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Appendix

Appendix A: Proofs

In order to prove theorems in the paper, we first provide and prove Lemma 1.

Lemma 1 L(c, ĥ(c), h′, q) in Equation (11) is continuous and strictly convex in c.

Proof for Lemma 1: Since we assume that pi(ci) is continuous and strictly convex in ci

for all i, max
i=1,··· ,n

{pi(ci)xi} is continuous and strictly convex in c, since the scaled continuous

and strictly convex function and the max of continuous and strictly convex functions are

also continuous and strictly convex. Similarly, (1−q)
n∑
i=1

h′ipi(ci)xi is continuous and strictly

convex in c, since the linear combination of the continuous and strictly convex functions

pi(ci)xi’s is continuous and strictly convex. Finally, the summation of the two continuous

and strictly convex functions is continuous and strictly convex.

Remarks: Note that we assume that the defender and the attacker have the same target

valuations xi’s. If that does not hold, the objective function as defined in Equation (11) is

not continuous. One can construct an example where the objective function for the defender

is discontinuous. For example, targets 1 and 2 value 200 and 100 to the defender and value

199.99 and 200 to the attacker. When the defender increases the defense to target 2 by

such a small amount that the attacker will attack target 1 instead. The expected payoff

for the attacker changes continuously while the expected payoff for the defender changes

discontinuously. By assuming the same target valuations, the game is zero-sum and both the

defender’s and the attacker’s payoffs change continuously in c. If the target valuations differ

for the defender and attacker, then the expected loss of the defender becomes pk(ck)xk where

k ∈ argmax
i

pi(ci)yi with yi’s being the attacker’s values, which needs not be continuous.
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A.1 Proof for Theorem 1

The existence of the equilibrium follows from Lemma 1 and the fact that the set of feasible

defender strategies is compact and strictly convex, and the strategic attacker’s best response

function is assumed, using the existence theorem for a subgame perfect Nash equilibrium

(see Kuhn, 1953; Selten, 1965, 1975). Note that in those games the players maximize their

utilities, while this paper deals with a game where the defender minimizes expected loss-

es. Results from a maximization game assuming quasiconcave objective function would be

equivalently applied to a minimization game assuming quasiconvex objective function.

The uniqueness of the equilibrium follows from Lemma 1 and the fact that the set of

feasible defender strategies is compact and strictly convex, since a continuous and strictly

convex function obtains a unique minimal point on a compact and convex set. Note that

the uniqueness is proven by adapting an optimization approach.

A.2 Proof for Theorem 2

First, since the government’s objective function in Equation (11) is strictly convex in gov-

ernment’s defensive resource allocation c, any local minimum must also be global mini-

mum. We now show that c∗ is the equilibrium (global) solution by showing that any local

changes from c∗ will not decrease the value of the objective function. In particular, if

R∗i = A∗i pi(c
∗
i )xi = W ∗ > 0, ∀ i ∈ J∗ (or equivalently c∗i > 0 according to Equation (15)),

where W ∗ is a constant, Ri could be total expected loss (if q ∈ (0, 1], and J 6= P , q is the

probability that the terrorist is strategic, J is set of defended targets and P is set of targets

attracting the non-strategic attacker), expected loss from an attack by a strategic terrorist (if

q ∈ (0, 1], and J = P ), or reduction in expected loss from an attack by a non-strategic terror-

ist (if q = 0) for target i, pi(c
∗
i ) is success probability of an attack, and xi is valuation of target

i, we have that (h∗, c∗) is the equilibrium defined by Definition 1 in Section 2.2 (h or h(c) is

the vector representing endogenously-determined probabilities that a strategic terrorist will

attack any targets). Second, we have R∗i ≤ W ∗ for all i /∈ J∗. Since we have h∗ = ĥ(c∗), we

only need to show Equation (13) is satisfied for all i ∈ J∗; i.e., c∗ = argmin
c

L(c, ĥ(c), h′, q) (h′

is the vector representing exogenously determined probabilities that a non-strategic terrorist

will attack any targets). There are three cases.

(a.1) q ∈ (0, 1] and J∗ 6= P ∗. For any targets i and j, suppose c∗i > 0, and c∗j > 0 in any

particular solution c∗, and we have R∗i = A∗i pi(c
∗
i )xi =

[
qr

I∗i
||P ∗|| + (1− q)h′i

]
pi(c

∗
i )xi,

∀ i ∈ P ∗, R∗j = A∗jpj(c
∗
j)xj = (1 − q)h′jpj(c

∗
j)xj, ∀ j ∈ J∗ − P ∗. We want to show

that if a positive constant W ∗ = R∗i = R∗j , ∀ i ∈ P ∗, ∀ j ∈ J∗ − P ∗, Equation (13) is

satisfied. We only consider four cases due to symmetry: (a.1.1), ci i ∈ P ∗ is increased
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while ck k ∈ P ∗ is decreased, (a.1.2), ci i ∈ P ∗ is increased while ck k ∈ J∗ − P ∗ is

decreased, (a.1.3), ci i ∈ J∗−P ∗ is increased while ck k ∈ J∗−P ∗ is decreased, (a.1.4),

ci i ∈ J∗ − P ∗ is increased while ck k ∈ P ∗ is decreased. In particular,

(a.1.1) If we increase c∗i by a small ε > 0, for i ∈ P ∗, and decrease c∗k by ε, k ∈ P ∗, k 6= i.

Then h∗i becomes 0 and h∗k becomes r and P ∗ becomes {k} and the change of

total expected losses is:

∆L∗(c∗, ĥ(c∗), h′, q)

= qr(pk(c
∗
k − ε)xk − pk(c∗k)xk) + (1− q)h′i(pi(c∗i + ε)xi − pi(c∗i )xi) + (1− q)

h′k(pk(c
∗
k − ε)xk − pk(c∗k)xk)

=
(1− q)h′i

qh∗i + (1− q)h′i
W ∗

(
pi(c

∗
i + ε)

pi(c∗i )
− 1

)
+

qr + (1− q)h′k
qh∗k + (1− q)h′k

W ∗
(
pk(c

∗
k − ε)

pk(c∗k)
− 1

)
(Using Equation 7)

≥ W ∗
[(

pi(c
∗
i + ε)

pi(c∗i )
− 1

)
+

(
pk(c

∗
k − ε)

pk(c∗k)
− 1

)]
(17)

Using Taylor expansion, we have

lim
ε→0

(
pi(c

∗
i + ε)

pi(c∗i )
− 1

)
= lim

ε→0

pi(c
∗
i ) + εp′i(c

∗
i ) +O(ε2)− pi(c∗i )
pi(c∗i )

= 0,

where lim
ε→0

O(ε2)

ε
= 0. Similarly, we have lim

ε→0

(
pk(c

∗
k − ε)

pk(c∗k)
− 1

)
= 0. Therefore,

we have lim
ε→0

∆L∗(c∗, ĥ(c∗), h′, q) ≥ 0, which implied that such changes will not

decrease the expected loss.

