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Abstract In a security screening system, a tighter screening policy not only increases the
security level, but also causes congestion for normal people, which may deter their use
and decrease the approver’s payoff. Adapting to the screening policies, adversary and nor-
mal applicants choose whether to enter the screening system. Security managers could use
screening policies to deter adversary applicants, but could also lose the benefits of admitting
normal applicants when they are deterred, which generates a tradeoff. This paper analyzes
the optimal screening policies in an imperfect two-stage screening system with potential
screening errors at each stage, balancing security and congestion in the face of strategic
normal and adversary applicants. We provide the optimal levels of screening strategies for
the approver and the best-response application strategies for each type of applicant. This
paper integrates game theory and queueing theory to study the optimal two-stage policies
under discriminatory and non-discriminatory screening policies. We extend the basic model
to the optimal allocation of total service rate to the assumed two types of applicants at the
second stage and find that most of the total service rate are assigned to the service rate for
the assumed “Bad” applicants. This paper provides some novel policy insights which may
be useful for security screening practices.
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1 Introduction

Since September 11, 2001, the issue of homeland security has received much attention, and
the government has taken tighter screening measures to increase the security level. The 9/11
Commission Act requires a 100% of scanning of US bound containers by radiation detection
and non-intrusive inspection equipment at foreign ports before being loaded on a vessel (U.S.
Government PrintingOffice 2007). The Transportation SecurityAdministration (TSA) devel-
oped a Certified Cargo Screening Program to reach 100% of screening cargo transported on a
passenger aircraft for explosives (Transportation Security Administration 2013). Strict secu-
rity screening policies could identify and deter adversary applicants, which prevents damages.
On the other hand, it can also cause congestion and delays, which may discourage normal
application and bring in high economic losses. For example, the U.S. General Accounting
Office (2004) estimates that the average waiting time for a visa security clearance is 67 days,
which could result in the loss of technology and advanced knowledge due to excessivewaiting
times. Cudmore and Whalley (2005) observe that the border delay due to trade liberalization
through tariff reduction decreases about 30% of imports’ value. Closing two US ports in
Washington D.C. for 3 days would result in a major economic loss of up to $58 billion
(Gerencser and Vincent 2003). One Federal Reserve Bank of New York capital report esti-
mates that the travel delays due to heightened airport security carry a $12 billion cost in 2003
(Cordes et al. 2006). Similarly, Schneier (2012) estimates about $10 billion per year loss due
to the post-9/11 airport security proceduresmade by theTSA.Such security-screening-related
huge economic losses motivates this research to explore “better” screening policies, which
would not onlyminimize risks but also consider the normal passengers’welfare and strategies.

The screening processes are generally not perfect. For example, Ding et al. (1998) illus-
trate two types of testing errors—nonconforming items could be tested as conforming or
conforming items could be tested as nonconforming. McLay et al. (2009) formulate dynamic
programming, knapsack and sequential assignment problems intoMarkov decision processes
to maximize the number of true alarms, taking the capacity and assignment constraints and
passengers’ perceived risk levels into consideration. Nie et al. (2009b) apply a mixed integer
linear program to minimize the overall false alarm probability and maintain the overall false
clear probability, incorporating passenger risk levels into different risk classes. This paper
considers two types of screening errors—the adversary applicant is erroneously screened as
normal or the normal applicant is erroneously screened as an adversary.

Some literatures suggest that a multi-stage system is better than a single-stage one. For
example, Kobza and Jacobson (1997) demonstrate that the multiple-device system is better
than the single-device one under certain error probability measures for accessing security
system architectures. Poole and Passantino (2003) suggest that multiple levels of security
can pre-clear low-risk passengers and provide extra scrutiny for high-risk passengers.

Table 1 summarizes the scope of coverage by previous research on the aspects of game
theory, queueing theory, or multi-stage inspection on security issues and establish the con-
tribution of the paper.

