836 people died in the hurricane and in the subsequent
floods, and the total damage from Katrina is estimated at $81 billion (2005 U.S. dollars). The
Great Sichuan Earthquake in 2008 was a deadly earthquake that measured at 8.0 magnitude,
killed about 70,000 people, and left more than 18,000 missing. Recently, the 2011 Japanese
earthquake/tsunami/nuclear crisis caused enormous casualties and economic losses. Statistics
show that more than 255 million people are affected annually by disasters. Providing medical
care to the victims is a daunting task (Kahn et al. 2009) and requires partnership from public
and private sectors (Hausken and Zhuang 2013). In addition, large-scale catastrophic events
often result in a scarcity of essential medical resources, including funding (Zhuang et al.
2014), supplies, equipment, facilities, and personnel. The allocation of limited resources and
essential services becomes critical in ensuring that all affected individuals are provided with
the best possible opportunities for survival while sustaining overall societal function and
stability (Bostick et al. 2008).

Despite the great need to better assign and schedule available medical resources to min-
imize the loss of life and maximize the efficiency of the rescue operations, a review of the
literature shows that there is a primary focus on logistics management in the aftermath of
disasters (Haghani and Oh 1996; Barbarosolu et al. 2002; Ozdamar et al. 2004; Yi and Kumar
2007; Sheu 2007, 2010; Coles et al. 2012), whereas medical resource allocation problems
have received much less attention (Fiedrich et al. 2000; Gong and Batta 2007). Many state-of-
the-art tools for supporting emergency health management (e.g., HAZUS) usually focus on
information systems, and do not provide informative decision support (Fiedrich et al. 2000).
These systems locate and classify the available resources, but are usually not able to provide
optimal resource allocation plans.

In practice, triage is one commonly used tool in disaster and emergency medicine for large-
scale catastrophic events. In the 1980’s, one of the first civilian triage systems was developed
in U.S., known as simple triage and rapid treatment (START) (Super et al. 1994). START
was rapidly adopted across the United States and in some international settings as well. It
proved useful in prioritizing the transportation of the most critical patients, but it ignores the
availability of resources and the deterioration of patients’ conditions. Other triage systems
include the Triage Sieve, the Care Flight Triage, and the Sacco Treatment Method (STM)
(Jenkins et al. 2008). Sacco et al. (2005) are the first ones that explicitly consider resource
constraints in triage management, which mathematically formulates a resource-constrained
triage problem with the goal of maximizing the expected number of survivors, subject to
constraints on the timing and availability of transportation and treatment resources. The
Delphi technique is used in Sacco et al. (2005) to estimate the deterioration of the victims’
health. The limitations of the model proposed in Sacco et al. (2005) are that the number of
patients to be evacuated is deterministic, patients who die on their way to the hospital are
not considered, and no decision support for resource allocation after the victims are admitted
to health care facilities is considered. Hick et al. (2009) propose a taxonomy within surge
capacity of conventional, contingency and crisis capacities, and proposed adaptive strategies
for staff and supply challenges. Surge capacity generally refers to the ability to manage a
sudden, unexpected increase in patient volume that would otherwise severely challenge or
exceed the present capacity of the facility. Hick et al. (2009) examine surge capacity primarily
in the context of responses within the hospital’s physical structure or on the grounds that are
managed and staffed by the hospital. Sinuff et al. (2004) examine the impact of rationing
intensive care unit beds, and suggest that patients who are perceived to not benefit from
critical care are more often refused intensive care unit admission. Cookson and Dolan (2000)
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and Dolan and Cookson (2000) qualitatively study the different substantive principles of
justice for making health care priority-setting decisions, such as need, equity and fairness
principles. However, quantitative tools to help optimize resource allocation have yet to be
developed.