(a.1.2) If we increase c∗i by a small ε > 0, for i ∈ P ∗, and decrease c∗k by ε, k ∈ J∗ − P ∗.
There are three possibilities. While h∗i becomes 0, h∗k remains 0 or becomes

r/||P ∗|| or r (depending on the magnitude of ε) and set P ∗ becomes P ∗ − {i} or

P ∗ − {i}+ {k} or {k}. For the first two possibilities the expected loss caused by

the strategic terrorist remains the same and the change of total expected losses is:

∆L∗(c∗, ĥ(c∗), h′, q) = (1− q)h′i(pi(c∗i + ε)xi − pi(c∗i )xi) + (1− q)h′k(pk(c∗k − ε)xk −
pk(c

∗
k)xk) =

(1−q)h′i
qh∗i+(1−q)h′i

W ∗
(
pi(c
∗
i+ε)

pi(c∗i )
− 1
)

+W ∗
(
pk(c

∗
k−ε)

pk(c
∗
k)
− 1
)

≥ W ∗
[(

pi(c
∗
i+ε)

pi(c∗i )
− 1
)

+
(
pk(c

∗
k−ε)

pk(c
∗
k)
− 1
)]

. Similar to case (a.1.1), we have

limε→0 ∆L∗(c∗, ĥ(c∗), h′, q) ≥ 0, which implies that such changes will not decrease

the expected loss.

For the third possibility, we know that pk(c
∗
k − ε)xk > pi(c

∗
i )xi∀i ∈ P ∗ before the

change (since k is the only target attracting the strategic terrorist after the change)
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and the change of total expected losses is: ∆L∗(c∗, ĥ(c∗), h′, q) = qr[pk(c
∗
k−ε)xk−

pi(c
∗
i )xi] + (1− q)h′i(pi(c∗i + ε)xi− pi(c∗i )xi) + (1− q)h′k(pk(c∗k − ε)xk − pk(c∗k)xk) >

(1−q)h′i
qh∗i+(1−q)h′i

W ∗
(
pi(c
∗
i+ε)

pi(c∗i )
− 1
)

+W ∗
(
pk(c

∗
k−ε)

pk(c
∗
k)
− 1
)

≥ W ∗
[(

pi(c
∗
i+ε)

pi(c∗i )
− 1
)

+
(
pk(c

∗
k−ε)

pk(c
∗
k)
− 1
)]

.

Similar to case (a.1.1), we have lim
ε→0

∆L∗(c∗, ĥ(c∗), h′, q) > 0, which implies that

such changes will only increase the expected loss.

(a.1.3) If we increase c∗i by a small ε, i ∈ J∗ − P ∗, and decrease c∗k by ε, k ∈ J∗ −
P ∗, k 6= i. There are three possibilities. While h∗i remains 0, h∗k remains 0

or becomes r/(||P ∗|| + 1) or r (depending on the magnitude of ε) and set P ∗

becomes P ∗ − {i} or P ∗ − {i} + {k} or {k}. For the first two possibilities

the expected loss caused by the strategic terrorist remains the same and the

change of total expected losses is: ∆L∗(c∗, ĥ(c∗), h′, q) = (1 − q)h′i(pi(c∗i + ε)xi −
pi(c

∗
i )xi)+(1−q)h′k(pk(c∗k−ε)xk−pk(c∗k)xk) = W ∗(

pi(c
∗
i+ε)

pi(c∗i )
−1)+W ∗(

pk(c
∗
k−ε)

pk(c
∗
k)
−1) =

W ∗
[(

pi(c
∗
i+ε)

pi(c∗i )
− 1
)

+
(
pk(c

∗
k−ε)

pk(c
∗
k)
− 1
)]

.

Similar to case (a.1.1), we have lim
ε→0

∆L∗(c∗, ĥ(c∗), h′, q) = 0, which implies that

such change will not decrease the expected loss.

For the third possibility, pk(c
∗
k−ε)xk > pj(c

∗
j)xj∀j ∈ P ∗ before the change (since k

is the only target attracting the strategic terrorist after the change) and the change

of total expected losses is: ∆L∗(c∗, ĥ(c∗), h′, q) = qr(pk(c
∗
k−ε)xk−pk(c∗k)xk)+(1−

q)h′i(pi(c
∗
i+ε)xi−pi(c∗i )xi)+(1−q)h′k(pk(c∗k−ε)xk−pk(c∗k)xk) > W ∗

(
pi(c
∗
i+ε)

pi(c∗i )
− 1
)

+

W ∗
(
pk(c

∗
k−ε)

pk(c
∗
k)
− 1
)
≥ W ∗

[(
pi(c
∗
i+ε)

pi(c∗i )
− 1
)

+
(
pk(c

∗
k−ε)

pk(c
∗
k)
− 1
)]

. Similar to case (a.1.1),

we have lim
ε→0

∆L∗(c∗, ĥ(c∗), h′, q) > 0, which implies that such change will only

increase the expected loss.

(a.1.4) If we increase c∗i by a small ε, i ∈ J∗ − P ∗, and decrease c∗k by ε, k ∈ P ∗. Then

h∗k becomes r and P ∗ becomes {k} and the change of total expected losses is:

∆L∗(c∗, ĥ(c∗), h′, q) = qr[pk(c
∗
k−ε)xk−pk(c∗k)xk]+(1−q)h′i[pi(c∗i +ε)xi−pi(c∗i )xi]+

(1 − q)h′k[pk(c∗k − ε)xk − pk(c∗k)xk] = W ∗(
pi(c
∗
i+ε)

pi(c∗i )
− 1) +

qr+(1−q)h′k
qh∗k+(1−q)h′k

W ∗(
pk(c

∗
k−ε)

pk(c
∗
k)
−

1) ≥ W ∗
[(

pi(c
∗
i+ε)

pi(c∗i )
− 1
)

+
(
pk(c

∗
k−ε)

pk(c
∗
k)
− 1
)]

. Similar to case (a.1.1.1), we have

lim
ε→0

∆L∗(c∗, ĥ(c∗), h′, q) ≥ 0, which implies that such change will not decrease

the expected loss.