Queueing theory is the mathematical theory of waiting lines, or queues, which is con-
structed to study queue lengths and waiting times (Allen 1990). It has been applied in many
fields, such as traffic engineering (Menasce et al. 2004), the design of factories (Schlechter
2009), and telecommunications (Telecommunication Networks Group 2013). Queueing the-
ory has beenwidely applied for security congestion issues caused by inspection. For example,
Zhang (2009) proposes the congestion-based staffing policy tomaintain average queue length
with a Markovian benchmark model, balancing with the concerns of security. Bakshi et al.
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Table 1 Comparison of literature on game theory, queueing theory, and multi-stage inspection

References Queueing theory Game theory Multi-stage

Zhang (2009)
√ √

Bakshi et al. (2011)
√ √

Lee and Jacobson (2011)
√

Wang and Zhuang (2011)
√ √

Nie et al. (2012)
√

Azaiez and Bier (2007)
√

Zhuang et al. (2010)
√

Golalikhani and Zhuang (2011)
√

Haphuriwat and Bier (2011)
√

Cavusoglu et al. (2013)
√ √

McLay et al. (2006)
√

Feng (2007)
√

Nie et al. (2009a)
√

Zhang et al. (2011)
√ √

Nikolaev et al. (2012)
√

This paper
√ √ √

(2011) analyze the relation between the fraction of inspected containers and the average delay
time based on historical data and suggest a rapid primary test scan of all containers and then
a more careful secondary scan of a few previous containers that failed the primary scan. Lee
and Jacobson (2011) use queueing theory to study the passenger’s expected screening time
under a multi-level aviation security system. Wang and Zhuang (2011) apply game theory
and an M/M/1 one-stage queueing system to analyze the strategic interaction and optimal
security screening policies, balancing the system congestion and security issues. Nie et al.
(2012) analyze how to assign passengers with different risk classes to the selectee queueing
lane with a steady-state nonlinear binary integer model in an airport screening system.

Game theory is the study of mathematical models of conflict and cooperation among
decision-makers (Myerson1997). It ismainly used in political science (Downs1957;Hausken
and Zhuang forthcoming), logic (Smith and Price 1973), biology (Ben-David et al. 1994),
psychology (Colman 2003; Xu and Zhuang, forthcoming), donation (Zhuang et al. 2014;
Saxton and Zhuang 2013), and economics (Aparicio and Sanchez-Soriano 2008; Agarwal
and Zeephongsekul 2011). Researchers apply game theory to study security problems, such
as optimization of resource allocation (Xu et al. forthcoming; Xiang and Zhuang forthcom-
ing). For example, Azaiez and Bier (2007) apply game theory to allocate security investments
in series and parallel systems with a defense budget, assuming the cost of an attack against
any given component increases linearly with the amount of defensive investment in that
component. Zhuang et al. (2010) model a multiple-period signaling game with incomplete
information between the defender and attacker, considering secrecy and deception strategies
for the defender and balancing capital and expense for defense investments. Golalikhani and
Zhuang (2011) consider a continuous-level optimal assignment of defensive resources based
on functional similarity or geographical proximity in an attacker–defender game. Haphuri-
wat and Bier (2011) develop a game-theoretic model to optimally allocate resources between
target hardening and overarching protection. Cavusoglu et al. (2013) analyze the profiling
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vulnerability under no-profiling and two profiling setups with one and two screening devices
in the face of strategic attackers for aviation screening security problem, considering total
expected security cost, inspection rate of normal passengers, and attacker detection rate.

