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IMPACTS OF SUBSIDIZED SECURITY ON STABILITY
AND TOTAL SOCIAL COSTS OF EQUILIBRIUM
SOLUTIONS IN AN N-PLAYER GAME WITH ERRORS

Jun Zhuang

Department of Industrial and Systems Engineering, University at Buffalo,
State University of New York, Buffalo, New York

Investment in defense by all agents is a socially optimum equilibrium
in many interdependent security scenarios. However, practically, some
agents might still choose not to invest in security due to bounded ratio-
nality and errors, thus decreasing the total social welfare. Previous work
shows that providing subsidies may help induce more agents to invest.
Our study suggests that giving subsidies to agents prone to making an
erroneous choice could increase the stability of the socially optimum equi-
librium, as well as decrease the total social costs.

INTRODUCTION

Homeland security has received a significant amount of attention since
September 11, 2001 (Zhuang and Bier, 2007). Many security scenarios
(e.g., Internet, transportation, and supply chain) involve interdependence
among multiple defenders; that is, one decision-maker’s choice can affect
the security environment for other decision-makers. For example, lack
of security on the part of one computer user, airline, or supply-chain
player can increase the risk to other decision-makers. Recently, the risk
associated with the attempted terrorist attack on Northwest Airlines Flight
253 was transited from Amsterdam to Detroit. Game theory has already
been applied to such interdependent security problems (IDS); see, for
example, Kunreuther and Heal (2003); Zhuang et al. (2007).
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132 J. Zhuang

In an IDS environment, agents are often at risk of both direct (exter-
nal) and indirect (internal) threats. Protecting against external threats is
critical to reducing the risks of contamination among agents. For exam-
ple, in order to completely protect a computer network, one must protect
all nodes against externally introduced viruses and prevent infected nodes
from spreading the virus to the other nodes in the network. Similarly, in
public health, the immunized segment of the population may not be com-
pletely protected if the risk of transmitted infection from nonimmunized
individuals still exists (Heal and Kunreuther, 2007; Anikeeva et al., 2009).
Similar arguments apply to the airline industry where failing to properly
screen passengers and luggage at one airport or airline may threaten other
airports or countries because passengers and luggage may be transported
by multiple airlines over the course of a trip (Kunreuther and Heal, 2003;
Nikolaev et al., 2007).

Previous game-theoretic models show that in an IDS environment,
knowing the decisions of others may influence the security investment
choices of individual agents, because risks are essentially shared among
agents (Heal and Kunreuther, 2007). The decision to invest also depends
on the cost of investment and the agents minimum acceptable rates of re-
turn (Grant et al., 1990; Fabrycky et al., 1998). For example, the work of
Zhuang et al. (2007) shows that the decision not to invest in security can
be a dominant strategy when the investment costs and discount factors are
sufficiently high.

On the other side, subsidizing some agents can create a ripple effect of
investing by the remaining agents (Dixit, 2003; Kunreuther and Heal, 2003;
Heal and Kunreuther, 2007; Zhuang et al., 2007). In other words, providing
some incentives to a small number of agents (e.g., government contractors)
could make security investment so widespread that it becomes the norm
even for firms that are not subject to such incentives. Therefore, though we
model incentives for security investment as subsidies, we believe that the
same results apply to other indirect subsidies such as bundling of security
with other services or making security investment a requirement to be
desired for certain contracts.

This article focuses on a game in which some agents choose not to invest
and others choose to invest. In general, in this type of game, individuals tend
to choose strategies that conform to those of their counterparts (Schelling,
1978). In practice, however, some agents may still choose not to invest
even when investing is in their best interest; we denote such behavior as
erroneous choice. To our knowledge, there is no literature that addresses
the stability of equilibrium solutions and the effects of erroneous choice
in interdependent security models. The contribution of this article is to
develop models to evaluate the effects of erroneous choice on the stability
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Subsidized Security in N -Player Game with Errors 133

of the socially optimum equilibrium, and to study the impact of subsidies
on the total social cost.

The N-agent model we develop in the following sections serves as a
foundation to the section in which we study the stability of equilibrium
solutions. Then we discuss the phenomenon of erroneous choice, and we
establish a model to evaluate the impact of subsidies on total social cost.
Finally, we present our conclusions, and the Appendix provides proofs to
theorems in this article.