In summary, all possible deviations from the solution c∗ do not decrease the expected

losses, and thus we have c∗ = argmin
c

L(c, ĥ(c), h′, q). From Equation (9), we have

h∗ = ĥ(c∗). Therefore, according to Definition 1, both (12) and (13) are satisfied
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and thus (h∗, c∗) is the equilibrium defined by Definition 1 in Section 2.2. Then, we

will show that R∗i = A∗i pi(c
∗
i )xi ≤ W ∗ ∀i /∈ J∗ (or equivalently c∗i = 0 according to

Equation (15)). For any targets i and j, suppose c∗i = 0, c∗j > 0 for one particular

solution c∗, and we have R∗i = A∗i pi(c
∗
i )xi =

[
qr

I∗i
||P ∗|| + (1− q)h′i

]
pi(c

∗
i )xi, i /∈ J∗ and

R∗j = A∗jpj(c
∗
j)xj =

[
qr

I∗j
||P ∗|| + (1− q)h′j

]
pj(c

∗
j)xj, j ∈ J∗. If R∗i ≤ R∗j , c

∗
i cannot be

decreased by re-allocating defensive resources from targets i to j, thus W ∗ = R∗j ≥ R∗i .

If R∗i > R∗j , c
∗
i will be increased while c∗j will be decreased until R∗i = R∗j and we no

longer have c∗i = 0. Therefore, R∗i > R∗j = W ∗ is not possible in equilibrium.

(a.2) q ∈ (0, 1] and J∗ = P ∗. For any targets i and j, suppose c∗i > 0, and c∗j > 0 for

any particular solution c∗, and we have R∗i = A∗i pi(c
∗
i )xi =

rI∗i
||P ∗||pi(c

∗
i )xi ∀ i ∈ P ∗, and

R∗j = Ajpj(c
∗
j)xj =

rI∗j
||P ∗||pj(c

∗
j)xj ∀ j ∈ P ∗, j 6= i. We want to show that if a positive

constant W ∗ = R∗i = R∗j ∀ i ∈ P ∗, ∀ j ∈ P ∗, j 6= i, Equation (13) is satisfied.

We increase c∗i by a small ε > 0, i ∈ P ∗, and decrease c∗k by ε, k ∈ P ∗, k 6= i.

Then h∗k becomes r and P ∗ becomes {k} and the change of total expected losses is:

∆L∗(c∗, ĥ(c∗), h′, q) = qr(pk(c
∗
k−ε)xk−pk(c∗k)xk)+(1−q)h′i(pi(c∗i +ε)xi−pi(c∗i )xi)+(1−

q)h′k(pk(c
∗
k+ε)xk−pk(c∗k)xk) =

qr+(1−q)h′k
qh∗k+(1−q)h′k

W ∗
[
pk(c

∗
k−ε)

pk(c
∗
k)
− 1
]
+

(1−q)h′i
qh∗i+(1−q)h′i

W ∗
[
pi(c
∗
i+ε)

pi(c∗i )
− 1
]

≥ W ∗
[(

pk(c
∗
k−ε)

pk(c
∗
k)
− 1
)

+
(
pi(c
∗
i+ε)

pi(c∗i )

)]
.

Similar to case (a.1.1), we have lim
ε→0

∆L∗(c∗, ĥ(c∗), h′, q) ≥ 0, which implies that such

change will not decrease the expected loss. Note that i and k are symmetric and such

changes include both increases and decreases.

Therefore, the above deviation from solution c∗ do not decrease the expected losses,

and thus we have c∗ = argmin
c

L(c, ĥ(c), h′, q). From Equation (9), we have h∗ = ĥ(c∗).

Therefore, according to Definition 1, both (12) and (13) are satisfied and thus (h∗, c∗)

is the equilibrium defined by Definition 1 in Section 2.2.

Then, we will show that R∗i = A∗i pi(c
∗
i )xi ≤ W ∗ ∀i /∈ J∗ (or equivalently c∗i = 0

according to Equation (15)). For any targets i and j, suppose c∗i = 0, c∗j > 0, for one

particular solution c∗, and we have R∗i = A∗i pi(c
∗
i )xi =

[
qr

I∗i
||P ∗||

]
pi(c

∗
i )xi and R∗j =

A∗jpj(c
∗
j)xj =

[
qr

I∗j
||P ∗||

]
pj(c

∗
j)xj. If R∗i < R∗j , c

∗
i cannot be decreased by re-allocating

defensive resources from targets i to j, thus W ∗ = R∗j > R∗i . Similarly, R∗i > R∗j = W ∗

is not possible in equilibrium.

(a.3) q = 0. For any targets i and j, suppose c∗i > 0, and c∗j > 0, i, j ∈ J∗, j 6= i for any

particular solution c∗, and we have R∗i = h′i
dpi(c

∗
i )

dc∗i
xi and R∗j = h′j

dpj(c
∗
j )

dc∗j
xj. We show
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that if a positive constant W ∗ = R∗i = R∗j ∀ i ∈ J∗, ∀ j ∈ J∗ and j 6= i, Equation (13)

is satisfied.

If we increase c∗i by ε > 0, i ∈ J∗, and decrease c∗k by ε, k ∈ J∗. We have

∆L∗(c∗, ĥ(c∗), h′, q) = h′ipi(c
∗
i + ε)xi − h′ipi(c

∗
i )xi + h′kpk(c

∗
k − ε)xk − h′kpk(c

∗
k)xk =

−pi(c∗i )
dpi(c

∗
i
)

dc∗
i

W ∗
[
pi(c
∗
i+ε)

pi(c∗i )
− 1
]

+
−pk(c∗k)
dpk(c∗

k
)

dc∗
k

W ∗
[
pk(c

∗
k−ε)

pk(c
∗
k)
− 1
]
.

Similar to case (a.1.1), we have lim
ε→0

∆L∗(c∗, ĥ(c∗), h′, q) ≥ 0, which implies that such

change will not decrease the expected loss.

In summary, the above deviation from c∗ does not decrease the total expected losses,

and thus we have c∗ = argmin
c

L(c, ĥ(c), h′, q). From Equation (9), we have h∗ = ĥ(c∗).

Therefore, according to Definition 1, both (12) and (13) are satisfied and thus (h∗, c∗)

is the equilibrium defined by Definition 1 in Section 2.2. Then, we will show that

R∗i = A∗i pi(c
∗
i )xi ≤ W ∗ ∀i /∈ J∗ (or equivalently c∗i = 0 according to Equation (15)).

For any targets i and j, suppose c∗i = 0, c∗j > 0, for one particular solution c∗, and we

have R∗i = A∗i pi(c
∗
i )xi = h′ip

′
i(c
∗
i )xi and R∗J = A∗jpj(c

∗
j)xj = h′jp

′
j(c
∗
j)xj. If R∗i < R∗j , c

∗
i

cannot be decreased by re-allocating defensive resources from target i to j even though

investing is target j’s defense is more cost-effective, thus W ∗ = R∗j > R∗i = A∗i pi(c
∗
i )xi =

h′ip
′
i(c
∗
i )xi. Similarly, R∗i > R∗j is not possible in equilibrium.