A multi-stage screening process is common in product testing, security screening and
inspection especially when the first-stage screening is not perfect. For example, when for-
eigners apply to US visa, they are interviewed by consular officers first, and then subject
to additional administrative processing. Many researchers have considered multiple-stage
inspection for security problems. McLay et al. (2006) study a multilevel allocation problem
in an aviation security system, where passengers with different risk levels are assigned to
different risk classes considering budget and assignment constraints. Feng (2007) point out a
two-device systems is better than a single-device systems in terms of both cost effectiveness
and accuracy for an airport checked-baggage security screening system. Nie et al. (2009a)
study the impact of joint responses of device for airport inspection security problem in terms
of expected cost of misclassification. Zhang et al. (2011) propose complete inspection at
the first stage and further proportional inspection for US-Canadian border crossings, balanc-
ing security and customer service with a two-stage queueing model. Nikolaev et al. (2012)
introduce a multi-stage sequential passenger screening problem to obtain an optimal screen-
ing policy that maximizes the total security, where the assessed passengers’ threat value is
dynamic and can be updated.

To our best knowledge, no previous work integrates queueing theory and game theory
on multi-stage security problems, although congestion and strategic interaction are critical
in multi-stage security systems. To fill this gap, based on a one-stage model from Wang
and Zhuang (2011), this paper will analyze service allocation in a more realistic two-stage
imperfect screening system on security and optimization problems to provide some screening
policy insights for security decision makers.

The rest of this paper is structured as follows: Sect. 2 introduces a two-stage screen-
ing model. Section 3 shows the applicants’ best responses with a numerical illustration in
screening probabilities and the approver’s optimal strategy; Sect. 4 provides some numerical
sensitivity analysis as well as some extensions. Section 5 concludes this paper and provides
some future research directions. The Appendix provides proofs of the propositions as well
as additional numerical illustrations.

2 The model

This section introduces the basic model and preliminary results using the discriminatory
and non-discriminatory policies in a two-stage game-theoretic model. In particular, Sect. 2.1
describes the screening system process; Sect. 2.2 introduces the notation and game tree with
the strategic approver’s and applicants’ payoffs; Sects. 2.3–2.4 provides the optimization
problems for the potential normal, adversary applicants and the approver.

2.1 System process

In the screening system,we consider that an approver (authority,manager, or screener) assigns
screening policies to potential applicants based on the applicants’ observable attributes,which
are classified as normal (good) and adversary (bad) applicants. His purpose is to deter adver-
sary applicants and at the same admit normal applicants. The potential applicants decide
whether to submit their applications to the screening system based on the observable screen-
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Fig. 1 A two-stage approval process with strategic applicants and congestion

ing policies and waiting line information. Figure 1 shows the screening process under an
imperfect two-stage system.

There is a screening line at each stage where applicants are potentially checked. If good or
bad applicants do not apply, the process ends. If applicants submit an application, the approver
chooses whether to screen them at each stage. If the applicants are not selected to be screened,
they will automatically pass through. We assume that there are screening errors at each stage
(Wang and Zhuang 2011) due to the imperfect screening system functionality or the bad
applicants’ deception. Once normal and adversary applicants are checked at the first stage,
they could be erroneously labeled as either ‘Good’ or ‘Bad’ with corresponding screening
error probabilities. Based on the checking results at the first stage, the approver will determine
whether to screen applicants at the second stage with corresponding screening probabilities
and service rates in two screening lines. We assume that the second stage screening/service
rate for applicants screened as ‘Good’ is larger than the one for applicants screened as ‘Bad’.
The applicants will be determined to be rejected or passed based on the screening results at
the second stage.

2.2 Notation

Table 2 lists the notation that is used throughout this paper, including five decision variables
(screening probability at the first stage �1, probability of screening ‘Good’ applicants at
the second stage �2G , probability of screening ‘Bad’ applicants at the second stage �2B ,
normal and adversary applicant’s submission probabilities PG and PB , respectively), six
utility functions (approver’s objective function J (�, PB , PG), normal applicants’ objective
function uG(�, PG , PB), adversary applicants’ objective function u B(�, PB), and expected
waiting time W ), and 22 parameters (approver’s reward for admitting each normal applicant
R, approver’s penalty for admitting each adversary applicant C , normal and adversary appli-
cants’ rewards if passed rG and rB , respectively, adversary applicant’s penalty if rejected
cB , waiting cost per unit time for normal applicants cW , arrival rate of all potential normal
and adversary applicants �G and �B , actual arrival rate of normal and adversary applicants
λG = �G PG and λB = �B PB , the maximum arrival rate of screened normal applicants
�̂G , the first stage screening/service rates μ1, the second stage screening/ service rate for
applicants screened as ‘Good’ or ‘Bad’ μ2G and μ2B , respectively, the first stage available
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Table 2 Notations and explanations for the two-stage model