NOTATION AND MODEL FORMULATION

Let N be the number of interdependent security agents where N ≥ 2.
For simplicity, the pure strategies available to all agents are to invest and
not to invest in security. We assume that agents who receive free security
would choose to implement security measures. Our model revolves around
agents who do not receive free security. We assume that some agents (at
random) erroneously choose not to invest when investing is their interest,
and the remaining agents choose in accordance with the social equilibrium
strategy in light of the number of agents (without subsidy) who make
erroneous choices. Following Zhuang et al. (2007), we use the following
notation:

� N : Number of agents in the system, where N ≥ 2.
� h: Number of agents receiving subsidized security, where 0 ≤ h ≤ N .
� x: Number of agents making erroneous choices, where 0 ≤ x ≤
N − h. There are N − h − x nonsubsidized agents who do not make
erroneous choices, where 0 ≤ N − h − x ≤ N − h.

� {all invest}N−h−x and {none invest}N−h−x : the subequilibrium solu-
tions describing the two possible collective behavior of the N − h − x
agents who do not make erroneous choices.

� L: Loss suffered by agent if it is attacked, either directly or indirectly.
� C: Cost of investing in security for an agent. We assume that 0 <
C < L.

� r ∈ Sk: Discount rate of an agent, where r ≥ 0 and Sk is a range.
� k: The index for of discount rate sets Sk where r belongs to.
� R1(k) and R2(k): Minimum and maximum possible discount rates for

which an agent would invest, respectively, given that exactly k other
agents are not investing.

� si : Investment strategy for agent i, for i = 1, . . . , N , where si = 1 if
agent i invests in security, and si = 0 otherwise.
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134 J. Zhuang

� s−i ≡ {sj , j �= i}: Set of strategies of all agents other than agent i.
� λ: Rate of direct attacks on an agent.
� qij : Probability that an attack on agent i infects agent j (where we

define qii = 1), for i, j = 1, . . . , N .
� λ̃i : Total rate of all attacks on agent i (including indirect attacks), for
i = 1, . . . , N . In particular, we have

λ̃i = (1 − si)λi +
∑
j �=i

(1 − sj )qjiλj (1)

� Pi(si, s−i): Total expected cost for agent i, for i = 1, . . . , N , given its
strategy si and the strategies of the other agents s−i .

The expected loss for agent i is given by Li

∫ ∞
0 fi(t) exp(−rt)dt , where

fi(t) = λ̃i exp(−λ̃i t)

is the probability density function for the time of the first attack on agent i.
Hence, the net present value of the expected loss due to attacks experienced
by agent i is

E(Loss) = Li

∫ ∞

0
λ̃i exp(−λ̃i t − rt)dt = L/(1 + r/λ̃i) (2)

and the total expected cost to agent i is given by

Pi(si, s−i) = siC + L/(1 + r/λ̃i) (3)

Using the total expected costs, we define the equilibrium solution
below:

Definition 1. An equilibrium is a set of strategies {si, i = 1, . . . , N} such
that all agents reach optimum given the other agents’ strategies; i.e.,

Pi(si, s−i) ≤ Pi(1 − si, s−i) ∀i = 1, . . . , N (4)

Figure 1 shows the scenario where agent i invests in security but agent j
does not. We assume that investment in security can protect against direct
attacks but does not protect against indirect attacks (Kunreuther and Heal,
2003; Heal and Kunreuther, 2007; Zhuang et al., 2007).
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Subsidized Security in N -Player Game with Errors 135

Figure 1. Model structure: Investing by agent i prevents direct attacks λi .

N-AGENT HOMOGENOUS MODEL WHERE r ∈ Sk

In this article we focus on a N-agent homogenous model where r ∈ Sk, k =
0, 1, . . . , N , where Sk is defined on the domain of discount rates:

Sl =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[R2(0), ∞] for l = 0
[R1(l − 1), R1(l)] ∪ [R2(l), R2(l − 1)]

for l = 1, . . . , min(N − 1, Ñ)

[R1(l − 1), R2(l − 1)] for l = min(N, Ñ + 1)

(5)

where Ñ ≡ 	C(L/C − 1)2/(4Lq)
 and 	x
 is the greatest in-
teger less than or equal to x; R1(k) ≡ λ[L/C − 1 − 2kq−√

(L/C − 1)2 − 4qkL/C]/2 for k = 0, . . . , Ñ ; and R2(k) ≡ λ[L/C−
1 − 2kq +

√
(L/C − 1)2 − 4qkL/C]/2 for k = 0, . . . , Ñ .