The problem of treating victims at different severity levels has been mainly modeled
using queueing theories in the field of operations research. Gong and Batta (2006) consider
a dynamic disaster environment in which thousands of casualties need to be treated. They
develop a two-priority, single-server queueing model, and propose a queue-length cutoff
method to minimize the weighted average number of patients in the system. Argon and Ziya
(2009) are the first to explicitly consider imperfect customer information on the identities
of customers and priority assignment decisions. In particular, Argon et al. (2009) study a
network of parallel service stations, each modeled as a single server queue; each station
serves its own dedicated customers as well as generic customers, and the model is concerned
with the dynamic routing of incoming customers to one of several parallel service stations.

In this study, we consider a different decision approach to medical resource allocation
problems in the aftermath of a natural disaster. More specifically, the decision variables
here are service rates dedicated to each queue. Similar problems dealing with control of
service rates can be found in Cabrill (1974), Weber and Stidham (1987), and George and
Harrison (2001). Glazebrook et al. (2004) and Li and Glazebrook (2010) discuss the optimal
resource allocation of service to impatient tasks. Our model bears close resemblance to the one
proposed by Gong and Batta (2006) in classifying each victim into either a high-priority class
(life threatening) or a low-priority class (not life threatening), and assuming poisson arrival
process and exponential service times. Our model differentiates from the aforementioned
models in that:

• Deterioration of victims’ health condition is explicitly modeled, which has not been
adequately addressed in the literature; one exception is Li and Glazebrook (2010).

• Decision variables are the amount of service rates instead of traditional queue-length
cutoff or server-cutoff.

This paper contributes to the literature by presenting a novel resource allocation model
for a patient queueing network with deteriorating health conditions. This would provide new
“policy analytics” modeling tools and insights for government departments, hospitals, and
other health care agencies in dealing with patient flows. The remainder of this paper is orga-
nized as follows. Section 2 formulates the model. Section 3 presents two optimization models,
minimizing the expected number of fatalities and the weighted sum of system time, respec-
tively, and conducts sensitivity analyses. Section 4 presents the conclusions and possible
directions for future research. Appendix 1 provides the results comparing the decomposition
versus the numerical methods. Appendix 2 provides evidence supporting the optimality of
the algorithm used in this paper.

2 Model formulation

After a disaster occurs, hundreds or thousands of casualties need to be treated. The casualties
in such a disaster setting are usually placed into four severity levels. For example, START
algorithm assigns disaster victims into green, yellow, red and black triage categories (Kahn
et al. 2009). We focus on the middle two types of victims which are of primary concern of
medical rescue operations: type 2 (mild) victims require hospitalization but are not considered
life threatening, and type 1 (severe) victims require hospitalization and their conditions can
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Fig. 1 Illustration of transitions in patient health conditions between queues

become life threatening. For each of the two types of victims, we model the arrival and service
process using one single-server queue. Since a multi-server queue can be mapped to a single
server queue (Xiong and Altiok 2009), we study the service rates rather than the number
of servers for mathematical simplicity. Different victim types require different treatments,
so victims are assumed to form separate queues (Argon and Ziya 2009), and do not share
servers. It is assumed that the two types of victims arrive according to Poisson processes with
rates λ1 and λ2, respectively. We acknowledge that the arrivals of victims in many aftermath
disaster situations may not strictly follow Poisson processes, and there is uncertainty about
victims’ arrival rates (Insua et al. 2012). However, for analytical tractability and focusing on
the key contribution of this paper, we do not consider heterogeneous arrival processes.

Conditions of patients may deteriorate during the waiting period, and thus cannot be treated
by the resources allocated to the queues they initially joined. More specifically, patients with
mild conditions (type 2) may get worse if not treated promptly, and become patients with
severe conditions (type 1). Similarly, patients with severe conditions may die while waiting
for treatment. However, there is no death in patients with less severe conditions since they
are not life threatening. We assume that the deterioration process of the patients’ conditions
can be modeled by continuous time Markov chains. That is, type 2 patients evolve to type
1 with rate q21, type 1 patients evolve to type 0 (death) with rate q10; and there is no direct
transition from type 2 to type 0. For each queue, service times for patients are independent
and exponentially distributed with rates μ1 and μ2, respectively, as illustrated in Fig. 1. We
assume finite capacities C1 and C2 for type 1 and type 2 queues, respectively. The arrival
rates of victims could be estimated by collecting the actual data from historical disasters. The
service rates could be difficult to obtain, since it is generally difficult to estimate how long
the medical service will last and most post-disaster medical records focus on the number of
injuries and deaths instead. However, possible methods to estimate service rate include doctor
estimation, analysis of historical durations, adjusting for case complicity, and combination
of the above (Macario 2010). Similarly, the deterioration rates from mild conditions to severe
conditions could be estimated using historical data, expert opinion, as well as brainstorming
methods.

