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Cost of Equity in Homeland Security Resource Allocation
in the Face of a Strategic Attacker

Xiaojun Shan and Jun Zhuang∗

Hundreds of billions of dollars have been spent in homeland security since September 11,
2001. Many mathematical models have been developed to study strategic interactions be-
tween governments (defenders) and terrorists (attackers). However, few studies have con-
sidered the tradeoff between equity and efficiency in homeland security resource allocation.
In this article, we fill this gap by developing a novel model in which a government allocates
defensive resources among multiple potential targets, while reserving a portion of defensive
resources (represented by the equity coefficient) for equal distribution (according to geo-
graphical areas, population, density, etc.). Such a way to model equity is one of many al-
ternatives, but was directly inspired by homeland security resource allocation practice. The
government is faced with a strategic terrorist (adaptive adversary) whose attack probabili-
ties are endogenously determined in the model. We study the effect of the equity coefficient
on the optimal defensive resource allocations and the corresponding expected loss. We find
that the cost of equity (in terms of increased expected loss) increases convexly in the equity
coefficient. Furthermore, such cost is lower when: (a) government uses per-valuation equity;
(b) the cost-effectiveness coefficient of defense increases; and (c) the total defense budget
increases. Our model, results, and insights could be used to assist policy making.
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1. INTRODUCTION

Since September 11, 2001, homeland security in
the United States has attracted hundreds of billions
of dollars in expenditures. The effectiveness of such
large expenditures is obscure and is frequently crit-
icized as reflecting “pork-barrel politics”, in which
funds are directed toward low-risk targets for polit-
ical reasons.(1) In the presence of a budget cut for
homeland security,(2) it becomes even more impor-
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tant to optimally allocate limited defensive resources,
incorporating important factors such as adaptive ad-
versarial behavior and equity (fairness, equality).

Many mathematical models have been devel-
oped to study homeland security problems.(3) Specif-
ically, to cope with the adaptiveness of strategic
attackers, a number of intelligent risk analysis mod-
els(4) and game-theoretic models(5−8) have been used
to study defensive resource allocations. Regarding
equity, though “pork-barrel politics” is not equiv-
alent to equity, it may result in a more equitable
mixture of expenditures (e.g., equitable funding of
different geographical areas based on political pres-
sure to get funding for multiple districts, irrespec-
tive of need). In practice, the original formula
guaranteed that each state received at least 0.75%
of State Homeland Security Program (SHSP) and

1083 0272-4332/13/0100-1083$22.00/1 C© 2012 Society for Risk Analysis



1084 Shan and Zhuang

Urban Area Security Initiative (UASI), which means
almost 40% of the money was allocated without any
risk-based optimization; this 0.75% percentage per
state was reduced by half to 0.375% in FY 2008.(9)

Such homeland security resource allocation practice
directly motivates this article, and the pre-2008 and
post-2008 percentages correspond to equity coeffi-
cients of 0.4 (0.75% × 52 = 0.4) and 0.2 (0.375% ×
52 = 0.2), respectively, as used in Section 3.1 of this
article. Overall, equity is an important topic that has
not been extensively studied in homeland security re-
search literature, with only few exceptions. Specifi-
cally, Yetman(10) studies how to incorporate equity
when screening passengers in an airport. Wang and
Zhuang(11) compare discriminatory and nondiscrim-
inatory screening policies facing strategic applicants
who attempt to enter an organization but have pri-
vate information.

Although equity has not been extensively stud-
ied in homeland security resource allocation, it has
been studied in resource allocation against public risk
in general,(12) and is considered as one of the three
important performance measures, together with effi-
ciency and effectiveness.(13)

In terms of application areas, equity in pub-
lic resource allocations has been extensively stud-
ied in facility location, global warming, transporta-
tion, health care, education, and energy.(14) For
example, Wagstaff(15) develops a method to study
the tradeoff between equity and efficiency in quality-
adjusted life years. Rosegrant and Binswanger(16)

study how to improve markets for tradable water
rights to achieve efficiency, equity, and sustainabil-
ity in water resource management. In terms of char-
acterization, equity has been categorized in the fol-
lowing ways: individual versus group versus society
equity, vertical versus horizontal equity, and ex-ante
versus ex-post equity.(17) Hausken(18) establishes a
framework to characterize the relationship between
ethics (a concept closely related to equity) and effi-
ciency in organizations. Similarly, Hausken(19) stud-
ies self-interested and sympathetic behavior within
a game-theoretic framework. The Gini coefficient
is probably the most well-known quantitative index
for equity, commonly used in measuring inequality
of income and wealth.(20) Recently, taking a mathe-
matical programming approach, Bertsimas et al.(21)

quantify the price of fairness in resource alloca-
tion problems by studying proportional and max-
min equity. For additional information about how
equity is studied in the literature, see Ref. 22 for
a comprehensive review of about 20 equity mea-

sures, including statistics-related equity measures,
minimizing the distance between the best and worst
groups, and Hoover’s concentration index.

To our knowledge, no previous work has studied
the tradeoff between equity and efficiency in home-
land security resource allocation, especially consid-
ering an adaptive adversary. This is an important
gap because considering an adaptive adversary sig-
nificantly changes the way resources are allocated.
Specifically, game-theoretical models generally sug-
gest that resources should be allocated such that the
expected losses (or risks) are equal among each de-
fended target (e.g., see Proposition 3 in the article)
in order for the terrorists to be indifferent between
attacking those targets, which itself is one form of
equity.(17,23) The article fills this gap by developing
a novel model in which a government allocates de-
fensive resources among multiple potential targets,
while reserving a portion of defensive resources (rep-
resented by the equity coefficient) for equal distri-
bution (according to geographical areas, population,
density, etc.). Such a way to model equity is one of
many alternatives (as explained in Section 5.2), but
was directly inspired by homeland security resource
allocation practice. As a follower to the defender, the
attacker observes the defender’s resource allocations
and endogenously chooses attack probabilities.

We investigate five types of equity in this article.
Type-I (per-target) equity is directly inspired by
the practice of homeland security resource alloca-
tion as introduced above. Type-II (per-valuation),
Type-III (per-capita), and Type-IV (per-population
density) equity are considered because critical
infrastructure, population, and population den-
sity are critical factors in homeland security
resource allocation.(24) In particular, per capita
resource allocation inequalities (e.g., $5.03 per capita
in California vs. $37.94 per capita in Wyoming in
2004 resulting from the allocation of the general
grants1) are broadly criticized by researchers(25)

and news media.(26) Finally, Type-V (per-weighted
capita, based on density-weighted population size)
equity is considered because “density-weighted
population” (as studied in public transit equity(27)),
“is reasonably correlated with the distribution of
terrorist threats across the United States.”(28) Al-
though our model was directly inspired by homeland

1According to Ref. 29, the general grants include those from the
Office for Domestic Preparedness (ODP), the Federal Emer-
gency Management Agency (FEMA) and the Transportation Se-
curity Administration (TSA), and offices of the Department of
Health and Human Services (HHS).
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security resource allocation practice at the state
level, it is important to note that all the above
five types of equity could be applied at the
state / district / county / city / territory / tribe / town
levels. We also acknowledge that the choice of such
specific levels where defensive resources are allo-
cated for equity concerns have a profound impact
on how equity is viewed and on how resources are
allocated. Finally, we recognize that other forms
of equity could be modeled in homeland security,
such as defending against different types of threats
(e.g., biological terrorist attacks vs. dirty bombs), as
explained in details in Section 5.2.