Here, Ñ is a bound on the number of agents there can be in a sys-
tem for certain properties to hold, and R1(k) and R2(k) are the minimum
and maximum discount rates for which an agent would invest given that
exactly others are not doing so, respectively. By taking derivatives, it is
easy to show that R1(k) and R2(k) are increasing and decreasing in k,
respectively. Also, note that R1(Ñ ) ≤ R2(Ñ ), and R1(0) = 0. Thus, the
following relationship holds, as shown in Figure 2: 0 = R1(0) < R1(0) <
. . . < R1(Ñ ) ≤ R2(Ñ ) < . . . < R2(1) < R2(0).

1S 2S         … 1NS NS 1NS             … 2S 1S 0S

)0(1R )1(1R )2(1R  … )2(1 NR )1(1 NR )1(2 NR )2(1 NR  … )2(2R )1(2R )0(2R

Figure 2. Illustration of the ranges Sl .
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136 J. Zhuang

Intuitively, Sl is the set of those discount rates for which an agent would
want to invest if at most l − 1 others do not invest but would not want
to invest if l or more others do not invest. This notation is represented
graphically in Figure 2 for the case where N ≤ Ñ + 1. When we have
N ≥ Ñ + 2, then R1(k) and R2(k) are not defined for Ñ + 1 ≤ k ≤ N , so
Sl is empty for Ñ + 2 ≤ l ≤ N . For convenience, we also define Cl(Sl) to
be the closure of the open set Sl .

SUBSIDY AND STABILITY OF EQUILIBRIUM SOLUTIONS

Definition 2. In an N-agent homogeneous model, let n be the greatest
integer such that, even if n agents all change to the opposite strategy, the
remaining N − n agents will not want to change their strategies. We then
define the stability level of an equilibrium (either {all invest} or {none
invest}) to be α = n/(N − 1).1

Remark 1. If α = 0, then the corresponding equilibrium is completely
unstable; that is, if even one agent changes strategy, at least one other agent
will also prefer to change strategy. If α = 1, the corresponding equilibrium
is completely stable; that is, no matter how many agents change strategies,
no other (rational) agent would want to change strategy. Note that the
stability of Nash equilibrium solutions has been defined variously in other
research; see, for example, Okada (1981), Kohlberg and Mertens (1986),
and Damme (1991).

As indicated previously, let h be the number of agents receiving subsi-
dized (free) security, such that 0 ≤ h ≤ N . Because the h agents receiving
subsidized security need not incur any cost to invest, we consider only
the strategies of the N − h nonsubsidized agents. Let {all invest}N−h and
{none invest}N−h be subequilibrium solutions describing the possible be-
havior of these N − h agents.

Theorem 1. Consider a model with N homogeneous agents, and as-
sume that a third party offers subsidized security to h agents. Then
{all invest}N−h will be a subequilibrium for the N − h nonsubsidized
agents for any value of h. This subequilibrium has stability α = k−1

N−h−1 if
h ≤ N − k − 1, and α = 1 if h ≥ N − k. By contrast, {none invest}N−h

is a subequilibrium only if h ≤ N − k − 1, in which case its stability is
given by α = N−h−k−1

N−h−1 .

1Our definition of the stability α is closely related to what game theorists call p-dominance
(see Morris et al., 1995).
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Subsidized Security in N -Player Game with Errors 137

Figure 3. Stability of two subequilibria.

Remark 2. The stability of {all invest}N−h is increasing in h for h ≤
N − k − 1 and equals 1 (i.e., completely stable) when h ≥ N − k agents
receive subsidized (free) security. See Figure 3 for an illustration.

Theorem 2. If both {all invest}N−h and {none invest}N−h are possible
subequilibrium solutions, then {all invest}N−h will be more stable2 than
{none invest}N−h when k > N−h

2 . Conversely, {none invest}N−h will be
more stable than {all invest}N−h when k < N−h

2 . If N − h is even, then the
two subequilibrium solutions will be equally stable when k = N−h

2 . (Proof
follows directly from Theorem 1.)