2.1 Notation and model formulation

Throughout this paper, we use the following notation:

• λi : Arrival rate for type i patients, i = 1, 2.
• R: Total budget available.
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Fig. 2 Transition rate diagram

• πi : Unit cost of service rate for type i patients, i = 1, 2, π1 ≥ π2.
• μi : Service rate allocated to type i patients, i = 1, 2.
• qi j : Deterioration rate from type i to type j , i = 1, 2 and j = i − 1.
• Li : Average number of type i patients in the system, i = 1, 2.
• Wi : Average system time of type i patients, i = 1, 2.
• Nd : Death rate due to delay in treatment, excluding lost patients.
• Ck : Capacity limit for type k queue, k = 1, 2.
• Nk : Number of type i patients in the system, Nk = 0, 1, . . . ,Ck , k = 1, 2.
• K and 1 − K : Coefficient/weight assigned to the system time of types 1 and 2 patients.
• P(i, j): Steady-state probabilities that there are i type 1 patients and j type 2 patients in

the system.
• P(Nk = n): Steady-state probabilities that there are n type i patients in the system,

n = 0, 1, 2, . . . ,Ck , k = 1, 2.
• PCk = P(Nk = Ck): The probability that type k queue at its full capacity, k = 1, 2.

Let i and j be the number of type 1 and type 2 patients in the system at time t , respec-
tively. We consider a bivariate process {(N1(t), N2(t)), N1(t) = 0, 1, . . . ,C1, N2(t) =
0, 1, . . . ,C2, t ≥ 0} with state space S = {(i, j), i = 0, 1, . . . ,C1, j = 0, 1, . . . ,C2}.
The service discipline is assumed to be first-come, first-serve (FCFS) for each patient type
with no sharing between the two servers. The transition rate diagram is illustrated in Fig. 2.

Under steady-states, we have the following balance equations for all sets of states for
i = 1, . . . ,C1, and j = 1, . . . ,C2:
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• for i = 0, and j = 0:

(λ1 + λ2)P(0, 0) = μ1P(1, 0) + μ2P(0, 1)

• for i = 0, and j = 1, 2, . . . ,C2 − 1:

(λ1 + λ2 + ( j − 1)q21 + μ2)P(0, j) = λ2P(0, j − 1) + μ1P(1, j) + μ2P(0, j + 1)

• for i = 0, and j = C2:

(λ1 + (C2 − 1)q21 + μ2)P(0,C2) = λ2P(0,C2 − 1) + μ1P(1,C2)

• for i = 1, 2, . . . ,C1 − 1, and j = 0:

(λ1 + λ2 + μ1 + (i − 1)q10)P(i, 0) = λ1P(i − 1, 0) + (μ1 + iq10)P(i + 1, 0)

+μ2P(i, 1)

• for i = 1, 2, . . . ,C1 − 1, and j = 1, 2, . . . ,C2 − 1:

(λ1 + λ2 + ( j − 1)q21 + μ1 + (i − 1)q10 + μ2)P(i, j)

= λ1P(i − 1, j) + λ2P(i, j − 1) + jq21P(i − 1, j + 1)

+ (μ1 + iq10)P(i + 1, j) + μ2P(i, j + 1)

• for i = 1, 2, . . . ,C1 − 1, and j = C2:

(λ1 + (C2 − 1)q21 + μ1 + (i − 1)q10 + μ2)P(i,C2) = λ1P(i − 1,C2)