The rest of the article is structured as follows.
Section 2 presents notation, assumptions, model
formulation, and data sources. Section 3 provides
the analytical solution to our equity-constrained
optimization model, an algorithm, and some nu-
merical illustrations. Section 4 conducts extensive
sensitivity analyses of optimal defensive resource al-
locations and the corresponding expected losses with
regards to three system parameters (type of equity,
cost effectiveness of defense, and total budget). Sec-
tion 5 concludes. The Appendix provides proofs of
the propositions in the article and the optimality
check for Proposition 3.

2. NOTATION, ASSUMPTIONS, MODEL,
AND DATA

2.1. Notation

We use the following notation as listed in
Table I throughout the article, including parameters,
decision variables, sets, functions, and vectors.

2.2. Assumptions and the Model

The strategic interactions between a govern-
ment and an attacker are usually modeled as a se-
quential game.(30) Following this approach, we let
the defender move first by distributing a total bud-
get of C among n targets, such that

∑n
i=1 ci = C.

The attacker then observes the defense distribution
c ≡ (c1, c2, . . . , cn), and attacks target i with condi-
tional probability hi (c), for i = 1, 2, · · · , n, such that∑n

i=1 hi (c) = 1, contingent upon the exogenously de-
termined total probability of attack, r . We assume
that the attacker chooses a target corresponding to
the maximal expected loss pi (ci )vi in his best re-
sponse function. Best response function refers to
strategies that lead to the most preferable outcome

for the player, as a function of other players’ strate-
gies (see Chapter 9,(31)). We assume that when the
maximal expected loss caused by the attacker is the
same for two or more targets, those targets are at-
tacked with equal probabilities,

ĥi (c) =

⎧⎪⎪⎨
⎪⎪⎩

1
||S|| if i ∈ S ≡ {i : hi (c) > 0}

= {
i : pi (ci )vi = max

j=1,···,n
{pj (c j )v j }

}
0 otherwise, (1)

where ||S|| is the cardinality of set S. Note that this as-
sumption is not limiting the results; that is, although
this article assumes that the attacker will attack all
targets with maximal expected loss, Proposition 1 be-
low implies that all the results for the defender still
hold if the attacker chooses any subset of set S to at-
tack.

Proposition 1. If the attacker chooses any subset Q ⊆
S to attack, all the results for the defender’s optimal
objective function value and associated decisions re-
main the same regardless of the value of subset Q.

We acknowledge that there are other factors af-
fecting terrorists’ target choice, such as access to
the target, degree of difficulty/success, and funding.
However, they are relatively minor; for example,
although terrorists in Los Angeles (LA) are more
likely to target LA than New York City (NYC) or
Washington, DC (DC), the transportation costs from
LA to NYC or DC are relatively minor compared to
terrorists’ funding level (e.g., Osama Bin Laden con-
trolled about $300 million worth of fortune;(32)) and
terrorists’ operation costs (e.g., the 9/11/2001 attacks
are estimated to cost as much as a half million dol-
lars(33)). The model also takes into account degree
of difficulty/success in attacking a target by intro-
ducing the success probability function of an attack
pi (ci ), which linearly impacts the expected property
loss of target i , Li ≡ rhi (c)pi (ci )vi . Moveover, the at-
tacker’s funding level could be correlated with total
probability of attack r .

The objective of the government is to minimize
the expected loss L(c, ĥ(c), e) by allocating defensive
resources C employing two parallel schemes such
that a portion (100 × e%) of the total defensive re-
sources is reserved for equal allocations, and the rest
(100 × (1 − e)%) is used for risk-based minimiza-
tion considering the attacker’s best response ĥi (c).
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Table I. Main Notation in this Article

Parameters
C Total budget of the defensive resources
r ∈ [0, 1] Total probability of attack for the attacker
λ ≥ 0 Cost-effectiveness coefficient of defensive investment
n Number of targets in the system
i Index for target i , for i = 1, 2, . . . , n
e ∈ [0, 1] Equity coefficient indicating the reserved portion of the total defense budget
vi Valuation of target i
si Population size of target i
di Population density of target i
wi Density-weighted population size of target i

Decision Variables
c ≡ (c1, c2, · · · , cn). Vector denoting defensive resource allocations
c̃i ≤ ci Government’s reserved defensive resource allocation to target i
c′

i ≡ ci − c̃i . Government’s nonreserved defensive resource allocation to target i
c̃ ≡ (c̃1, c̃2, · · · , c̃n). Vector denoting reserved defensive resources
hi (c) Endogenously determined conditional probability that the attacker will attack target i given an attack,

as a function of c. We have hi (c) ≥ 0, and
∑n

i=1 hi (c) = 1

Sets
D ≡ {i : c′

i > 0 , i = 1, 2, . . . , n}. Set of targets with positive nonreserved defenses
S ≡ {i : hi (c) > 0, i = 1, 2, . . . , n}. Set of targets that is attacked with positive probabilities
Q ⊆ S Any subset of S

Functions and Vectors
pi (ci ) Success probability of an attack on target i , as a function of the defensive resource allocation to target

i , ci . We assume that pi (ci ) is continuous, convex, and decreasing in ci (i.e., ∂pi (ci )
∂ci

≤ 0, ∂2 pi (ci )
∂c2

i
≥ 0)

Ii = 1 if hi (c) > 0; 0 if hi (c) = 0. Indicator function for the event {hi (c) > 0}.
ĥi (c) Attacker’s best response function for target i as a function of c
h(c) ≡ (h1(c), h2(c), . . . , hn(c)). Vector denoting attacker’s probabilities of attacking
ĥ(c) ≡ (

ĥ1(c), ĥ2(c), . . . , ĥn(c)
)
. Vector denoting attacker’s best response

Li (ci , hi (c), e) ≡ rhi (c)pi (ci )vi . Expected loss for target i to the government
L(c, h(c), e) ≡ ∑n

i=1 Li (ci , hi (c), e) = ∑n
i=1 rhi (c)pi (ci )vi . Total expected loss to the government

That is,

min
c

L(c, ĥ(c), e) =
n∑

i=1

r ĥi (c)pi (ci )vi

subject to :
n∑

i=1

ci = C, ci ≥ c̃i ,

(2)

where c̃i , i = 1, . . . , n, is defined to be one of the fol-
lowing five types of equity in Equations (3)–(7), re-
spectively.

Type-I (per-target): c̃i = eC
1
n

(3)

Type-II (per-valuation): c̃i = eC
vi

n∑
i=1

vi
(4)

Type-III (per-capita): c̃i = eC
si

n∑
i=1

si
(5)

Type-IV (per-density): c̃i = eC
di

n∑
i=1

di
(6)

Type-V (per-weighted-capita): c̃i = eC
wi

n∑
i=1

wi
(7)

Note that the three factors r ĥi (c), pi (ci ), and vi

in Equation (2) correspond to threat, vulnerability,
and consequences, respectively. A similar formula of
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these three factors is adopted by the U.S. Depart-
ment of Homeland Security in a standard risk anal-
ysis for terrorist attacks.(34) Note that all five types of
equity equalize how resources are allocated up front
and thus the risk that is actually experienced may not
be equal. However, note that when e < 1 (less-than-
full equity) as to be shown in Proposition 3 in Sec-
tion 3.1, expected property loss for any target belong-
ing to the set of defended targets (with nonreserved
portion of defensive resources) is equal at equilib-
rium.

Inserting the attacker’s best response function
ĥ(c) defined in Equation (1) to Equation (2), we can
rewrite the defender’s objective function as,

L(c, ĥ(c), e) = r max
i=1,···,n

{pi (ci )vi }. (8)

Definition 1. We call a pair of strategies, (h∗, c∗), a
Subgame Perfect Nash Equilibrium (or an equilib-
rium) for the sequential game, if and only if

h∗ = ĥ(c∗) (9)

and

c∗ = argmin
c

L(c, ĥ(c), e) (10)

In other words, h∗ = ĥ(c∗) is calculated by Equa-
tion (1), and c∗ is the solution to the optimization
problem in Equation (2).