A.3 Proof for Theorem 3

First, we show that the total probability of attack r does not affect the defender equilibrium

allocation c∗. The objective function (11) can be reformulated as qr max
i=1,...,n

pi(ci)xi + (1 −

q)r
n∑
i=1

h′′i pi(ci)xi = r[q max
i=1,...,n

pi(ci)xi+(1−q)
n∑
i=1

h′′i pi(ci)xi], where h′′i = h′i/r ∀i. Minimizing

r[q max
i=1,...,n

pi(ci)xi+(1−q)
n∑
i=1

h′′i pi(ci)xi] would be equivalent to minimizing q max
i=1,...,n

pi(ci)xi+

(1 − q)
n∑
i=1

h′′i pi(ci)xi and the value of r does not affect the defender equilibrium allocation

c∗.

Second, we show that the equilibrium loss increases linearly with r. We can treat

[q max
i=1,...,n

pi(c
∗
i )xi + (1 − q)

n∑
i=1

h′′i pi(c
∗
i )xi] as a constant with regard to r. Therefore, the

equilibrium loss increases linearly with r.
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A.4 Proof for Theorem 4

In this proof, we first show that the algorithm provided in Section 3.2 will always converge.

Then we show that the algorithm will converge to the equilibrium solution c∗ defined by

Definition 1 in Section 2.2.

In order to show convergence of the entire algorithm, we note that the algorithm contains

3 loops as shown in Figure 3 in Section 3.2: Loop A (formed by S2, S3, C2 and C3); Loop

B (formed by S6, S7, C2 and C7); and Loop C (formed by S4, S5, C2 and C5). Within each

loop, Steps S3 (in Loop A), S5 (in Loop C), and S7 (in Loop B) delete index j satisfying

xjAj ≤ W (in Condition C2) from set J (i.e., set of targets to be defended). Now we claim

that the algorithm always converges because (a) only deletion and no addition are allowed

for modification of set J , (b) the government can defend at least one target (according to

Equation (1)), and (c) there are finite number of potential targets in set J (≤ n). Therefore,

the algorithm will always converge.

Secondly, we show that this converging algorithm always converges to the equilibrium

solution c∗ defined by Definition 1 in Section 2.2. The equilibrium solution c∗ can take 3

different forms corresponding to 3 different conditions in Equation (6). In order to reach the

equilibrium solution c∗, the algorithm need to find set J∗ (Step S3 (a-b) in Loop A, Step

S5 (a-b) in Loop B, and Step S7 (a-b) in Loop C) and W ∗ (Step S2 and Condition C2 in

Loop A, Step S4 and Condition C2 in Loop B, and Step S6 and Condition C2 in Loop C).

The algorithm proceeds as follows: in Step S1, the algorithm initializes sets J , P , and I to

include all n targets. There are two cases corresponding to whether q = 0 or q ∈ (0, 1]: Case

1. the algorithm goes to Loop A (possibly and C); and Case 2. the algorithm goes to Loop

B. Loop C is employed only when Loop A does not find the optimal solution as indicated

by the un-satisfaction of both Conditions C4 and C6.

Case 1. If q ∈ (0, 1], the algorithm goes to Loop A, and Step S2 calculates a suboptimal

W with A = qr Ii
||P || + (1 − q)h′i according to Equation (16). Note that W will al-

ways be smaller than W ∗. This is because (a) in Equation (16), the denominator

becomes smaller after each iteration (i.e., the size of set J decreases as j’s are delet-

ed from set J), (b) in Equation (16), the numerator becomes larger as a result of∑
i∈J

lnA =
∑
i∈J

ln

[
qr

Ii
||P ||

+ (1− q)h′i
]

increasing at a faster rate than the decreasing

rate of
∑
i∈J

lnxi. Recall that xi’s provided in Table 1 in Section 2.3 are sorted in de-

scending order. After each iteration,
∑
i∈J

lnxi will only decrease slightly, while set P

will shrink quickly and thus A =
[
qr Ii
||P || + (1− q)h′i

]
will increase significantly.
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We use Lemma 2 below to justify Step 3 (b) in Loop A in the algorithm provided

by Figure 3 and Table 3 in Section 3.2, where most targets to be attacked by a non-

strategic terrorist are not included in updating sets P and I.

Lemma 2 Given q ∈ (0, 1] and J∗ 6= P ∗, for any target i ∈ J∗, if h′i > 0 and

h′i 6= min
i
{h′i}, we have i /∈ P ∗.

Proof for Lemma 2 We first show that if h′i’s are different ∀i ∈ P ∗, P ∗ must contain

only the element(s) corresponding to the largest pi(c
∗
i )xi. Since hi defined by Equation

(9) is the same ∀i ∈ P ∗ and h′i’s are different ∀i ∈ P ∗, [qrhi + (1 − q)h′i] will not

be the same ∀i ∈ P ∗. Without loss of generality, we let h′i < h′j ∀i, j ∈ P ∗, then

[qrhi + (1− q)h′i] < [qrhj + (1− q)h′j] and thus pi(c
∗
i )xi > pj(c

∗
j)xj for R∗i = R∗j (since

we have in equilibrium R∗i = [qh∗i + (1− q)h′i]pi(c∗i )xi = R∗j = [qh∗j + (1− q)h′j]pj(c∗j)xj).
Then the strategic terrorist will attack target i only and target j no longer belongs to

set P , that is, ∀j /∈ P ∗. Therefore, P ∗ must contain only the element(s) corresponding

to max
i
{pi(c∗i )xi} (i.e., min

i
{h′i}). For all other i’s such that h′i 6= min

i
{h′i}, i ∈ J∗ but

i /∈ P ∗.

Loop A will be repeated and J , W and c will be updated until Condition C2 is no longer

satisfied. Then J∗, W ∗, and c∗ are obtained. Since Condition C2 is not satisfied, all c∗i ’s

for i ∈ J∗ are positive as seen from Equation (15) (i.e., c∗i =
lnxi+lnA∗i−lnW ∗

λ
∀ i ∈ J∗)

and also R∗i = A∗i pi(c
∗
i )xi = W ∗ ∀i ∈ J∗. Note that c∗ is unique since J∗ and W ∗

are unique and c∗ is calculated based on J∗ and W ∗. According to Theorem 2, since

R∗i = A∗i pi(c
∗
i )xi = W ∗, (h∗, c∗) is the possible equilibrium defined by Definition 1

in Section 2.2. Therefore, c∗ is the possible equilibrium solution to the optimization

problem (10). After Loop A, Condition C4 is checked. If yes, c∗ is the equilibrium

solution with J∗ 6= P ∗. Otherwise, it is not and the algorithm will check Condition

C6. If yes, c∗ is the equilibrium solution with J∗ = P ∗. If not, the algorithm must go

to Loop C and restart the iteration process over again.