+ λ2P(i,C2 − 1) + (μ1 + iq10)P(i + 1,C2)

• for i = C1, and j = 0:

(λ2 + μ1 + (C1 − 1)q10)P(C1, 0) = λ1P(C1 − 1, 0) + μ2P(C1, 1)

• for i = C1, and j = 1, 2, . . . ,C2 − 1:

(λ2 + μ1 + (C1 − 1)q10 + μ2)P(C1, j) = λ1P(C1 − 1, j)

+ λ2P(C1, j − 1) + jq21P(C1 − 1, j + 1) + μ2P(C1, j + 1)

• for i = C1, and j = C2:

(μ1 + (C1 − 1)q10 + μ2)P(C1,C2) = λ1P(C1 − 1,C2) + λ2P(C1,C2 − 1)

2.2 Decomposition and analysis on type 2 queue

In this subsection, we solve the global balance equations in Sect. 2.1 for two-dimensional
steady-state distribution by decomposing queues. Note that since only type 2 patients can
evolve to type 1 patients, but not vice versa, the queue of type 2 patients is independent of
the queue of type 1 patients. Therefore, we are able to analyze the steady state distribution of
the queue of type 2 patients. Then, we analyze the conditional steady-state distribution of the
queue of type 1 patients, conditional on each of the possible steady-state number of patients
in the type 2 queue. Finally, we study the unconditional steady-state distribution of the type
1 queue by using point-wise stationary approximations in time varying queues.

Note that we acknowledge in principle we could directly solve the equations list in Sect.
2.1; however, the number of equations needed to be directly solved for this 2-D Markov
chain would be C1 ×C2. For example, if capacity isf 1,000 for both queues, we need to solve
1,000,000 equations to get the steady-state probability matrix P(i, j); and then we need to
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Fig. 3 Type 2 queue transition rate diagram

aggregate those one million probabilities to calculate some system measures such as L and
W . Aggregating one million tiny probabilities could generate huge technical computational
errors, which may be even larger than our approximation method. On the other hand, solving
those huge equation systems multiple times (each time for each step of search during the
optimization process) makes the resource allocation optimization almost impossible. By
contrast, our proposed decomposition method below provides exact formulas for the solution,
independent of the sizes ofC1 orC2, making the resource allocation optimization possible (see
Sect. 3). To verify the approximation method, we numerically solved the two-dimensional
balance equations and compared the answers to our approximation. The results show our
approximation approach is good, as documented in the Appendix 1.

We begin our decomposition by first analyzing the type 2 queue. Figure 3 shows the
transition rate diagram of type 2 patients; and the global balance equations are as follows for
j = 0, 1, . . . ,C2:

• for j = 0:

λ2P(N2 = 0) = μ2P(N2 = 1)

• for j = 1, . . . ,C2 − 1:

[λ2 + μ2 + ( j − 1)q21]P(N2 = j) = λ2P(N2 = j − 1) + ( jq21 + μ2)P(N2 = j + 1)

• for j = C2:

[μ2 + (C2 − 1)q21]P(N2 = C2) = λ2P(N2 = C2 − 1)

When j ≥ 1, probability of j type 2 patients in the system is derived by induction:

P(N2 = j) = λ
j
2

∏ j
m=1[μ2 + (m − 1)q21]

P(N2 = 0), (1)

According to Eq. (1) and the normalization condition,
∑C2

j=0 P(N2 = j) = 1, we have:

P(N2 = 0) = 1

1 + ∑C2
j=1

λ
j
2∏ j

m=1[μ2+(m−1)q21]

(2)

The expected number of type 2 patients in the system is:

L2 =
C2∑

j=1

j P(N2 = j), (3)

And the expected time type 2 patients spend in the system is:

W2 = L2

λ2
= 1

λ2

C2∑

j=1

j P(N2 = j). (4)
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(a)

(b)

Fig. 4 Type 1 queue transition rate diagram

2.3 Decomposition and analysis on the type 1 queue

We conduct a similar performance analysis on the queue of type 1 patients. Given the number
of type 2 patients in the system (N2 = j), the queue of type 1 patients is similar to the type
2 queue. Figure 4 shows the transition rate diagram for the type 1 patients.