Remark 3. Generally, {all invest}N−h will tend to be more stable than
{none invest}N−h when the discount rate of the (homogeneous) agents is
close to the region where investing is strictly dominant. Similarly, {none
invest}N−h will tend to be more stable than {all invest}N−h when the
discount rate is close to the region where not investing is strictly dominant.
If N − h is even, then there exists a middle range, S(N−h)/2, where the two
subequilibrium solutions are equally stable. This is illustrated in Figure 4.

ERRONEOUS CHOICE

As shown in Kunreuther and Heal (2003) and Zhuang et al. (2007), the
equilibrium {all invest} is the social optimum and moreover has lower
cost than the equilibrium {none invest} for any given agent individually.
Therefore, it may be reasonable to expect that any rational agent would
choose to invest in this case. However, in practice, some agents may choose

2Also sometimes called risk dominant (see Harsanyi and Selten, 1988).
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138 J. Zhuang

1S 2S … 1NS NS 1NS … 2S 1S 0S

)0(1R )1(1R )2(1R … )2(1 NR )1(1 NR )1(2 NR )2(1 NR … )2(2R )1(2R )0(2R r

{None invest} 
more stable

{None invest} 
more stable

{All invest} 
more stable

{All invest} 
more stable

{All invest} 
dominant

{None invest} 
dominant

IfN even, equally stable

Figure 4. Stability of equilibrium solutions in an N-agent homogeneous
model.

not to invest even when it would be in their interests to do so due to bounded
rationality and errors. We denote such behavior an erroneous choice. In
this section, rather than assuming that all of the N − h (nonsubsidized)
agents make the same choice (as in the previous section), we assume that
a number of x agents erroneously choose not to invest, and the remaining
N − h − x agents choose strategy the subequilibrium with the lowest social
cost in light of the observed number of erroneous choices. Because the h
agents receiving subsidized (free) security need not incur any cost to obtain
security, we consider only the strategies of the N − h − x nonsubsidized
agents who do not make erroneous choices. Let {all invest}N−h−x and
{none invest}N−h−x be subequilibrium solutions describing the possible
behavior of the N − h − x nonsubsidized agents not making erroneous
choices.

We here examine the effects of erroneous choice on the subequilibrium
solutions for the remaining agents who do not make errors. We also examine
how subsidization of security investment can help to counteract any adverse
effect of erroneous choices.

Theorem 3. Both {all invest}N−h−x and {none invest}N−h−x are sube-
quilibrium solutions if and only if x ≤ k − 1 and h ≤ N − k − 1, re-
spectively. If x + 1 ≤ k ≤ N − h − 1, then {all invest}N−h−x and {none
invest}N−h−x are both possible subequilibrium solutions. In this case, the
total cost borne by all of the N agents individually in {all invest}N−h−x

(when h agents receive subsidized security, x agents make erroneous
choices, and N − h − x agents invest) is lower than the corresponding
cost when the N − h − x agents do not invest. This implies that {all
invest}N−h−x is the socially optimal subequilibrium.

Both {all invest}N−h−x and {none invest}N−h−x will be subequilib-
rium solutions if and only if x ≤ k − 1 and h ≤ N − k − 1, respectively.
Therefore, there will always exist at least one subequilibrium solution.
Moreover, if x + 1 ≤ k ≤ N − h − 1, then {all invest}N−h−x and {none
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Subsidized Security in N -Player Game with Errors 139

invest}N−h−x are both possible subequilibrium solutions. In this case, the
total cost borne by any of the N agents individually in {all invest}N−h−x

is lower than the corresponding cost when the N − h − x agents do not
invest. Thus, {all invest}N−h−x is the socially optimal subequilibrium.

Remark 4. If those nonsubsidized agents not making erroneous choices
always choose the social optimum, then they will choose to invest whenever
{all invest}N−h−x is a subequilibrium.