2.3. Data Sources

Although this article is inspired by homeland se-
curity resource allocation practice where equity is
achieved at the state level, the model is general and
could be applied to any level (e.g., state, district,
county, city, territory, tribe, and town). Numerical
illustration in this article uses the data set at the
urban-area level. In particular, Willis et al.(28) pro-
vide a useful data set of 47 urban areas for home-
land security target valuations to illustrate defender-
attacker games, where the expected property losses
for the 47 U.S. urban areas are the target valua-
tions (vi s, sorted in descending order in column 3 in
Table II).2 The data are only used to illustrate the
model, and our model could use other data as inputs

2Expected property losses (e.g., $413 Million for New York City)
were calculated in the following way as explained in Ref. 28: “We
used the Risk Management Solutions (RMS) Terrorism Risk
Model [event-based model, see Ref. 35] to calculate expected an-
nual consequences of terrorist attacks . . . Losses were expressed

to generate new results. Note also that the losses in
Table II are potential damages if an attack succeeds
with some probability. The attack may not be suc-
cessful and thus the attack is not always capable of
causing the losses in Table II. For the equity calcu-
lations, we use populations (si ’s), population densi-
ties (di ’s), and density-weighted populations (wi ’s)
for the 47 urban areas(28) as shown in columns 4–6
in Table II. Column 7 in Table II shows the defense
budget allocated to those 47 urban areas from the
Office of Grants and Training in FY2004. Because
the data on expected property losses in Ref. 28 are
from the year of 2004, we use the total FY2004 UASI
Grant Allocations ($675M) as the total available de-
fense budget C in our baseline model.

3. SOLUTION

3.1. Analytic Results and Illustrations

We solve the defender-attacker game formu-
lated in Section 2.2 and provide analytical solution in
this section. In particular, Proposition 2 discusses the
existence and uniqueness of the equilibrium as de-
fined in Definition 1 of Section 2.2, and Proposition 3
presents the equilibrium condition.

Proposition 2. A Subgame Perfect Nash Equilibrium
exists and is unique for the sequential game defined by
Equations (9) and (10).

Proposition 3. First, the objective function in Equa-
tion (2) is convex in c if the strategic attacker uses
his best response function ĥ(c) defined in Equation
(1). Second, given e < 1, consider a pair of strategies,
(h∗, c∗), and the associated variables, L∗

i , and D∗; if
h∗ = ĥ(c∗) and L∗

i equals a positive constant denoted
as W∗ for all i ∈ D∗; i.e.,

L∗
i ≡ rh∗

i pi (c∗
i )vi = W∗, ∀i ∈ D∗, (11)

such a strategy pair, (h∗, c∗), qualifies to be a Subgame
Perfect Nash Equilibrium defined by Definition 1 in
Section 2.2. Third, we have L∗

i ≤ W∗ for all i /∈ D∗.

Remark. Proposition 3 implies that with nonre-
served defensive resources the defender desires to
equalize the expected losses for all the defended tar-
gets. Moreover, such losses are larger than those for

in terms of . . . total property damage in dollars (buildings, build-
ing contents, and business interruption).”
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Table II. Expected Property Losses, Populations, Population Densities, Density-Weighted Populations, and FY2004 UASI Budget
Allocations for 47 Urban Areas in the United States

Expected Property Population Density (per Weighted FY2004 UASI
# Urban Area Loss ($Million vi )† (si )† Square Mile di )† Population (wi )† Allocation ($)‡

1 New York City 413.0 9,314,235 8,159 75,991,762,554 47,007,064
2 Chicago 115.0 8,272,768 1,634 13,519,096,414 34,142,222
3 San Francisco 57.0 1,731,183 1,705 2,951,064,038 26,481,275
4 Washington, D.C. 36.0 4,923,153 756 3,723,526,125 29,301,502
5 Los Angeles 34.0 9,519,338 2,344 22,314,867,674 40,404,595
6 Philadelphia, PA-NJ 21.0 5,100,931 1,323 6,749,136,215 23,078,759
7 Boston, MA-NH 18.0 3,406,829 1,685 5,740,709,241 19,131,723
8 Houston 11.0 4,177,646 706 2,948,039,040 19,955,485
9 Newark 7.3 2,032,989 1,289 2,619,713,383 15,054,101
10 Seattle-Bellevue 6.7 2,414,616 546 1,318,032,823 16,516,007
11 Jersey City 4.4 608,975 13,044 7,943,237,618 17,112,311
12 Detroit 4.2 4,441,551 1,140 5,062,484,593 13,754,597
13 Las Vegas 4.1 1,563,282 40 62,076,079 10,531,025
14 Oakland 4.0 2,392,557 1,642 3,927,449,645 7,854,691
15 Orange County 3.7 2,846,289 3,606 10,262,626,470 25,404,219
16 Cleveland 3.0 2,250,871 832 1,871,707,337 10,460,465
17 San Diego 2.8 2,813,833 670 1,885,205,299 10,479,947
18 Miami 2.7 2,253,362 1,158 2,609,185,020 20,108,247
19 Minneapolis-St. Paul 2.7 2,968,806 490 1,453,687,745 19,146,642
20 Denver 2.5 2,109,282 561 1,183,064,989 8,646,361
21 Baltimore 2.4 2,552,994 979 2,498,144,264 15,918,745
22 Atlanta 2.3 4,112,198 672 2,761,386,037 10,744,248
23 Dallas 2.1 3,519,176 569 2,002,093,120 12,198,661
24 St. Louis 2.1 2,603,607 407 1,060,496,877 10,785,053
25 Portland 2.0 1,918,009 381 731,703,925 8,161,143
26 Phoenix 1.9 3,251,876 223 725,649,640 12,200,204
27 San Jose 1.7 1,682,585 1,304 2,193,476,169 9,982,442
28 Charlotte 1.1 1,499,293 444 665,682,378 7,404,955
29 Kansas City 1.1 1,776,062 329 583,476,273 13,295,646
30 Milwaukee 1.1 1,500,741 1,028 1,542,728,464 10,177,999
31 New Haven 1.1 542,149 1,261 683,670,545 9,632,961
32 Buffalo 1.0 1,170,111 747 873,657,856 10,095,856
33 Pittsburgh 1.0 2,358,695 510 1,202,742,683 11,978,479
34 Cincinnati 0.9 1,646,395 493 811,141,960 12,751,270
35 Tampa 0.9 2,395,997 938 2,247,784,596 9,275,359
36 New Orleans 0.8 1,337,726 394 526,405,217 7,152,827
37 Columbus 0.7 1,540,157 490 755,141,752 8,707,544
38 Indianapolis 0.7 1,607,486 456 733,470,541 10,151,880
39 Sacramento 0.7 1,628,197 399 649,623,296 8,024,926
40 Louisville 0.6 1,025,598 495 507,651,616 8,987,662
41 Orlando 0.6 1,644,561 471 774,794,778 8,765,211
42 Memphis 0.5 1,135,614 378 428,953,952 10,067,477
43 Albany 0.4 875,583 272 237,926,588 6,853,481
44 Richmond 0.4 996,512 338 337,254,906 6,543,378
45 San Antonio 0.4 1,592,383 479 762,291,362 6,301,153
46 Baton Rouge 0.2 602,894 380 229,154,762 7,193,806
47 Fresno 0.2 922,516 114 105,084,482 7,076,396

Total 788.7 122,581,611 58,281 200,768,260,341 675,000,000

Sources: †Ref. 28. ‡Ref. 36.
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all targets without using any nonreserved defensive
resources.