We obtained Condition C4 by noting that if q ∈ (0, 1) and J∗ 6= P ∗, at equilibrium we

must have qr
I∗i
||P ∗|| < (1− q)h′j, ∀ i ∈ P ∗ and ∀j ∈ J∗ − P ∗. This is because qr

I∗i
||P ∗|| ≥

(1− q)h′j, ∀ i ∈ P ∗ and ∀j ∈ J∗− P ∗ will lead to J∗ = P ∗ due to the fact that
I∗i
||P ∗|| is

dynamic and based on the relative value of pi(c
∗
i )xi. If qr

I∗i
||P ∗|| ≥ (1 − q)h′j, ∀ i ∈ P ∗

and ∀j ∈ J∗ − P ∗, since
[
qr

I∗i
||P ∗|| + (1− q)h′i

]
pi(c

∗
i )xi = (1− q)h′jpj(c∗j)xj (equilibrium
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condition), pi(c
∗
i )xi ≤ pj(c

∗
j)xj, I

∗
j = 1, and thus j ∈ P ∗, which is a contradiction to the

assumption that j ∈ J∗−P ∗. Therefore, qr
I∗i
||P ∗|| < (1−q)h′j, ∀ i ∈ P ∗ and j ∈ J∗−P ∗.

In Loop C, Step S4 re-initializes sets J , P and I and calculate a suboptimal W with

A = qr Ii
||P || according to Equation (16). Loop C will be repeated and J , W , and

c will be updated until Condition C2 is no longer satisfied. Since only the attack

probabilities of the strategic terrorist (i.e., hi = r Ii
||P ||) is involved in the updating

process, J∗ must equal P ∗. Then J∗, W ∗ and c∗j ’s are obtained. Since Condition

C2 is not satisfied, all c∗i ’s for i ∈ J∗ are positive as seen from Equation (15) (i.e.,

c∗i =
lnxi+lnA∗i−lnW ∗

λ
∀ i ∈ J∗) and also R∗i = A∗i pi(c

∗
i )xi = W ∗ ∀i ∈ J∗. According

to Theorem 2, since R∗i = A∗i pi(c
∗
i )xi = W ∗ and J∗ = P ∗, (h∗, c∗) is the equilibrium

defined by Definition 1 in Section 2.2. Therefore, c∗ is the equilibrium solution to the

optimization problem (10).

Case 2. If q = 0, the algorithm goes to Loop B and Step S6 calculates a suboptimal W with

A = λh′i according to Equation (16). Loop B will be repeated and J , W , and c will be

updated until Condition C2 is no longer satisfied. Then J∗, W ∗ and c∗j ’s are obtained.

Since Condition C2 is not satisfied, all c∗i ’s for i ∈ J∗ are positive as seen from Equation

(15) (i.e., c∗i =
lnxi+lnA∗i−lnW ∗

λ
∀ i ∈ J∗) and also R∗i = A∗i pi(c

∗
i )xi = W ∗. According

to Theorem 2, since R∗i = A∗i pi(c
∗
i )xi = W ∗ and q = 0, (h∗, c∗) is the equilibrium

defined by Definition 1 in Section 2.2. Therefore, c∗ is the equilibrium solution to the

optimization problem (5).

As shown in Figure 3, depending on whether Conditions C1, C4 and C6 are satisfied, the

algorithm employs either 1 (Loop A or B) or 2 loops (Loops A and C) to find the optimal

solution c∗. Within Step 3 of Loop A, Condition C3 needs be checked for up to n− 1 indices

in set J , and each of S3(a), S3(b or c, parallel), and S3(d) requires up to n computations.

Thus, Step 3 requires a total of at most (n− 1) + 3n = 4n− 1 computations. On the other

hand, Loop A requires the sum of at most n−1 iterations (checking Condition C2) of looping

Step 3, and 2n additional computations in S3(c, e) when C2 is not satisfied. Therefore, at

most (4n− 1)(n− 1) + 2n = 4n2− 3n+ 1 computations will be needed for Loop A. Loops B

and C are independent of Loop A and less complex than Loop A. Therefore, the algorithm

requires at most O(n2) computations in order to find the optimal solution c∗.

A.5 Proof for Theorem 5

If we increase C, the feasible space of optimization model (10) expands and thus the optimal

objective function value L∗ (weakly) decreases. If we increase λ, pi(c
∗
i )xi decreases ∀i, which
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implies that both max
i=1,...,n

pi(c
∗
i )xi and

n∑
i=1

(1 − q)h′ipi(c
∗
i )xi decrease. Given the alternative

formulation (11), the optimal objective function value L∗ decreases.

A.6 Proof for Theorem 6

(a) The proof follows immediately from the definition of L̄(c̄, ĥ(c̄), h′, q) and L̂(ĉ, ĥ(ĉ), h′, q).

L̄(c̄, ĥ(c̄), h′, q) equals the objective function value L∗(c∗, ĥ(c∗), h′, q) when q = 1.

Therefore, L∗(c∗, ĥ(c∗), h′, q) = L̄(c̄, ĥ(c̄), h′, q) when q=1. Similarly, L∗(c∗, ĥ(c∗), h′, q) =

L̂(ĉ, ĥ(ĉ), h′, q) when q=0.

(b) First, we prove that L̂(ĉ, ĥ(ĉ), h′, q) weakly decreases in (1 − q). A strategic terrorist

will adjust his attack probabilities h in order to maximize the expected loss. And

the strategic terrorist always has the option to choose h′ (the non-strategic attack

probabilities). Specifically, in equilibrium if the government chooses the optimal de-

fense against h′ and the terrorist chooses h′ as the strategic attack probability, that

is
n∑
i=1

ĥi(ĉ)pi(ĉi)xi ≥
n∑
i=1

h′ipi(ĉi)xi. The objective value L̂(ĉ, ĥ(ĉ), h′, q) is a convex

combination of
n∑
i=1

ĥi(ĉ)pi(ĉi)xi and
n∑
i=1

h′ipi(ĉi)xi. As 1 − q increases, the weight for

n∑
i=1

ĥi(ĉ)pi(ĉi)xi decreases, while the weight for
n∑
i=1

h′ipi(ĉi)xi increases. As a result,

L̂(ĉ, ĥ(ĉ), h′, q) is (weakly and linearly) decreasing in 1− q.

Second, L̄(c̄, ĥ(c̄), h′, q) is a constant not influenced by 1 − q and thus (weakly and

linearly) decreasing in 1− q. There are two cases.

Case 1. When the strategic terrorist attacks more or equal number of targets than the non-

strategic terrorist. The reason is that if the government believes that 1 − q = 0,

she will allocate the defensive resources to several most valuable targets. When

the terrorist is indeed fully strategic and attacks the most vulnerable target in

order to yield the maximal expected gain, the terrorist will attack any of the

defended targets and the resulting expected losses are the same for all defended

targets. On the other hand, when the terrorist is fully non-strategic and attacks

most valuable target(s), the resulting expected loss will be the same.