Theorem 4. Suppose that each nonsubsidized agent independently makes
an erroneous choice with probability ε, where 0 ≤ ε ≤ 1. In this case, the
number of agents X making erroneous choices is a random variable with
binomial probability mass function given by P (X = x) = (

N−h

x

)
εx(1 −

ε)N−h−x . Let PInv be the probability that {all invest}N−h−X is a subequilib-
rium for those nonsubsidized agents not making erroneous choices. Then,
we have PInv = 1 if h ≥ N − k, and PInv = ∑k−1

x=0

(
N−h

x

)
εx(1 − ε)N−h−x

if h ≤ N − k − 1.

Remark 5. If fewer than N − k agents receive subsidized (free) security,
then PInv will be increasing in the number of agents h receiving free security
(all else constant), in part because provision of free security to a larger
number of agents reduces the maximum possible number of agents who
could make erroneous choices. PInv is also increasing in k, where r ∈ Cl(Sk)
is the discount rate of the (homogeneous) agents; that is, as r gets closer
to the region where investing is dominant (all else constant), it becomes
more likely that investing will be a sub equilibrium for the N − h − X
nonsubsidized agents not making erroneous choices. All else constant, PInv

is also decreasing in both the error probability ε and the number of agents
N . The above observations are based on known properties of the binomial
distribution (Bickel and Doksum, 2001).

TOTAL SOCIAL COST

In this section, we explore the effects of providing subsidized (free) security
to a subset of agents on the total (expected) social cost. Let CF (h) (with
CF (h) − CF (h − 1) ≤ C, for h ≥ 1) be the cost to a third party of providing
subsidized (free) security to h agents, Cx(h) be the cost to the x agents
who make erroneous choices, CO(h) be the cost to the other N − h −
x agents, and CS(h) ≡ CF (h) + Cx(h) + CO(h) be the total (expected)
social cost.

In the case described previously, (where all nonsubsidized agents make
the same choice), Theorem 3 shows that there are only two possible
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140 J. Zhuang

subequilibrium solutions. The total cost paid by the N agents for the
subequilibrium {all invest}N−h is given by

CA(h) = (N − h)C (6)

Similarly, for {none invest}N−h, we have

CA(h) = hCSub2 + (N − h)CNon (7)

where CSub2 and CNon are as defined in the proof of Theorem 3. In the
case described in the previous section (involving erroneous choices), if
h ≥ N − k, then we have

CA(h) =
N−h∑
x=0

P (X = x) [(N − h − x)CInv + xCErr + hCSub1] (8)

and, if h ≤ N − k − 1, then we will have

CA(h) =
k−1∑
x=0

P (X = x) [(N − h − x)CInv + xCErr + hCSub1] (9)

+ (1 − PInv) [(N − h)CNon + hCSub2]

where, CInv, CErr, CNon, CSub1, and CSub2 are as defined in the proof of
Theorem 3, and PInv and P (X = x) are as given in Theorem 4.

Theorem 5. In both subequilibrium solutions {all invest}N−h−x and
{none invest}N−h−x (if they exist), the total social cost CS(h) is nonin-
creasing in the number h of agents receiving subsidized (free) security if
CF (h) satisfies CF (h) − CF (h − 1) ≤ C, for h ≥ 1. That is, agents will in
general benefit from subsidized (free) security.

Remark 6. From Theorems 3 and 5, we know that subsidization of secu-
rity will decrease in general decrease the total social cost CS(h) in both
subequilibrium {all invest}N−h−x and {none invest}N−h−x and moreover
will ensure that {all invest}N−h−x is the unique subequilibrium whenever
h ≥ N − k. Provided that the rate of attacks is so large that {all invest}N−h

would be an equilibrium solution in the absence of errors, then extensive
numerical results suggest that the total social costs CS(h) will be nonde-
creasing in h (as shown in Figure 5) for both the basic case and the case of
erroneous choice discussed previously. However, we have not been able to
prove this. In order to prove this speculation, it would be sufficient to prove
that dCA(h)

dh
≤ −C, because we already know that CS(h) = CF (h) + CA(h).
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If our speculation is true, this would suggest that in order to minimize the
total (expected) social costs, all agents should receive subsidized (free)
security (i.e., h = N) in cases where investing in security is the social op-
timum and security can be provided at a lower cost by a third party (such
as a government) than by the agents themselves.