For the rest of the article, following Ref. 30, we
consider an exponential form of success probability
of an attack,

pi (ci ) = exp(−λci ), ∀i = 1, 2, . . . , n, (12)

where λ is the cost-effectiveness of defense. Differ-
entiating Equation (12) with respect to ci , we have
dpi (ci )

dci
= −λpi (ci ), which means that one extra unit of

defensive resources ci will reduce the probability of
a successful attack pi (ci ) by 100λ%. We use the data
set introduced in Section 2.3 to illustrate Proposition
3. In particular, Table III provides three illustrations
when e = 0, 0.2, and 0.4, respectively. (As explained
in Section 1, the way that some homeland security
grants, including SHSP and UASI, allocate funds cor-
responds to e = 0.4 in our model before 2008 and
e = 0.2 after 2008, respectively.) For illustrating pur-
poses, we let λ = 0.01 in Table III. We consider more
general parameter values of λ in Section 4.2.

For Illustration 1, we have e = 0, D∗ = S∗ =
{1, 2, 3, 4, 5, 6}. Therefore, we have the expected
loss for target i : L∗

i = r( I∗
i

||S∗|| )pi (c∗
i )vi = W∗ = 3.47,

for i = 1, 2, · · · , 6, and L∗
7 = L∗

8 = · · · = L∗
47 = 0.00 <

W∗=3.47, which is consistent with Proposition 3.
For Illustration 2, we have e = 0.2, D∗ = S∗ =
{1, 2, 3}. Therefore, we have the expected loss for
target i : L∗

i = r( I∗
i

||S∗|| )pi (c∗
i )vi = W∗ = 26.46, for i =

1, 2, 3, and L∗
4 = L∗

5 = · · · = L∗
47 = 0.00 < W∗=5.29,

which is consistent with Proposition 3. For Illus-
tration 3, we have e = 0.4. D∗ = S∗ = {1, 2}. There-
fore, we have the expected loss for target i : L∗

i =
r( I∗

i
||S∗|| )pi (c∗

i )vi =11.37, for i = 0.4. Appendix A.4
shows the optimality check of the above three illus-
trations.

Using the results from Proposition 3, we further
study the effects of equity coefficient e and the total
probability of attack r on equilibrium solution and
payoff. In particular, Proposition 4 below implies that
the total expected loss increases in equity coefficient;
Proposition 5 discusses three effects of the total prob-
ability of attack.

Proposition 4. L∗(c∗, ĥ(c∗), e) weakly increases in e;
i.e., ∂L∗(c∗,ĥ(c∗),e)

∂e ≥ 0.

Proposition 5. First, the total probability of attack r
does not affect the equilibrium solution c∗ to the de-
fender’s optimization problem (2); second, r linearly

increases the optimal expected loss L∗; third, we have
L∗ = 0 if r = 0.

3.2. Algorithm

In this subsection, we first provide an algorithm
based on Proposition 3 to search for the equilibrium
defensive resource allocations, and then provide a
proposition of convergence. Inserting Equation (12)
into Equation (11), we have,

rh∗
i exp(−λc∗

i )vi = W∗, ∀ i ∈ D∗

⇐⇒ rh∗
i exp(−λc′∗

i )v′
i = W∗, ∀ i ∈ D∗

where v′
i = vi exp(−λc̃i )

⇐⇒ c′∗
i =

ln r + ln h∗
i + ln v′

i − ln W∗

λ
, ∀ i ∈ D∗. (13)

Using the definition of C as shown in Table I, we
have,

C =
n∑

i=1

c∗
i =

n∑
i=1

(c′∗
i + c̃i )

=
n∑

i=1

c∗
i + eC

⇐⇒ (1 − e)C =
∑
i∈D∗

c∗
i +

∑
i /∈D∗

c∗
i =

∑
i∈D∗

c∗
i + 0

=
∑
i∈D∗

ln r + ln h∗
i + ln v′

i − ln W∗

λ

⇐⇒ λ(1 − e)C = ||D∗|| ln r +
∑
i∈D∗

ln h∗
i

+
∑
i∈D∗

ln v′
i −

∑
i∈D∗

ln W∗

⇐⇒ ||D∗|| ln W∗ = ||D∗|| ln r +
∑
i∈D∗

ln h∗
i

+
∑
i∈D∗

ln v′
i − λ(1 − e)C

⇐⇒ W∗ =

exp( ||D∗|| ln r + ∑
i∈D∗ ln h∗

i + ∑
i∈D∗ ln v′

i − λ(1 − e)C
||D∗||

)′

(14)

where ||D∗|| is the cardinality of set D∗.
Based on Equation (14), we develop an algo-

rithm, for which Fig. 1 shows an illustrative diagram,
Table IV presents a detailed description of the steps
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Table III. Three Illustrations for Proposition 3

Illustration 1: e = 0 Illustration 2: e = 0.2 Illustration 3: e = 0.4

# vi c∗
i c̃i pi vi L∗

i c∗
i c̃i pi vi L∗

i c∗
i c̃i pi vi L∗

i

1 413.00 298.75 0.00 20.82 3.47 274.79 2.87 26.46 5.29 249.37 5.74 34.11 11.37
2 115.00 170.90 0.00 20.82 3.47 146.93 2.87 26.46 5.29 121.52 5.74 34.11 11.37
3 57.00 100.71 0.00 20.82 3.47 76.75 2.87 26.46 5.29 51.34 5.74 34.11 11.37
4 36.00 54.75 0.00 20.82 3.47 30.80 2.87 26.46 5.29 5.74 5.74 33.99 0.00
5 34.00 49.04 0.00 20.82 3.47 25.08 2.87 26.46 5.29 5.74 5.74 32.10 0.00
6 21.00 0.86 0.00 20.82 3.47 2.87 2.87 20.40 0.00 5.74 5.74 19.83 0.00
7 18.00 0.00 0.00 18.00 0.00 2.87 2.87 17.49 0.00 5.74 5.74 17.00 0.00
8 11.00 0.00 0.00 11.00 0.00 2.87 2.87 10.69 0.00 5.74 5.74 10.39 0.00
...

...
...

...
...

...
...

...
...

...
...

...
...

...
47 0.20 0.00 0.00 0.20 0.00 2.87 2.87 7.09 0.00 5.74 5.74 0.19 0.00

Total 782.00 675.00 0.00 237.63 20.82 675.00 135.00 255.69 26.46 675.00 270.00 288.34 34.11

D∗ {1, 2, 3, 4, 5, 6} {1, 2, 3, 4, 5} {1, 2, 3}
S∗ {1, 2, 3, 4, 5, 6} {1, 2, 3, 4, 5} {1, 2, 3}
W∗ 3.47 5.29 11.37

S1 

Return 
c* & h* 

S2 S3(b) S3(d) C1 C2 
S3(a) Yes 

No No 

Yes 

S3(c) 

S4 

Fig. 1. Illustrative diagram for the algorithm when equity is considered.

Table IV. Description of Steps and Conditions in the Algorithm Shown in Fig. 1

S1 Let D = {1, 2, . . . , n}, S = {1, 2 . . . , n} and I = {1, 1, . . . , 1}; replace vi with v′
i = vi exp(−λc̃i ).

S2 Solve for W using Equation (14).

S3 (a) Identify such index j(’s) satisfying C1 with smallest v′
j . Let c′

j = 0. Delete j(’s) from set D.
(b) Let c′

j = 0 and delete j(’s) from set D.

(c) Update c′
j = 1

λ

[
ln

(
r

Ij
||S||

)
+ ln v′

j − ln W
]
, ∀ j ∈ D.

(d) Update sets S and I .

S4 Calculate c∗
i = c′∗

i + c̃i , ∀i ∈ D.

C1 There exists some index j ∈ D such that v′
j h j ≤ W.

C2 Ij = 0, ∀ j ∈ D.

and conditions, and Proposition 6 provides results on
convergence and computational complexity.