Given the number of type 2 patients j in the system, we have the following limiting
probabilities:

P(N1 = i |N2 = j) =
⎧
⎨

⎩

λi1∏i
n=1[μ1+(n−1)q10] P(N1 = 0|N2 = j) when j = 0, 1

(λ1+( j−1)q21)
i

∏i
n=1[μ1+(n−1)q10] P(N1 = 0|N2 = j) when j = 2, 3, . . . ,C2

(5)
Since we have

∑C1
i=0 P(N1 = i |N2 = j) = 1, Eq. (5) implies:

P(N1 = 0|N2 = j) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

1+∑C1
i=1

λi1∏i
n=1(μ1+(n−1)q10)

when j = 0

1

1+∑C1
i=1

(λ1+( j−1)q21)i
∏i
n=1(μ1+(n−1)q10)

when j = 1, 2, 3, . . . ,C2
(6)

The probability that there are i patients in the type 1 system is calculated as follows, using
the approximation that we discussed in the beginning of Sect. 2.2:

P(N1 = i) =
C2∑

j=0

P(N1 = i |N2 = j)P(N2 = j), for i = 0, 1, . . . ,C1. (7)

Given the number of type 2 patients in the queue, the average number of type 1 patients
in the system L1|N2= j is calculated as:

L1|N2= j =
C1∑

i=1

i P(N1 = i |N2 = j) (8)
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(c)(b)(a)

Fig. 5 Effect of transition rate q21 on type 1 queue

Therefore, the expected number of type 1 patients in the system (L1) is calculated as,
using the same approximation that we discussed in the beginning of Sect. 2.2:

L1 =
C2∑

j=0

P(N2 = j)L1|N2= j =
C2∑

j=0

[

P(N2 = j)
C1∑

i=1

i P(N1 = i |N2 = j)

]

(9)

Since type 2 patients transition to type 1 patients due to delay in treatment, we need to
adjust the arrival rate of the type 1 queue to account for that. Using Little’s formula, the
expected system time for a type 1 patient in the system, W1, is calculated as:

W1 = L1
∑C2

j=1 P(N2 = j)(λ1 + q21( j − 1)) + λ1P(N2 = 0)

=
∑C2

j=0

[
P(N2 = j)

∑C1
i=1 i P(N1 = i |N2 = j)

]

∑C2
j=1 P(N2 = j)(λ1 + q21( j − 1)) + λ1P(N2 = 0)

(10)

The death rate due to lack of treatment is:

Nd =
C1∑

i=1

P(N1 = i)q10(i − 1), (11)

= q10 [L1 − (1 − P(N1 = 0))] . (12)

Substituting Eq. (7) into Eq. (12), we have:

Nd = q10

⎡

⎣L1 − 1 +
C2∑

j=0

P(N1 = 0|N2 = j)P(N2 = j)

⎤

⎦ (13)

Since the type 1 queue is dependent on the type 2 queue, we first analyze the interaction
between the queues. We begin our analysis with the effect of q21 on the type 1 queue. Suppose
λ1 = 0.5, λ2 = 1, μ1 = 0.5, q10 = 0.05, and C1 = C2 = 100. Three different service rates
for the type 2 queue (μ2 = 0.1, μ2 = 0.5, and μ2 = 2) are arbitrarily selected for comparison.
Figure 5a, b, c show that all three performance measures increase in q21 and decrease in μ2.
This is because both larger q21 and smaller μ2 would result in more patients transitioning to
the type 1 queue, resulting in fewer patients remaining in the type 2 queue.
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3 Optimization model and numerical examples

3.1 Optimization models

The main concerns during disaster relief operations are the total death rate and timely medical
treatment. We develop two optimization models to minimize the total death rate and weighted
total system time, respectively. The first optimization model minimizes the total death rate
under a budget constraint. The total death rate includes the summation of the death rate for
type 1 patients (Nd ), the loss rate of type 2 patients from the queue (λ2PC2 ), and the loss rate
of type 1 patients from the queue (λ1PC1 ).