Case 2. When the strategic terrorist will attack less targets than the non-strategic ter-

rorist, L̄(c̄, ĥ(c̄), h′, q) is strictly decreasing in 1 − q. The reason is that if the

terrorist is fully non-strategic and attacks the low-valued targets, which are not
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worth defending and thus not defended. The resulting expected loss will be lower

than if the terrorist is fully strategic and only attacks valuable targets. There-

fore,
n∑
i=1

ĥi(c̄)pi(c̄i)xi >
n∑
i=1

h′ipi(c̄i)xi. So the objective value L̄(c̄, ĥ(c̄), h′, q) is a

convex combination of
n∑
i=1

ĥi(c̄)pi(c̄i)xi and
n∑
i=1

h′ipi(c̄i)xi. As 1− q increases, the

weight for
n∑
i=1

ĥi(c̄)pi(c̄i)xi decreases, while the weight for
n∑
i=1

h′ipi(c̄i)xi increases.

As a result, L̄(c̄, ĥ(c̄), h′, q) is (weakly and linearly) decreasing in 1− q when the

strategic terrorist attacks less targets that the non-strategic terrorist.

Third, we prove that L∗(c∗, ĥ(c∗), h′, q) weakly decreases in 1− q. Note that c∗ might

changes to concentrate around defending more valuable targets as 1− q decreases de-

pending whether L∗(c∗, ĥ(c∗), h′, q) > L̂(ĉ, ĥ(ĉ), h′, q). If L∗(c∗, ĥ(c∗), h′, q) > L̂(ĉ, ĥ(ĉ),

h′, q), c∗ will remain the same regardless of the small change in 1−q. Otherwise, c∗ will

change as described above. Therefore, when 1− q falls into the range where J∗ = P ∗,

both c∗ and L∗(c∗, ĥ(c∗), h′, q) remains the same. When 1 − q changes from the value

associated with J∗ = P ∗ to the value associated with J∗ 6= P ∗, L∗(c∗, ĥ(c∗), h′, q) must

decrease since otherwise c∗ will remain the same and so will L∗(c∗, ĥ(c∗), h′, q), contra-

dicting the assumption that J∗ 6= P ∗. When 1− q falls into the range where J∗ 6= P ∗,

J∗ 6= P ∗ implies that at least one target, say i, is only attracting the non-strategic

attacker and not the strategic attacker. As 1 − q increases (i.e., the attacker is more

likely to be non-strategic), L∗i (c
∗, ĥ(c∗), h′, q) will decrease for target i. Since Theorem

2 tells us R∗ equals L∗i (c
∗, ĥ(c∗), h′, q), L∗(c∗, ĥ(c∗), h′, q) = ||J∗||L∗i (c∗, ĥ(c∗), h′, q), and

||J∗|| weakly decreases in 1− q, L∗(c∗, ĥ(c∗), h′, q) weakly decreases in 1− q when 1− q
falls into the range where J∗ 6= P ∗. Therefore, we claim that L∗(c∗, ĥ(c∗), h′, q) weakly

decreases in 1− q.

(c) By definition, c∗ is the optimal solution and L∗(c∗, ĥ(c∗), h′, q) is the corresponding ob-

jective value as seen from Equations (13) and (5). So, L∗(c∗, ĥ(c∗), h′, q) is the minimal

among all L’s. L̄(c̄, ĥ(c̄), h′, q), L̂(ĉ, ĥ(ĉ), h′, q) are two feasible objective values and be-

long to the set of all L’s. And thus L∗(c∗, ĥ(c∗), h′, q) ≤ L̄(c̄, ĥ(c̄), h′, q), L∗(c∗, ĥ(c∗), h′, q)

≤ L̂(ĉ, ĥ(ĉ), h′, q).

(d) Note that L̄(c̄, ĥ(c̄), h′, q) is a constant regardless of the value of q when the strategic ter-

rorist attacks more or equal number of targets than the non-strategic terrorist (see proof

for Theorem 6(b)). When q = 1, L̄(c̄, ĥ(c̄), h′, q) = L∗(c∗, ĥ(c∗), h′, q) ≤ L̂(ĉ, ĥ(ĉ), h′, q)

by Theorem 6(c). Similarly, when q = 0, L̂(ĉ, ĥ(ĉ), h′, q) = L∗(c∗, ĥ(c∗), h′, q) ≤
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L̄(c̄, ĥ(c̄), h′, q) by Theorem 6(c). Since L̄(c̄, ĥ(c̄), h′, q) and L̂(ĉ, ĥ(ĉ), h′, q) are (weakly)

decreasing in (1-q), their values cross over at a certain value of 1− q, which is denoted

as T . Therefore, L̄(c̄, ĥ(c̄), h′, q) ≤ L̂(ĉ, ĥ(ĉ), h′, q) if 1 − q < T , where T is a constant

and varies with h′.

Appendix B: Examples and illustrations

B.1 Illustrations for Theorem 2

For all three illustrations, we consider two scenarios of re-allocation, and observe that both

re-allocations increase the total expected loss. Note that in this optimality check, we examine

a higher precision level than that was used in Table 2 in Section 3.1, in order to show more

precise changes after the re-allocations.

Illustration 1 (q = 0.5): Suppose that the government re-allocates one unit of defensive

resources from targets 1 to 2 (both in set J∗). This will decrease c∗1 from 322.8465 to

321.8465, and increase c∗2 from 194.9949 to 195.9949. Thus, p1(c
∗
1)x1 increases from 16.3624

to 16.5268, while p2(c
∗
2)x2 decreases from 16.3624 to 16.1995. Therefore, we have higher

expected loss for target 1 (L∗1 = 4.1317, increased from 4.0906), lower expected loss for

target 2 (L∗2 = 4.0499, decreased from 4.0906), and higher total expected loss (L∗ = 20.4534,

increased from 20.4530), which means that this re-allocation is not optimal.

Illustration 2 (q = 0.8): Suppose the government re-allocates one unit of defensive resources

from targets 1 to 2, (both in set J∗). This will decrease c∗1 from 298.4142 to 297.4142, and

increase c∗2 from 170.5627 to 171.5627. Thus, p1(c
∗
1)x1 increases from 20.8907 to 21.1007,

while p2(c
∗
2)x2 decreases from 20.8907 to 20.6829. Therefore, we have higher expected loss

for target 1 (L∗1 = 4.9235, increased from 4.8745), lower expected loss for target 2 (L∗2 =

4.8260, decreased from 4.8745), and higher total expected loss (L∗ = 20.8911, increased from

20.8906), which means that this re-allocation is not optimal.