Proposition 6. The algorithm provided by Fig. 1 and
Table IV in Section 3.2 always converges to an equi-
librium defined by Definition 1 in Section 2.2. The

algorithm requires O(n2) computations, where n is the
number of targets in the system.

4. SENSITIVITY ANALYSES

For the sensitivity analyses, we adopt the follow-
ing baseline parameter values: Type-I (per-target)
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equity, λ = 0.01 (as used in Table III), and C=$675M
(UASI total budget for FY 2004 as shown in Ta-
ble II). We study the sensitivity analysis for each of
the three parameters in Sections 4.1, 4.2, and 4.3, re-
spectively.

4.1. Sensitivity Analysis of Five Types of Equity

Using the data set introduced in Section 2.3 and
the algorithm provided in Section 3.2, we solve for
the optimal defensive resource allocations at equi-
librium with different values of e. We study five
types of equity as defined by Equations (3)–(7) in
Section 2.2: (I) per-target equity; (II) per-valuation
equity (where target valuations equal expected prop-
erty losses); (III) per-capita equity; (IV) per-density
equity; and (V) per-weighted-capita equity.

As shown in Fig. 2(I1), where the defender em-
ploys Type-I (per-target) equity: if e = 0 (i.e., no
consideration of equity), the defender allocates re-
sources to the top six valuable targets. As e increases
(i.e., more equal distribution is implemented), more
targets will be defended, and eventually all 47 tar-
gets are equally defended when e = 1. If e = 0, the
expected property loss is $20.82M and increases
convexly in e and eventually becomes $357.75M as
shown in Fig. 2(I2). Similar patterns in resource allo-
cations and the corresponding expected property loss
are observed in Figs. 2(II1-II2, III1-III2, IV1-IV2, V1-
V2), where Type-II to Type-V equity types are em-
ployed, respectively.

Comparing across five equity types shown in
Figs. 2(I)–(V), we find that: (1) employing different
types of equity results in different optimal defensive
resource allocations, and the cost of equity increases
convexly in equity coefficient e for all five types; (2)
Type-II (per-valuation) equity yields the lowest ex-
pected property loss for any given equity coefficient;
and (3) Type-I (per-target) equity results in the high-
est expected property loss.

4.2. Sensitivity Analysis of Cost-Effectiveness
of Defense

In this subsection, we conduct sensitivity analysis
with regard to the cost effectiveness of defense λ. As
the cost effectiveness of defense increases from 0.001
in Fig. 3(a) to 0.01 in Fig. 3(b) and to 0.05 in Fig. 3(c),
more valuable urban areas are defended (e.g., when
e = 0 from 1 to 6 and to 25, respectively) and the ex-
pected property loss decreases (e.g., when e = 0 from
$210.28M to $20.82M and to $1.92M, respectively;

and when e = 1 from $401.31M to $309.89M and to
$98.23M, respectively). This comparison implies that
higher defense effectiveness leads to lower cost of eq-
uity, and more targets to be defended given any level
of equity.

4.3. Sensitivity Analysis of Total Budget

In this subsection, we conduct sensitivity analysis
with regard to total defense budget. As defense bud-
get C increases from $100M in Fig. 4(a) to $675M in
Fig. 4(b) and to $3000M in Fig. 4(c), more top valu-
able urban areas are defended (e.g., when e = 0 from
1 to 6 and to 45, respectively) and the corresponding
expected property loss decreases (e.g., when e = 0
from $151.93M to $20.82M and to $0.30M, respec-
tively; and when e = 1 from $395.79M to $309.88M
and to $5.86M, respectively). This comparison im-
plies that higher defense budget leads to lower cost
of equity, and more targets to be defended given any
level of equity.

5. CONCLUSION AND DISCUSSION

5.1. Conclusion and Policy Implications

Equity constitutes a major practical and politi-
cal concern in allocation of public resources, includ-
ing defensive resources. To the best of our knowl-
edge, no prior study has investigated equity issues
in homeland security resource allocations when fac-
ing a strategic attacker. In this article, we develop a
novel model where a certain portion (represented by
an equity coefficient) of the total defense budget is
reserved for equity distribution. We investigate the
manner that optimal defensive resource allocations
change as a function of such equity coefficient. We
find that the cost of equity (increased expected loss)
increases convexly in the equity coefficient for all five
possible equity types, and the per-valuation and per-
target equity results in the lowest and highest ex-
pected losses, respectively.

Our results show that high defense cost-
effectiveness or large defense budget may compen-
sate for a small portion of resources reserved for eq-
uity allocations. That is, if the defender has a higher
cost-effective defensive system or a larger budget,
the defender can afford higher level of equity by
reserving more resources for equity allocations. On
the other hand, the defender needs to be cautious
in reserving defensive resources for equity allocation
when the budget is low or the defensive investments
are not effective.



1092 Shan and Zhuang

0 0.5 1
0

0.5

B
ud

ge
t A

llo
ca

tio
ns

 (
10

0%
)

E
xp

ec
te

d 
P

ro
pe

rt
y 

Lo
ss

 (
$M

)
E

xp
ec

te
d 

P
ro

pe
rt

y 
Lo

ss
 (

$M
)

E
xp

ec
te

d 
P

ro
pe

rt
y 

Lo
ss

 (
$M

)
E

xp
ec

te
d 

P
ro

pe
rt

y 
Lo

ss
 (

$M
)

E
xp

ec
te

d 
P

ro
pe

rt
y 

Lo
ss

 (
$M

)

B
ud

ge
t A

llo
ca

tio
ns

 (
10

0%
)

B
ud

ge
t A

llo
ca

tio
ns

 (
10

0%
)

B
ud

ge
t A

llo
ca

tio
ns

 (
10

0%
)

B
ud

ge
t A

llo
ca

tio
ns

 (
10

0%
)

1

New York City

Chicago

(I
1
) per−target

0 0.5 1
0

0.5

1

New York City

Chicago

(II
1
) per−valuation

0 0.5 1
0

0.5

1

New York City

Chicago

(III
1
) per−capita

0 0.5 1
0

0.5

1

New York City

Chicago

(IV
1
) per−density

0 0.5 1
0

0.5

1

New York City

Chicago

Equity Coefficient (e)

(V
1
) per−weighted−capita

0 0.5 1
0

200

400
(I

2
)

0 0.5 1
0

200

400
(II

2
)

0 0.5 1
0

200

400
(III

2
)

0 0.5 1
0

200

400
(IV

2
)

0 0.5 1
0

200

400

Equity Coefficient (e)

(V
2
)

Budget Allocation Expected Loss ($M)

Fig. 2. Optimal defensive resource allocations (c) and the consequent expected property loss (L(c, ĥ(c), e)) as a function of equity coefficient
(e) increasing from 0 to 1 with five types of equity: Type-I (per-target), Type-II (per-valuation), Type-III (per-capita), Type-IV (per-density)
and Type-V (per-weighted-capita).

There are potential policy implications. In par-
ticular, this article provides a tool where equity coef-
ficient is a tunable parameter, and illustrates a com-
plete Pareto frontier of the equity-efficiency tradeoff
in the face of a strategic attacker. The decisionmaker
could choose an appropriate (equity, efficiency) pair,
based on her own individual preferences. Because

our results show that the cost of equity increases con-
vexly in equity coefficient, equity consideration in
the middle of the coefficient range would likely lead
to a reasonable balance between cost and equity in
practice. The exact “optimal level” of equity would
depend on factors such as budget, cost-effectiveness
of defense, and tolerance of expected loss.
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Fig. 3. Optimal defensive resource allocations (c) and the consequent expected property loss (L(c, ĥ(c), e)) as a function of equity coefficient
(e) increasing from 0 to 1 with λ=0.001, 0.01, and 0.05, respectively, when the defender employs Type-I (per-target) equity and C =$675M.