We now explore the effects of providing subsidized (free) security to a
subset of agents on the total (expected) social cost, by considering three
possible functional forms for CF (h), all of which satisfy dCF (h)

dh
≤ C, for

h ≥ 1 (for simplicity, we treat h as a continuous variable):

1. CF (h) = hC; i.e., the cost to a third party of providing security
is the same as the cost to the agents themselves.

2. CF (h) is increasing and concave (e.g., CF (h) = Ch0.9); i.e., a
third party can provide security at lower cost than the individual
agents could (e.g., due to economies of scale).

3. CF (h) is constant in h (e.g., CF (h) = 200C; in this case, we
will have CF (h) ≤ hC for h sufficiently large); i.e., provision of
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Figure 5. Total social costs of subequilibrium solutions {all invest}N−h and
{none invest}N−h.
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Figure 6. Stability of the subequilibrium solutions {all invest}N−h and
{none invest}N−h.

security by a third party is cost-effective only for systems with a
large number of agents. This is a bounding case, in which once
security technology (e.g., antivirus software) has been devel-
oped, it can be provided to any number of agents at no additional
cost. In this case, it would be clearly optimal to give free secu-
rity to all agents, provided that the constant CF (h) is sufficiently
small relative to CA(0) .

Example. In this example, we now numerically explore the effects of offer-
ing subsidized (free) security for the case where all nonsubsidized agents
make the same choice, using the following parameters: C = 10, L = 1000,
q = 0.01, λ = 0.01, k = 1200, and N = 2000. Figure 6 shows stability of
the subequilibrium solutions {all invest}N−h and {none invest}N−h as a
function of h. When no agents receive subsidies security (h = 0), the
stabilities of the subequilibrium solutions {all invest}N−h and {none
invest}N−h equal 0.6 and 0.4, respectively. For 0 < h ≤ N − k − 1 = 799,
providing h subsidized (free) security convexly increases the stability
of {all invest}N−h (α = k−1

N−h−1 = 1199
1999−h

) and concavely decreases the
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stability of {none invest}N−h (α = N−h−k−1
N−h−1 = 799−h

1999−h
), as predicted in

Theorem 1. When h ≥ N − k = 800, the stability of {all invest}N−h

reaches its maximum 1 and the stability of {all invest}N−h reaches its min-
imum 0 (actually {all invest}N−h is no longer an equilibrium in this case).

Figure 5 shows the cost CA(h) actually borne by the agents as a
function of h for two subequilibrium solutions {none invest}N−h and
{all invest}N−h. In particular, such total costs are extremely high for
unfavorable subequilibrium {none invest}N−h if it exists under the condi-
tion h ≤ 799. Figure 5 also shows the total social cost CS(h) as a function of
h in {all invest}N−h for three different assumptions about CF (h). Note that
CS(h) is nonincreasing in all three cases. (By contrast, for the subequilib-
rium {none invest}N−h, CS(h) is decreasing in all three cases. However, the
results for {none invest}N−h are not shown in Figure 5, because for {none
invest}N−h, CS(h) is approximately equal to CA(h) in all three cases, so it
would not be clearly visible in the figure.) When CF (h) = C ∗ h, the total
social cost CS(h) keeps constant because the third party’s cost is exactly
the subsidy-receiver’s benefits. In the other two cases (CF (h) = C ∗ h0.9

and CF (h) = 200 ∗ C) where the marginal subsidy costs for the third party
decrease in h, the total social costs concavely decrease in h.

CONCLUSIONS

Providing subsidies for some agents to invest in security may increase the
stability of socially optimum equilibrium solutions and decrease the total
social cost of security. We investigate the effects of providing subsidized
(free) security on both the stability of equilibrium solutions and the total
social cost, in the case of homogeneous agents. Results show that sub-
sidization can increase the stability of the socially optimum equilibrium
solution in which all agents invest, reduce or eliminate the adverse ef-
fect of erroneous choices or the behavior of agents not making erroneous
choices, and decrease the total (expected) social cost of achieving the social
optimum.