Illustration 3 (q = 0): Suppose the government re-allocates one unit of defensive resources

from targets 1 to 2 (both in set J∗). This will decrease c∗1 from 400.4258 to 399.4258, and

increase c∗2 from 272.5742 to 273.5742. Thus, p1(c
∗
1)x1 increases from 7.5322 to 7.6079, while

p2(c
∗
2)x2 decreases from 7.5322 to 7.4572. Therefore, we have higher expected loss for target

1 (L∗1 = 3.8040, increased from 3.7661), lower expected loss for target 2 (L∗2 = 3.7286,

decreased from 3.7661), and higher total expected loss (L∗ = 7.5326, increased from 7.5322),

which means that this re-allocation is not optimal.
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B.2 Three Other Types of Non-strategic Terrorist and Robustness

Analysis

We study three other types of non-strategic terrorist, whose attack probabilities have the

following characteristics: Type-II non-strategic attack probabilities are proportional to the

target valuations; Type-III non-strategic attack probabilities are evenly distributed among

top N least valuable targets; and Type-IV non-strategic attack probabilities are inversely

proportional to the target valuations.

B.2.1 Type-II Non-strategic Terrorist: attack probabilities are pro-

portional to the target valuations

In this subsection, we investigate a Type-II non-strategic terrorist, whose attack probabilities

are proportional to the target valuations. In other words,

(Type-II Non-Strategic Terrorist) h′i ∝ xi =⇒ h′i =
rxi∑n
i=1 xi

, ∀i = 1, 2, · · · , n. (18)

Figure 8 shows the optimal defensive budget allocations as a function of the probability

that the terrorist is Type-II non-strategic (1 − q) when λ = 0.01, 0.05, and 1, respectively.

The results are similar to that for Type-I non-strategic terrorist when N = 1, 2, 5 as shown

in Figures 4 (a1-a3, b1-b3, c1-c3), and different from the case when N = 47, where optimal

defensive resource allocations are not sensitive to the values of 1 − q as shown in Figures 4

(a4, b4 ,c4).

Figure 9 shows the three total expected loss after the government has applied each of

the three defensive resource allocation schemes discussed in Subsection 4.1 as a function

of the probability that the terrorist is Type-II non-strategic (1 − q) when λ = 0.01, 0.05,

and 1, respectively. The results are similar to that for Type-I non-strategic terrorist when

N = 1, 2, 5 as shown in Figures 5 (a1-a3, b1-b3, c1-c3), and different from the case when

N = 47, where there is no difference between L∗, L̄, and L̂ as shown in Figures 5 (a4, b4

,c4). We observe that T ≥ 0.69 for all cases.

Figure 10 shows that preference threshold (T) and robustness measure (d) for game-

theoretic models as a function of budget (C) when λ = 0.01, 0.05, and 1, respectively, and

a Type-II non-strategic terrorist is concerned. Figures 10 (a1, b1, c1) show that T > 0.5

for all cases. Figures 10 (a2, b2, c2) show that d > 0 when 1− q is smaller (than 0.8 when

λ=0.01, 0.05, and than 0.6 when λ=1), game theoretic models perform better than non-game

theoretic models.
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(c)   λ=1

Figure 8: Optimal defensive budget allocations as a function of the probability that the
terrorist is Type-II non-strategic (1− q) when λ = 0.01, 0.05, and 1, respectively.
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L∗: Defender knows attacker characteristic

L̄ : Defender believes attacker is strategic
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Figure 9: Government’s three types of total expected losses and preference threshold (T) and
robustness measure (d) as a function of probability that the terrorist is Type-II non-strategic
(1− q) when λ = 0.01, 0.05, and 1, respectively.
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Figure 10: Preference threshold (T) and robustness measure (d) as a function of budget (C)
when λ = 0.01, 0.05, and 1, respectively, and a Type-II nonstrategic terrorist is concerned.

B.2.2 Type-III Non-strategic Terrorist: attack probabilities are

even distributed among top N least valuable targets

In this subsection, we investigate a Type-III non-strategic terrorist: attack probabilities are

equal for top N least valuable urban areas, and zero for other n−N urban areas. In other

words, we have:

(Type-III Non-Strategic Terrorist) h′i =


r

N
for i = n−N + 1, n−N + 2, · · · , n

0 for i = 1, 2, · · · , n−N

Figure 11 shows the government’s optimal defensive budget allocations as a function of

the probability that the terrorist is Type-III non-strategic (1 − q), when r = 1, N = 1, 2,

5, and 47, and λ = 0.01, 0.05 and 1, respectively. The results are different from that for

Type-I non-strategic terrorist, which is shown in Figures 4, in that optimal defensive resource

allocations are not sensitive to the values of 1− q unless 1− q = 1.

Figure 12 shows the three total expected losses after the government has applied each of

the three defensive resource allocation schemes discussed in Section 4.1 as a function of the

probability that the terrorist is Type-III non-strategic (1-q) when r = 1, N = 1, 2, 5, and

47, and λ = 0.01, 0.05, and 1, respectively. We find that T = 1 for all ranges. The results

are different from that for Type-I non-strategic terrorist when N = 1, 2, and 5, as shown in

Figures 5 (a1-a3, b1-b3, c1-c3).
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Figure 11: Optimal defensive budget allocations as a function of probability that the terrorist
is Type-III non-strategic (1-q) when r = 1, N = 1, 2, 5, and 47, and λ = 0.01, 0.05 and 1,
respectively.

42



0 0.2 0.4 0.6 0.8 1
0

200

400
(a1) λ=0.01, N=1

T=1

0 0.2 0.4 0.6 0.8 1
0

200

400
T=1

(b1) λ=0.05, N=1

0 0.2 0.4 0.6 0.8 1
0

200

400
T=1

(c1) λ=1, N=1

0 0.2 0.4 0.6 0.8 1
0

200

400
T=1

E
xp

ec
te

d 
Lo

ss
 (

$ 
M

)

(a2) λ=0.01, N=2

0 0.2 0.4 0.6 0.8 1
0

200

400
T=1

(b2) λ=0.05, N=2

0 0.2 0.4 0.6 0.8 1
0

200

400
T=1

(c2) λ=1, N=2

0 0.2 0.4 0.6 0.8 1
0

200

400
T=1

(a3) λ=0.01, N=5

0 0.2 0.4 0.6 0.8 1
0

200

400

T=1

(b3) λ=0.05, N=5

0 0.2 0.4 0.6 0.8 1
0

200

400
T=1

(c3) λ=1, N=5

0 0.2 0.4 0.6 0.8 1
0

10

20

Probability of non−strategic (1−q)

E
xp

ec
te

d 
Lo

ss
 (

$ 
M

)

(a4) λ=0.01, N=47

T=1

0 0.2 0.4 0.6 0.8 1

0.5

1

1.5

Probability of non−strategic (1−q)

(b4) λ=0.05, N=47

T=1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

x 10
−6

Probability of non−strategic (1−q)

(c4) λ=1, N=47

 

 

L∗: Defender knows attacker characteristic

L̄ : Defender believes attacker is strategic

L̂ : Defender believes attacker is non-strategic  

d : Robustness of Game Models

T : Preference Threshold

T=1

Figure 12: Government’s three types of expected loss as a function of the probability that
the terrorist is Type-III non-strategic (1-q) when r = 1, N = 1, 2, 5, and 47, and λ = 0.01,
0.05 and 1, respectively.
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Figure 13 shows preference threshold (T) for game-theoretic models as a function of

budget (C) when r = 1, N = 1, 2, 5, and 47, and λ = 0.01, 0.05, and 1, respectively, and a

Type-III non-strategic terrorist is concerned. We find that T will always be approximately

1.
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Figure 13: Preference threshold (T) for game-theoretic models as a function of budget (C)
when r = 1, N = 1, 2, 5, and 47, and λ = 0.01, 0.05, and 1, respectively, and a Type-III
non-strategic terrorist is concerned.