5.2. Future Research Directions

Although the article studies equity in spending
and reserving resources defending over targets (e.g.,
urban areas), there are various alternative methods
to model equity in defensive resource allocations.
For example, equity could be modeled in balanc-
ing defenses against biological attacks versus dirty
bomb attacks, or between terrorism and nonterror-
ism prevention activities. For example, the 9/11 Com-
mission Act of 2007 requires that at least 25% of
total available grant (including SHSG, UASI, and
Citizens Corps Program) is used for terrorism pre-
vention activities,(37) though such reservation level
(currently 25%) could be dynamically optimized con-
sidering factors such as (estimated) cost-effectiveness
of defense, defense budget, and the “costs” of such
reservation.

There are several other interesting future re-
search directions. In particular, most game-theoretic
models developed for analyzing resource alloca-
tions in homeland security only concern single-
period games with increasing interests in multi-
period games.(38−41) As a first step toward tackling
the equity issue in defensive resource allocations,
we focus on a one-period game. However, when
the centralized defender allocates resources over
time, the history of resource allocations should be
taken into account to achieve equity over time (e.g.,

more allocation to targets A over B in previous pe-
riods would lead to more allocation to targets B
over A in the next period under a potential con-
sideration of over-time equity). Moreover, in terms
of policy making, the implications of switching be-
tween equity-based policy and nonequity-based pol-
icy would be interesting to pursue to understand
effects of equity in cumulative defensive resource al-
locations. Therefore, more research on equity issues
in multi-period games is of interest, where each pe-
riod need not be a year although in practice budgets
are managed annually.

For simplicity, this article assumed complete in-
formation, though in practice, the defender still de-
cides upon defense investments with incomplete in-
formation of effectiveness. For example, it may take
time for the defense measures to be effective and
the defender may even never know how effective the
security investments are. Further research could in-
vestigate the defender’s optimal allocation decisions
with equity consideration in a game of incomplete
information, including the information about cost-
effectiveness of defense.

Although the defender and the attacker could
value targets similarly, a relaxation of the assumption
of common target valuation would be an interest-
ing direction to explore. In particular, an equity
model could be studied with multi-attribute and
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Fig. 4. Optimal defensive budget allocations (c) and the consequent expected property loss (L(c, ĥ(c), e)) as a function of equity coefficient
(e) increasing from 0 to 1 when C=$100M, $675M, and $3000M, respectively, when the defender employs Type-I (per-target) equity and
λ = 0.01.

multi-objective utility functions for both at-
tacker(42,43) and defender.(44) Other forms of
success probability function of attack could also be
studied.(45) Moreover, a more complicated game with
equity constraints considering the strategy of decep-
tion and secrecy,(39,46) could be explored, especially
when the defender could have private information
such as target valuations and cost-effectiveness of de-
fense. Finally, the case where defensive investments
decrease both the consequences and the probability
of a successful attack could be explored.
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APPENDIX

A.1. PROOF FOR PROPOSITION 1

If the attacker chooses any subset Q of S to
attack, the best response function for the attacker
becomes the following:

ĥi (c) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
||Q|| if i ∈ Q ⊆ S ≡ {i : hi (c) > 0}

= {
i : pi (ci )vi = max

j=1,···,n
{pj (c j )v j }

}
0 otherwise,

(15)

where ||Q|| is the cardinality of set Q. Inserting
Equation (15) into objective function Equation (2),
we have:

minc L(c, ĥ(c), e) = r
n∑

i=1

ĥi (c)pi (ci )vi

= r
∑
i∈Q

ĥi (c)pi (ci )vi

= r
∑
i∈Q

1
||Q|| max

i=1,...,n
{pi (ci )vi }

= r max
i=1,···,n

{pi (ci )vi }. (16)
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Note that Equation (16) is identical to Equation (8),
which is equivalent to objective function Equation
(2). Therefore, the defender’s optimization problem
remains the same by allowing the attacker to choose
any subset Q of S to attack, and all the results for the
defender’s utility and allocation remain the same re-
gardless of subset Q. If the attacker chooses any sub-
set Q ⊆ S to attack, all the results for the defender’s
optimal objective function value and associated deci-
sions remain the same regardless of the value of sub-
set Q.

A.2. PROOF FOR PROPOSITION 2

To prove Proposition 2 in the article, we first pro-
vide and prove Lemma 1.

Lemma 1. L(c, ĥ(c), e) given in Equation (8) is con-
tinuous and convex in c.

Proof for Lemma 1. As we assume that
pi (ci ) is continuous and convex in ci for all i ,
maxi=1,···,n{pi (ci )vi } is continuous and convex in c,
because the scaled continuous and convex function
and the max of continuous and convex functions
are also continuous and convex. Because the linear
combination of the continuous and convex functions
pi (ci )vi is continuous and convex, L(c, ĥ(c), e) is con-
tinuous and convex.

Remarks. Note that we assume that the defender
and the attacker have the same target valuations vi s.
If that does not hold, the objective function as de-
fined in Equation (8) is not continuous. One can con-
struct an example where the objective function for
the defender is discontinuous. For example, targets
1 and 2 are of value 300 and 200 to the defender
and value 299.99 and 300 to the attacker. When the
defender increases the defense to target 2 by such
a small amount, the attacker will attack target 1 in-
stead. The expected payoff for the attacker changes
continuously whereas the expected payoff for the
defender changes discontinuously. By assuming the
same target valuations, the game is zero-sum and
both the defender’s and the attacker’s payoffs change
continuously in c.

The existence of the equilibrium follows from
Lemma 1 and the fact that the set of feasible de-
fender strategies is compact and convex, and the at-
tacker’s best response function is assumed, using the
existence theorem for a pure-strategy Nash equili-
brium.(47) Note that Theorem 1 in Dasgupta-Maskin
(1986) deals with a game where the players maxi-

mize their utilities, while a minimization game for
the defender is coped with in this article. The equiva-
lence between quasi-concavity of the objective func-
tion for maximization problem and quasi-convexity
of the objective function for minimization problem
complete the proof (from Lemma 1, the objective
function as defined in Equation (2) is convex).

The uniqueness of the equilibrium follows from
Lemma 1 and the fact that the set of feasible defender
strategies is compact and convex because a continu-
ous and convex function obtains a unique minimal
point on a compact and convex set.

A.3. PROOF FOR PROPOSITION 3

First, given that we assume that pi (ci ) is convex
in ci for all i , maxi=1,···,n{pi (ci )vi } must also be convex
in c because the scaled convex function is convex and
the max of convex functions is also convex.

Second, because the defender’s objective func-
tion in Equation (2) is convex in c, any local mini-
mum must also be global minimum. We now show
that c∗ is the equilibrium (global) solution by show-
ing that any local changes from c∗ will not decrease
the value of the objective function. In particular, if
L∗

i ≡ A∗
i pi (c∗

i )vi = W∗ > 0, ∀ i ∈ D∗, where W∗ is a
constant, we have that (h∗, c∗) is the equilibrium de-
fined by Definition 1 in Section 2.2. Because we have
h∗ = ĥ(c∗), we only need to show Equation (10) is
satisfied; i.e., c∗ = argmin

c L(c, ĥ(c), e). Note that c∗
i =

c′∗
i + c̃i , ∀i , and c̃i can be treated as a constant for

any given e and type of equity employed. Therefore,
identifying c∗ is equivalent to identifying c′∗.

If e = 1, the solution c∗ would most likely not be
the equilibrium solution because c∗ is obtained with-
out considering the objective function Equation (2).
Therefore, e < 1 is a required condition for Propo-
sition 3 to hold. For any given e < 1, note that set
D∗ = S∗.