min
μ1,μ2

Nd +
⎡

⎣λ1 + q21

C2∑

j=1

P(N2 = j)( j − 1)

⎤

⎦ PC1 + λ2PC2 (14)

π1μ1 + π2μ2 ≤ R

The minimization problem is subject to budget constraints; thus, equality is always desired.
We eliminate the equality budget constraint by linear transformation. Let,

μ2 = (R − π1μ1)/π2 (15)

Substituting Eq. (15) into the objective function, we get the following problem, referred
to as P1:

min
μ1

Nd +
⎡

⎣λ1 + q21

C2∑

j=1

P(N2 = j)( j − 1)

⎤

⎦ PC1 + λ2PC2 (16)

0 ≤ μ1 ≤ R/π1 (17)

Secondly, we develop an optimization model to minimize the weighted sum of expected
system time, referred to as P2:

min
μ1

KW1 + (1 − K )W2 (18)

0 ≤ μ1 ≤ R/π1 (19)

Thirdly, we consider an optimization model to minimize the total expected system time,
referred to as P3:

min
μ1

L1W1 + L2W2 (20)

0 ≤ μ1 ≤ R/π1 (21)

Because of the complexity of the objective function, it is unlikely that any closed form solu-
tion exists for the optimization problems. Therefore, we use a direct-search and derivative-free
method called the Local Unimodal Sampling Algorithm to seek the optimal solution. A sim-
ple pseudo-code of the procedure (Perdersen 2010) is provided below, and the algorithm
stops after 100 iterations. We also run the algorithm multiple times and compare the gen-
erated solution to significantly increase the chance of reaching a global (instead of local)
optimum.

• Step 1: Initialize μ1 with a random uniform position in [0, R/π1].
• Step 2: Set the initial sampling range [0, R/π1] to cover the entire search-space: d =

R/π1.
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• Step 3: Until the termination criterion is met, repeat the following:

– Step 3.1: Randomly generate a ≈ (−d, d).
– Step 3.2: Let μ′

1 = μ1 + a; if μ′
1 is within [0, R/π1], go to Step 3.3, otherwise go

back to Step 3.1.
– Step 3.3: If μ′

1 improves the objective function, then move to the new position by
setting μ1 = μ′

1; otherwise, decrease the sampling-range by multiplying with a factor
0.5: d = 0.5d , and go to Step 3.1.

• Step 4: Now μ1 holds the best-found solution, and μ2 is obtained using Eq. (15).

3.2 Numerical examples and sensitivity analyses

Sensitivity analysis was performed to observe the effects of model parameters on optimal
solutions. The interesting parameters include the arrival rate of type 1 patients λ1 (the arrival
rate of type 2 patients is fixed); the total available budget, R; the unit cost of service rates,
π1 and π2; the transition rates between severity levels, q21 and q10; and capacities C1 and
C2. For simplicity, we assume that C1 = C2. The results for the optimization model P1 are
shown in Fig. 6.

First, we analyze the impact of the total available budget. Consider the following baseline
parameter values: R = 1, λ2 = 1, λ1 = 0.5, q21 = 0.2, q10 = 0.1, π1 = 0.75, π2 = 0.25
and C1 = C2 = 100. Figure 6 plots the optimal service rates and the total death rate (our
objective that we minimize) by changing one parameter at a time. We first conduct sensitivity
analysis for P1.

Observation 1: When the objective is to minimize the total death rate, it is usually optimal
to allocate more resources to the type 2 queue. There are a few of exceptions. One is when
the budget is sufficiently large, more resources are allocated to the type 1 queue, such as
in Fig. 6a when R is greater than 2. Note that when R is greater than 2 in the baseline
parameter settings, service rates allocated to both queues could be greater than the arrival
rates, respectively, which rarely happens in realistic disaster relief operations.