Figure 14 shows robustness measure (d) for game-theoretic models as a function of budget

(C) and the probability that the terrorist is Type-III non-strategic when r = 1, N = 1, 2, 5,

and 47, and λ = 0.01, 0.05, and 1, respectively. We find that d is always non-negative. Those

findings suggest that game-theoretic models are highly preferred regardless of the value of λ

and N .

44



0

5010015020025030035
0

B
ud

ge
t (

C
, $

 M
) (a1) λ=0.01, N=1

0 0.2 0.4 0.6 0.8 1
0

1000

2000

0

5010015
020

025
0

30035
040

0

(b1) λ=0.05, N=1 

0 0.2 0.4 0.6 0.8 1
0

1000

2000

0

50100150200 25
030

035
0

40
0

(c1) λ=1, N=1 

0 0.2 0.4 0.6 0.8 1
0

1000

2000

0

5010015020025030
035

0

B
ud

ge
t (

C
, $

 M
) (a2) λ=0.01, N=2

0 0.2 0.4 0.6 0.8 1
0

1000

2000

0

50100150200

25
0

30
0

35
0

40
0

(b2) λ=0.05, N=2

0 0.2 0.4 0.6 0.8 1
0

1000

2000 0

50

10
0

15
0

20025030
035

040
0

(c2) λ=1, N=2

0 0.2 0.4 0.6 0.8 1
0

1000

2000

0

50 10015020025030035
0

40
0

B
ud

ge
t (

C
, $

 M
) (a3) λ=0.01, N=5

0 0.2 0.4 0.6 0.8 1
0

1000

2000 0

50

10
0

15
0

20
0

25
0

30035
040

0

(b3) λ=0.05, N=5 

0 0.2 0.4 0.6 0.8 1
0

1000

2000

0

5010
0

15020025030
035

040
0

(c3) λ=1, N=5 

0 0.2 0.4 0.6 0.8 1
0

1000

2000

d=0 for all ranges

B
ud

ge
t (

C
, $

 M
)

Probability of Non−strategic (1−q)

(a4) λ=0.01, N=47 

0 0.2 0.4 0.6 0.8 1
0

1000

2000

d=0 for all ranges

Probability of Non−strategic (1−q)

(c4) λ=1, N=47 

0 0.2 0.4 0.6 0.8 1
0

1000

2000

d=0 for all ranges

Probability of Non−strategic (1−q)

(b4) λ=0.05, N=47 

0 0.2 0.4 0.6 0.8 1
0

1000

2000

Figure 14: Robustness (d) for game-theoretic models as a function of budget (C) and the
probability that the terrorist is Type-III non-strategic when r = 1, N = 1, 2, 5, and 47, and
λ = 0.01, 0.05, and 1, respectively.
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B.2.3 Type-IV Non-strategic Terrorist: attack probabilities are in-

versely proportional to the target valuations

In this subsection, we investigate a Type-IV non-strategic terrorist: attack probabilities are

inversely proportional to target valuations. In other words,

(Type-IV Non-Strategic Terrorist) h′i ∝
1

xi
=⇒ h′i =

r

xi

n∑
i=1

1

xi

, ∀i = 1, 2, · · · , 47. (19)

Figure 15 shows optimal defensive budget allocations as a function of the probability that

the terrorist is Type-IV non-strategic (1− q) when r = 1, λ = 0.01, 0.05, and 1, respectively.

The results are different from that for Type-I non-strategic terrorist, which is shown in

Figures 4, in that optimal defensive resource allocations are not sensitive to the values of

1− q unless 1− q approaches 1.
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Figure 15: Optimal defensive budget allocations as a function of probability that the terrorist
is Type-IV non-strategic (1-q) when r = 1, λ = 0.01, 0.05 and 1, respectively.

Figure 16 shows the expected losses for the government after the government has applied

each of the three defensive resource allocation schemes discussed in Section 4.1 as a function

of the probability that the terrorist is Type-IV non-strategic (1-q) when r = 1, λ = 0.01, 0.05,

and 1, respectively. We find that T = 1 for all cases. The results are different from that for

46



Type-I non-strategic terrorist when N = 1, 2, and 5, as shown in Figures 5 (a1-a3, b1-b3,

c1-c3).
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L∗: Defender knows attacker characteristic

L̄ : Defender believes attacker is strategic

L̂ : Defender believes attacker is non-strategic

 

d : Robustness of Game Models

T : Preference Boundary

Figure 16: Government’s three types of expected losses and corresponding preference thresh-
old (T) and robustness measure (d) as a function of probability that the terrorist is Type-IV
non-strategic (1− q) when r = 1, λ = 0.01, 0.05, and 1, respectively.

Figures 17 shows preference threshold (T) and robustness (d) for game-theoretic models

as a function of budget (C) and the probability that the terrorist is Type-IV non-strategic

when λ = 0.01, 0.05, and 1, respectively. Figures 17 (a1, b1, c1) show that T will always

be approximately 1. Figures 17 (a2, b2, c2) show that d will always be non-negative. Those

findings suggest that game-theoretic models are highly preferred regardless of the value of λ

and N .

B.3 Example where T could be less than or greater than or equal

to 0.5

Figure 18 shows that T could be less than or greater than or equal to 0.5 where we assume

that all the target valuations are equal to $16.78 M (xi = C/n = $788.8/47 M ∀i, the actual

numerical value does not matter). In particular, Figures 18 (a1-a3) show that T < 0.5 when

λ is low and N is small; Figures 18 (b1-b3) show that T = 0.5 when λ is medium and N is

small; and Figures 18 (a4, b4, c1-c4) show that T = 1 when λ is high or N is large.
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Figure 17: Preference threshold (T) and robustness (d) for game-theoretic models as a
function of budget (C) and the probability that the terrorist is Type-IV non-strategic when
r = 1, λ = 0.01, 0.05, and 1, respectively.
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L∗: Defender knows attacker characteristic

L̄ : Defender believes attacker is strategic

L̂ : Defender believes attacker is non-strategic
 

d : Robustness of Game Models

T : Preference Threshold

Figure 18: Example where T could be less than or greater than or equal to 0.5, when
assuming that xi = C/N = $16.78 M.
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