For any targets i and j , suppose c∗
i > c̃i ,

and c∗
j > c̃ j in any particular solution c∗, and

we have L∗
i ≡ h∗

i pi (c∗
i )vi = ( r I∗

i
||S∗|| )pi (c∗

i )vi , ∀i ∈ D∗,
L∗

j ≡ h∗
j pj (c∗

j )v j , ∀ j ∈ D∗, j = i . We want to show
that if a positive constant W∗ = L∗

i = L∗
j , ∀ i ∈ D∗,

∀ j ∈ D∗, j = i , Equation (10) is satisfied. There are
two subcases:

(1) If we increase c∗
i by a small ε > 0, i ∈ D∗,

and decrease c∗
j by ε, j ∈ D∗, j = i . Then

h∗
i becomes 0 and h∗

j becomes 1 and S∗

becomes { j} and the change of the total
expected loss is: �L∗(c∗, ĥ(c∗), e) = pj
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(c∗
j − ε)v j − pj (c∗

j )v j = W∗(
pj (c∗

j −ε)
pj (c∗

j )
− 1) > 0,

using Equation (11) and the assumption
∂pi (ci )

∂ci
< 0.

(2) If we decrease c∗
i by a small ε > 0, for i ∈ S∗,

and increase c∗
j by ε, j ∈ S∗, j = i . Then h∗

i
becomes 1 and h∗

j becomes 0 and S∗ becomes
{i} and the change of the total expected loss is:
�L∗(c∗, ĥ(c∗), e) = pi (c∗

i − ε)vi − pi (c∗
i )vi =

W∗( pi (c∗
i −ε)

pi (c∗
i ) − 1) > 0, using Equation (11) and

the assumption ∂pi (ci )
∂ci

< 0.

In summary, all possible deviations from the so-
lution c∗ increase the expected loss, and thus we
have c∗ = argmin

c L(c, ĥ(c), e). From Equation (1), we
have h∗ = ĥ(c∗). Therefore, according to Definition
1, both Equations (9) and (10) are satisfied and thus
(h∗, c∗) is the equilibrium defined by Definition 1 in
Section 2.2.

Second, we show the second part of Proposi-
tion 3; that is, we have if an equilibrium (h∗, c∗) de-
fined by Definition 1 in Section 2.2 is reached, L∗

i ≡
h∗

i pi (c∗
i )vi ≤ W∗ ∀i /∈ D∗.

For any targets i and j , suppose c∗
i = c̃i , c∗

j >

c̃ j , for one particular solution c∗, and we have
L∗

i ≡ h∗
i pi (c∗

i )vi = ( r I∗
i

||S∗|| )pi (c∗
i )vi , ∀i /∈ D∗ and L∗

j ≡
h∗

j pj (c∗
j )v j = (

r I∗
j

||S∗|| )pj (c∗
j )v j , ∀ j ∈ D∗. If L∗

i ≤ L∗
j , c∗

i

cannot be decreased by reallocating defensive re-
sources from targets i to j , thus W∗ ≡ L∗

j ≥ L∗
i . In

contrast, if L∗
i > L∗

j = W∗, hi becomes 1 while h j be-
comes 0, which is a contradiction to the assumption
that i /∈ D∗. Therefore, L∗

i > L∗
j = W∗ ∀i /∈ D∗, j ∈

D∗ is not possible in equilibrium and thus L∗
i ≤ L∗

j =
W∗ ∀i /∈ D∗, j ∈ D∗.

A.4. OPTIMALITY CHECK OF THREE
ILLUSTRATIONS FOR PROPOSITION 3

For all three illustrations, we consider two sce-
narios of reallocation, and observe that both reallo-
cations increase the expected loss.

Illustration 1 (e = 0):

(i) Suppose that the defender reallocates one
unit of defensive resources from targets 1
to 2 (both in set D∗). This will decrease c∗

1
from 298.75 to 297.75, and increase c∗

2 from
170.90 to 171.90. Thus, p1(c∗

1)v1 increases from
20.82 to 21.03, while p2(c∗

2)v2 decreases from
20.82 to 20.61. Therefore, target 1 becomes
the only target attracting the attacker and we

have higher total expected loss (L∗ = 21.03,
increased from 20.82), which means that this
reallocation is not optimal.

(ii) Suppose that the defender reallocates one
unit of defensive resources from targets 1
(in set D∗) to 7 (outside set D∗). This will
decrease c∗

1 from 298.75 to 297.75, and in-
crease c∗

7 from 0.00 to 1.00. Thus, p1(c∗
1)v1

increases from 20.82 to 21.03, while p7(c∗
7)v7

decreases from 18.00 to 17.82 without suf-
fering from any attacks because after the
increase in c∗

7, target 7 becomes even more
unattractive to the attacker. Therefore, target
1 becomes the only target attracting the
attacker and we have higher total expected
loss (L∗ = 21.03, increased from 20.82),
which means that this reallocation is not
optimal.

Illustration 2 (e = 0.2):

(i) Suppose the defender reallocates one unit of
defensive resources from targets 1 to 2 (both
in set D∗). This will decrease c∗

1 from 274.79 to
273.79, and increase c∗

2 from 146.93 to 147.93.
Thus, p1(c∗

1)v1 increases from 26.46 to 26.72,
while p2(c∗

2)v2 decreases from 26.46 to 26.20.
Therefore, target 1 becomes the only target
attracting the attacker and we have higher to-
tal expected loss (L∗ = 26.72, increased from
26.46), which means that this reallocation is
not optimal.

(ii) Suppose the defender reallocates one unit
of defensive resources from targets 1 (in set
D∗) to 6 (outside D∗). This will decrease
c∗

1 from 274.79 to 273.79, and increase c∗
6

from 2.87 to 3.87. Thus, p1(c∗
1)v1 increases

from 26.46 to 26.72, while p6(c∗
6)v6 decreases

from 20.41 to 20.20 without suffering from any
attacks because after the increase in c∗

4, target
6 becomes even less attractive to the attacker.
Therefore, target 1 becomes the only target at-
tracting the attacker and we have higher to-
tal expected loss (L∗ = 26.72, increased from
26.46), which means that this reallocation is
not optimal.

Illustration 3 (e = 0.4):

(i) Suppose the defender reallocates one unit of
defensive resources from targets 1 to 2 (both
in set D∗). This will decrease c∗

1 from 249.37 to
248.37, and increase c∗

2 from 121.52 to 122.52.
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Thus, p1(c∗
1)v1 increases from 34.11 to 34.46,

while p2(c∗
2)v2 decreases from 34.11 to 33.77.

Therefore, target 1 becomes the only target
attracting the attacker and we have higher to-
tal expected loss (L∗ = 34.46, increased from
34.11), which means that this reallocation is
not optimal.

(ii) Suppose the defender reallocates one unit of
defensive resources from targets 1 (in set D∗)
to 4 (outside D∗). This will decrease c∗

1 from
249.37 to 248.37, and increase c∗

4 from 5.74 to
6.74. Thus, p1(c∗

1)v1 increases from 34.11 to
34.46, while p3(c∗

3)v3 decreases from 33.99 to
33.65 without suffering from any attacks be-
cause after the increase in c∗

4, target 4 becomes
even less attractive to the attacker. Therefore,
target 1 becomes the only target attracting the
attacker and we have higher total expected
loss (L∗ = 34.46, increased from 34.11),
which means that this reallocation is not
optimal.

A.5. PROOF FOR PROPOSITION 4

In the proof, L(c, ĥ(c), e) could be simplified to
L(e) as we assume that other system parameters are
fixed. Recall that the following five types of equity
are considered in the article.