Our results are different from those of Gong and Batta (2006), which show that it is always
optimal to allocate all the resources to the queue serving more severe patients, in order to
minimize the weighted average number of patients in queues. In Gong and Batta (2006)’s
model, no deterioration of patients’ health condition is considered and it is implicitly assumed
that service rates for different types of patients are the same. In contrast, we explicitly model
the deterioration from mild injured patients to severely injured patients and to possible death,
and assign different unit cost rates for service rates. Our results show that most, but not all,
resources should be allocated to the queue of mild injured patients, which is also consistent
with the humanitarian ethics that patients that are dying should not be completely ignored
due to their low survival probability.

Observation 2: The optimal resource allocation plan is much more sensitive to the change
of q21 than that of q10. Our conjecture is that the increase in q10 may not be large enough
to offset the cost differences between π1 and π2, and λ1 is relatively small compared to
λ2, requiring fewer resources. Also shown in Fig. 6e, optimal resource allocation is more
sensitive to capacities when both C1 and C2 are small. This is because the difference between
two actual arrival rates is relatively small when the capacities are small due to large rejection
of both queues.

Observation 3: Figure 6f shows that μ1 increases in λ1, approaches μ2, but never exceed
μ2 (since it always costs more to treat type 1 patients).
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We conduct similar numerical analysis for the models P2 and P3, and analyze the effects
of different parameter values on the system performance. Using the same baseline parameter
settings of P1, the optimal medical resource allocation and the total weighted sum of the
expected system time are shown in Figs. 7 and 8, for models P2 and P3, respectively. One
additional parameter K is needed for model P2 in the baseline parameter settings and we
let K = 0.7, since in practice, delaying patients in severe conditions could be worse than
delaying the patients with mild conditions. We acknowledge that in other scenarios the time
spent on type 2 patients could be more important, and the results are illustrated using the
sensitivity analysis for K .

Observation 4: From Figs. 7 and 8, we observe that μ2 is always larger than μ1 under
the objectives of minimizing the weighted average system time, and minimizing the total
expected system time, respectively. Note that Figs. 7b, c, d, f and 8b, c, d, f show similar
patterns as the ones in Fig. 6b, c, d, f. Figures 7e and 8e show that as the capacity increases,
the optimal service rate allocated to the type 2 queue increases as opposed to the decreasing
trend in Fig. 6e. This is because when the capacity increases, the actual arrival rates increase,
and it is more efficient to give priority to type 2 patients. This also shows that different
objectives may result in different qualitative insights on optimal service rates. However, one
interesting observation is that regardless of the optimization criteria used (P1, P2, or P3), the
optimal service rates converge to the same levels in Figs. 6e, 7e, and 8e.

Observation 5: When K increases, the optimal service rate allocated to the type 1 queue
increases, but it still never exceeds μ2. Even when K = 1, the optimal service rate allocated
to the type 2 queue can not be zero due to deterioration. Note that all the observations are
based on the assumption C1 = C2.

4 Conclusion and future research directions

In this paper, we present a novel model of allocating medical resources for disaster operations
management, which provides novel “policy analytics” modeling tools and insights for gov-
ernmental and non-governmental agencies in the health care field. In particular, we consider
two-priority queues, each modeled as a single server to one type of dedicated victims. We
allow for transitions from mild conditions to severe conditions. We provide both analytical
solutions and numerical illustrations for this queueing network. Two optimization models
are developed to minimize the total death rate and weighted sum of expected system time,
respectively. A simple heuristic algorithm is used to find the optimal resource allocation
plans. We also numerically illustrate the properties of the solutions.