Our work suggests that under appropriate circumstances, providing sub-
sidized security to some agents will (1) ensure that even agents for whom
not investing would otherwise be dominant do actually invest (through
careful targeting of the subsidies to those agents); (2) lead to tipping and
cascading, thereby causing additional agents to invest; (3) increase the
stability of the socially optimum equilibrium in which all agents invest;
(4) counteract the effects of erroneous choices; and (5) decrease (expected)
total social costs. Thus, it might sometimes be worthwhile for third parties
(such as governments) to subsidize the provision of security or otherwise
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ensure that the strategy of investing in security is adopted when it is the
social optimum, because that might not otherwise occur. Our study demon-
strates that giving those subsidies to agents prone to making erroneous
choices could increase the stability of the socially optimum equilibrium
solutions, as well as decrease the total social costs.

We acknowledge that our model is static; i.e., assuming that all agents
move simultaneously, or at least no agent knows the others’ decision at
the time she makes her own decision. However, in practice, the sequence
of moves and information sharing (Zhuang and Bier, 2009; Zhuang et al.,
2010) do play important roles, especially in the situations where multiple
equilibrium solutions exist and agents compete for some common re-
sources. For example, agents may strategically pretend to be error-making
agents in order to receive free security and thus the third party would
have to be more selective when choosing an agent to subsidize. Future
research in more dynamic settings of interdependent security games would
be interesting.
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APPENDIX

Proof of Theorem 1

Let Inv(·) and Non(·) represent the set of possible discount rates for in-
vesting and noninvesting agents. h ≤ N − k − 1, then after k − 1 agents
change from investing (in the subequilibrium {all invest}N−h) to not in-
vesting, {all invest}N−h−k+1 is still a subequilibrium for the remaining
N − h − k + 1 agents, because r ∈ Cl(Sk) ⊂ Inv(N − k + 1). However,
after k agents change from investing to not investing, {all invest}N−h−k is
no longer a subequilibrium for the remaining N − h − k agents, because
r ∈ Cl(Sk) �⊂ Inv(N − k). So, n = k − 1 is the largest number of agents that
can change strategies such that the remaining agents will want to continue
investing at subequilibrium. Therefore, {all invest}N−h has stability α =
(k − 1)/(N − h − 1). Similarly, it can be shown that {none invest}N−h

has stability α = (N − h − k − 1)/(N − h − 1) if h ≤ N − k − 1. Now
we consider the case h ≥ N − k. In this case, {all invest}N−h is a
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subequilibrium for the nonsubsidized N − h agents and has stability α = 1
(because for h ≥ N − k, it is no longer possible to have k of the N − h
nonsubsidized agents change strategies). To see why {none invest}N−h is
not a subequilibrium in this case, note that if all of the N − h nonsubsidized
agents choose not to invest, there will be only h agents having security mea-
sures. From table 3 in Zhuang et al. (2007), we know that {none invest}N−h

will be a subequilibrium for the N − h nonsubsidized agents if and only if
r ∈ Cl(Sk) ⊂ Non(h) or, equivalently, h ≤ N − k − 1.

Proof of Theorem 3

Because the agents are assumed to be homogeneous, by the similar
argument as in Theorem 4 in Zhuang et al. (2007), we know that all
of the nonsubsidized N − h − x agents not making erroneous choices
will choose the same strategy in any subequilibrium. If all of these
N − h − x agents choose to invest, then there will be a total of N − x
agents having security measures. From Table 3 in Zhuang et al. (2007), we
know that {all invest}N−h−x will be a subequilibrium for the N − h − x
nonsubsidized agents not making erroneous choices if and only if
r ∈ Cl(Sk) ⊂ Inv(N − x) or, equivalently,

k ≥ x + 1 (A1)

In this case, table 1 in Zhuang et al. (2007) indicates that the total cost
borne by each of the agents receiving subsidized (free) security is given by

CSub1 ≡ L/ [1 + r/(xqλ)] .

The total cost borne by each of the nonsubsidized N − h − x agents
not making erroneous choices is given by CInv = C + L/ [1 + r/(xqλ)],
where C > 0 is the cost for any one agent to invest in security and the total
cost borne by each of the x agents making erroneous choices is given by

CErr ≡ L/{1 + r/[λ + (x − 1)qλ]}.