Type-I (per-target): c̃i = eC
1
n

Type-II (per-valuation): c̃i = eC
vi∑n
i=1 vi

Type-III (per-capita): c̃i = eC
si∑n
i=1 si

Type-IV (per-density): c̃i = eC
di∑n
i=1 di

Type-V (per-weighted-capita): c̃i = eC
wi∑n
i=1 wi

For any given L∗(e), the feasible set C (e) =
{(c1, c2, · · · , cn) :

∑n
i=1 ci = C, ci ≥ c̃i∀i}. If e1 > e2 ≥

0, we must have C (e1) ⊆ C (e2) because c̃1 > c̃2 for all
five types of equity. Because the feasible region for
e1 is smaller than that for e2, we must have L∗(e1) ≥
L∗(e2) for the minimization problem. Therefore, we
proved that L∗(e) weakly increases in e. That is,
∂L∗(e)

∂e ≥ 0.

A.6. PROOF FOR PROPOSITION 5

First, note the total probability of attack
r does not affect the feasible region. Given
the alternative formulation in Equation (8),
r does not affect maxi=1,...,n pi (ci )vi . Minimiz-
ing over r maxi=1,...,n pi (ci )vi is equivalent to
maxi=1,...,n pi (ci )vi and thus r does not affect the op-
timal solution c∗. Second, we show that the optimal
objective function value increases linearly with r .
We can treat maxi=1,...,n pi (c∗

i )vi as a constant with
regard to r . Therefore, the optimal objective function
value increases linearly with r . Third, directly from
Equation (8), we have that L∗ = 0 if r = 0.

A.7. PROOF FOR PROPOSITION 6

In this proof, we first show that the algorithm
provided in Section 3.2 will always converge. Then
we show that the algorithm will converge to the equi-
librium solution c∗ defined by Definition 1 in Sec-
tion 2.2.

To show convergence of the entire algorithm, we
note that the algorithm contains one loop as shown in
Fig. 1 in Section 3.2, which is formed by S2, S3, C1, and
C2. Step S3 deletes index j satisfying v j Aj ≤ W (in
Condition C1) or Ij = 0 (in Condition C2) from set
D (i.e., set of targets to be defended). Now we claim
that the algorithm always converges because (a) only
deletions and no additions are allowed for modifica-
tion of set D, (b) the defender will defend at least
one target, and (c) there are finite number of poten-
tial targets in set D (≤ n). Therefore, the algorithm
always converges.

Second, we show that this converging algorithm
always converges to the equilibrium solution c∗ de-
fined by Definition 1 in Section 2.2. To reach the
equilibrium solution c∗, the algorithm needs to find
set D∗ (Step S3 (a–b)) and W∗ (Step S2). The algo-
rithm proceeds as follows: in Step S1, the algorithm
initializes sets D, S, and I to include all n targets and
replace vi with v′

i exp(−λc̃i ). Then Step S2 calculates
a suboptimal W with hi = r Ii

||S|| according to Equa-
tion (14). Note that W is always smaller than W∗.
This is because (a) in Equation (14), the denomina-
tor becomes smaller after each iteration (i.e., the size
of set D decreases as js are deleted from set D), (b)
in Equation (13), the numerator becomes larger as
a result of

∑
i∈D ln hi = ∑

i∈D ln( r Ii
||S|| ) increasing at a

faster rate than the decreasing rate of
∑

i∈D ln v′
i . Af-

ter each iteration,
∑

i∈D ln v′
i only decreases slightly

because only indices js with smallest v′
j are deleted,
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while set S shrinks quickly and thus hi = ( r Ii
||S|| ) in-

creases significantly.
The loop will be repeated and D, W, and c′ will

be updated until Condition C1 is no longer satisfied.
Then D∗, W∗, and c′∗ are obtained. As Condition C1

is not satisfied, all c′∗
i ’s for i ∈ D∗ are positive as seen

from Equation (13) (i.e., c′∗
i = ln h∗

i +ln v′
i −ln W∗

λ
,∀ i ∈

D∗) and also L∗
i = h∗

i pi (c′∗
i )x′

i = W∗, ∀i ∈ D∗. Step
S4 calculates c∗ = c∗ + c̃i . According to Proposition
3, as L∗

i = h∗
i pi (c∗

i )vi = h∗
i pi (c′∗

i )v′
i = W∗, (h∗, c∗) is

a possible equilibrium defined by Definition 1 in
Section 2.2. Therefore, the algorithm arrives at c∗,
which is the equilibrium solution to the optimization
problem (2).

As shown in Fig. 1, the algorithm employs 1 loop
(Steps S2 and S3 and Condition C1 and C2). Within
Step S3, Condition C2 needs be checked for up to n −
1 indices in set D, and each of S3(a), S3(b or c, paral-
lel), and S3(d) requires up to n computations. Thus,
Step 3 requires a total of at most (n − 1) + 3n = 4n −
1 computations. On the other hand, this loop requires
the sum of at most n − 1 iterations (checking Con-
dition C1) of looping Step 3, and n additional com-
putations in S4 when C1 is not satisfied. Therefore,
at most (4n − 1)(n − 1) + n = 4n2 − 4n + 1 compu-
tations will be needed. Therefore, the algorithm
requires O(n2) computations to find the optimal
solution c∗.
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33. del Cid Gómez JM, Miguel J. A financial profile of the ter-
rorism of Al Qaeda and its affiliates. Perspectives on Terror,
2010; 4(4):3–27.

34. Cox LA. Game theory and risk analysis. Risk Analysis, 2009;
29(8):1062–1068.

35. Risk Management Solutions. Managing terrorism
risk. Newark, CA: Risk Management Solutions, 2003
[cited 2012 Sep 20]. Available at: http://www.rms.
com/publications/terrorism risk modeling.pdf. Accessed
October 10, 2012.

36. U.S. Department of Homeland Security. Fiscal Year
2004 Urban Areas Security Initiative Grant Program.
2004 [cited 2012 Sep 20]. Available at: http://web.archive.
org/web/*/http://www.ojp.usdoj.gov/odp/docs/fy04uasi.pdf.
Accessed October 10, 2012.

37. Public Law 110-53. Public law 110-53 — Implementing recom-
mendations of the 9/11 Commission Act of 2007. [cited 2012
Sep 20]. Available at: http://www.gpo.gov/fdsys/pkg/PLAW-
110publ53/content-detail.html. Accessed October 10, 2012.

38. Wang C, Bier VM. Impact of intelligence on target-hardening
decisions based on multi-attribute terrorist utility. HST’09.
IEEE Conference on Technologies for Homeland Security,
2010; 373–380.

39. Zhuang J, Bier VM., Alagoz O. Modeling secrecy and
deception in a multiple-period attacker-defender signaling
game. European Journal of Operational Research, 2010;
203(2):409–418.

40. Hausken K, Zhuang J. Defending against a terrorist who
accumulates resources. Military Operations Research, 2011;
16(1):21–39.

41. Hausken K, Zhuang J. Governments’ and terrorists’ defense
and attack in a T-period game. Decision Analysis, 2011;
8(1):46–70.

42. Keeney RL. Modeling values for anti-terrorism analysis. Risk
Analysis, 2007; 27(3):585–596.

43. Wang C, Bier VM. Target-hardening decisions based on
uncertain multiattribute terrorist utility. Decision Analysis,
2011; 8(4):286–302.

44. Keeney RL, von Winterfeldt D. A value model forevaluating
homeland security decisions. Risk Analysis, 2011; 31(9):1470–
1487.

45. Skaperdas S. Contest success functions. Economic Theory,
1996; 7(2):283–290.

46. Zhuang J, Bier VM. Reasons for secrecy and deception in
homeland-security resource allocation. Risk Analysis, 2010;
30(12):1737–1743.

47. Dasgupta P, Maskin E. The existence of equilibrium in dis-
continuous economic games, I: Theory. Review of Economic
Theory, 1986; 53(1):1–26.