There are several possible directions for future work. First, in our model, we assume that
each patient type is served by a single server, and it would be interesting to consider multi-
server scenarios. Secondly, it is assumed in this study that the arrival rates and service rates of
the patients are known, and it would be valuable to derive them from data. Thirdly, we assume
that each patient type has a designated queueing system, and the patients are rejected if that
designated system is full. It would be interesting to study the scenario where both patient
types share a common system, and how to allocate resources between patient types within
such a common system. Fourthly, for analytical tractability, we only study the steady-state
performance for the queueing system. This is valid for a scenarios where the arrival process is
stable for a relatively long time period. It would be interesting to study the transient behavior
for a scenarios when the arrival process is not homogeneous (e.g., a large amount of patients
may arrive in a short period of time following disasters). Simulation and time-dependent
fluid model could be used for studying such transient behavior. It would also be practical to
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consider batch-arrivals. Additionally, it would be interesting to consider patient types that
deteriorate in health but not necessarily end in death. Finally, since this paper focuses on
model development rather than problem solving, we use a simple Local Unimodal Sampling
Algorithm to seek optimal solutions, which are applicable for small-scale problems; it is
worthwhile designing more efficient heuristic algorithms to solve large-scale problems.

Appendix 1

The solution method used for solving the 2-D Markov process in this paper involves decom-
posing the 2-D process into a set of 1-D Markov processes. Instead, we can obtain the
numerical results by solving the steady-state equations for the 2-D Markov process directly.
Table 1 provides the results comparing the decomposition versus the numerical methods
in three examples where C1 = C2 = 4, λ2 = 1, q21 = 0.2, q10 = 0.1: Example 1
(λ1 = 0.8, μ1 = 1.0, μ2 = 1.5), Example 2 (λ1 = 0.5, μ1 = 0.5, μ2 = 1.5), and Example
3 (λ1 = 0.8, μ1 = 1.0, μ2 = 1.5). From Table 1 we observe that the comparison results are
pretty good: the absolute errors are very small.

Further more, we study how such absolute errors change when the number of states C
increases. For each of the three examples in Table 1, we extend to study C = 5, 10, 15, 50
as shown in Table 2. The results show that both the average and the standard deviation of the
absolute errors (across states; it is not meaningful to report probabilities for each of the states
i = 1,C for each queue) decrease when C increases. This confirms that our approximation
method is stable.
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Table 2 Average and standard deviations for absolute errors between analytical and approximating probabil-
ities when C changes

Example 1 Example 2 Example 3

C Average
absolute
error

Standard
deviation for
absolute error

Average
absolute
error

Standard
aeviation for
absolute error

Average
absolute
error

Standard
deviation for
absolute error

5 0.0033 0.0032 0.0069 0.0068 0.0038 0.0043
10 0.0031 0.0044 0.0065 0.0087 0.0030 0.0045
15 0.0024 0.0039 0.0049 0.0078 0.0022 0.0039
20 0.0019 0.0035 0.0037 0.0071 0.0017 0.0035
25 0.0015 0.0033 0.0030 0.0065 0.0013 0.0032
30 0.0013 0.0030 0.0025 0.0061 0.0011 0.0030
35 0.0011 0.0028 0.0022 0.0057 9.65E–04 0.0028
40 9.52E–04 0.0027 0.0019 0.0054 8.47E–04 0.0026
45 8.48E–04 0.0025 0.0017 0.0051 7.55E–04 0.0025
50 7.65E–04 0.0024 0.0015 0.0049 6.81E–04 0.0024

Appendix 2

To test the optimality of the Local Unimodal Sampling algorithm in Sect. 3.1, we randomly
generate twelve instances of the medical resource allocation problem of our interest, and
compare the results obtained from unimodal sampling algorithm against the direct grid-
search method (exhaustive search). The grid-search method involves setting up a suitable
grid in the design space, evaluating the objective function at all grid points, and finding the
grid point corresponding to the lowest function value (Rao 2009). The reason for choosing
the simple grid-search approach for comparison purpose is that it may not be safe to use
approximation or heuristic methods that avoid doing an exhaustive parameter search. For the
twelve problem instances we tested, the results (expected total death rate) from unimodal
sampling algorithm are 0.18 % higher than those from the grid-search on average, and a more
detailed comparison is shown in Fig. 9. The comparison results provide evidence that the
Local Unimodal Sampling Algorithm is acceptable for the optimization problems studied in
this paper.
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Fig. 9 Unimodal sampling algorithm versus direct grid-search
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