Similarly, if all of the remaining N − h − x agents choose not to invest,
then there will be only h agents having security measures. Again, from
table 3 in Zhuang et al. (2007), {none invest}N−h−x will be a subequilib-
rium for these N − h − x agents if and only if r ∈ Cl(Sk) ⊂ Non(h) or,
equivalently,

k ≤ N − h − 1 (A2)
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In this case, table 1 in Zhuang et al. (2007) shows that the total cost
borne by each of the agents receiving free security is given by CSub2 ≡
L/{1 + r/[(N − h)qλ]}, and the total cost borne by any of the N − h
nonsubsidized agents is given by CNon ≡ L/{1 + r/[λ + (N − h − 1)qλ]}.

There will always exist at least one subequilibrium, because at least one
of inequalities (A1) and (A2) will hold (by the assumption that 0 ≤ x ≤
N − h, and the fact that x, h, k, and N are all integers). If h ≥ N − k,
then {none invest}N−h−x will not be a possible subequilibrium solution,
so {all invest}N−h−x will be the unique subequilibrium for all values of
x ≤ N − h. Conversely, if x ≥ k, then {all invest}N−h−x will not be a
subequilibrium, so {none invest}N−h−x will be the unique subequilibrium
for all values of h ≤ N − k − 1. Finally, if x + 1 ≤ k ≤ N − h − 1, then
both {all invest}N−h−x and {none invest}N−h−x will be subequilibrium
solutions. In this case, straightforward algebra shows that we will have
CInv < CNon, CErr ≤ CNon, and CSub1 ≤ CSub2. Thus, the costs borne by any
of the N agents individually in the subequilibrium {all invest}N−h−x will
be less than or equal to the corresponding costs in the subequilibrium {none
invest}N−h−x .

Proof of Theorem 4

From Theorem 3, if h ≥ N − k, then we must have PInv = 1, because
{all invest}N−h−x is the unique subequilibrium for any value of x in that
case. From inequality (A1), if h ≥ N − k, then the probability that {all
invest}N−h−X is a subequilibrium is given by PInv = P (X ≤ k − 1).

Proof of Theorem 5

For the subequilibrium solution {all invest}N−h−x (if it exists), the number
of agents having security measures will be N − x. Then using table 1 in
Zhuang et al. (2007) (but subtracting the investment cost C for those h
agents that receive subsidized security), we will have Cx(h) = xL/(1 +
r/λ̃) for λ̃ = λ + (x − 1)qλ, and note that Cx(h) is independent of h in this
particular case. We also have CO(h) = (N − h − x)[C + L/(1 + r/λ̃)] for
λ̃ = xqλ. Similarly, for the subequilibrium solution {none invest}N−h−x

(if it exists), the number of agents having security measures in place will
be given by h. Then using table 1 in Zhuang et al. (2007) (but again
subtracting the investment cost C for the subsidized agents), we will have
Cx(h) = xL/(1 + r/λ̃) for λ̃ = λ + (N − h − 1)qλ, and CO(h) = (N −
h − x)L/(1 + r/λ̃) for λ̃ = λ + (N − h − 1)qλ.
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For the subequilibrium {all invest}N−h−x (if it exists), Cx(h) = Cx(h −
1). Therefore, for h ≥ 1, we will have:

CS(h) − CS(h − 1)

= CF (h) + Cx(h) + CO(h) − CF (h − 1) − Cx(h − 1) − CO(h − 1)

= [CF (h) − CF (h − 1)] −
[
C + L

1 + r/xqλ

]

≤ C − C

= 0

Therefore, we will have CS(h) nonincreasing in h in this case. For the
subequilibrium {none invest}N−h−x (if it exists), similar to the proof of
Theorem 3 in Zhuang et al. (2007), we can show that r ≤ R2(0) or, equiv-
alently, C − L/(1 + r/λ) ≤ 0. Therefore, for h ≥ 1, we will have:

CS(h) − CS(h − 1)

= CF (h) + Cx(h) + CO(h) − CF (h − 1) − Cx(h − 1) − CO(h − 1)

= (CF (h) − CF (h − 1)) + (N − h)L

1 + r/[λ + (N − h − 1)qλ]

− (N − h + 1)L

1 + r/[λ + (N − h)qλ]

≤ C + (N − h)L

1 + r/[λ + (N − h)qλ]
− (N − h + 1)L

1 + r/[λ + (N − h)qλ]

= C − L

1 + r/[λ + (N − h)qλ]

≤ C − L

1 + r/λ

≤ 0

Therefore, we will have CS(h) nonincreasing in h in this case.
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