Decision variables

�1 ∈ [0, 1] Screening probability at the first stage

�2G , �2B ∈ [0, 1] Probability of screening ‘Good’ or ‘Bad’ applicants at the second stage

� = (�1, �2G , �2B ) Vector for approver’s screening strategy

PG,B ∈ [0, 1] Potential normal and adversary applicant’s submission probability

PG (�), PB (�) Potential applicant’s best response for given �

Utility functions

J (�, PB , PG ) Approver’s objective function

uG (�, PB , PG ) Normal applicants’ objective function

u B (�, PB ) Adversary applicants’ objective function

W1(�, P(�)) Expected waiting time at the first stage

W2G (�, P(�)) Expected waiting time at the second stage once screened as ‘Good’

W2B (�, P(�)) Expected waiting time at the second stage once screened as ‘Bad’

Parameters

R Approver’s reward for admitting each normal applicant

C Approver’s penalty for admitting each adversary applicant

rG , rB Normal and adversary applicants’ reward if passed, respectively

cG , cB Normal and adversary applicant’s penalty if rejected, respectively

cW Waiting cost per unit time for normal applicants

�G , �B Arrival rate of all potential normal and adversary applicants

λG , λB Actual arrival rate of normal and adversary applicants

�̂G The maximum arrival rate of screened normal applicants

μ1 The first stage screening/service rate

μ2G The second stage screening/service rate for applicants screened as ‘Good’

μ2B The second stage screening/service rate for applicants screened as ‘Bad’

μ′
1 The first stage available service rate for normal applicants

μ′
2G , μ′

2B The second stage available service rate for normal applicants

screened as ‘Good’ or ‘Bad’, respectively

P+
G The first stage upper bound for normal application probability

P++
GG , P++

G B The second stage upper bound for normal application probability

once normal applicants screened as ‘Good’ or ‘Bad’, respectively

eib ∈ [0, 1], i = 1, 2 Probability that adversary applicant screened as ‘Good’ at stage i = 1, 2

eig ∈ [0, 1], i = 1, 2 Probability that normal applicant screened as ‘Bad’ at stage i = 1, 2

r ∈ [0, 1] Power function coefficient

available service rates for normal applicants μ′
1, the second stage available service rate for

normal applicants screened as ‘Good’ or ‘Bad’ μ′
2G and μ′

2B , respectively, the first stage
upper bound for normal application probability P+

G , The second stage upper bound for nor-
mal application probability once normal applicants screened as ‘Good’ or ‘Bad’ P++

GG and
P++

G B , respectively, the probabilities that adversary applicant screened as normal eib, the prob-
abilities that normal applicant screened as adversary eig at stage i = 1, 2, respectively, and
the power function coefficient r ).
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Fig. 2 Game tree and strategic approver’s and applicants’ payoffs in the two-stage model

Figure 2 shows the game tree of the screening system. At the beginning, the proportion of
normal applicantswhoareGood and adversary applicantswhoare Bad decide the application
probabilities PG and PB , respectively, based on the public screening policies determined by
the approver. Based on the screening probability �1 at the first stage, each applicant has the
chance to get screened. The screening system is imperfect, and we model such screening
errors using probabilities that the adversary applicant is incorrectly screened as ‘Good’ eib,
and probabilities that the normal applicant is incorrectly screened as ‘Bad’ eig at stage
i = 1, 2, respectively. The screened applicants are determined to be checked again based on
the second-stage screening policies including the screening probabilities for ‘Bad’ ones�2B

and ‘Good’ ones �2G .
The right side of Fig. 2 shows the approver’s and applicants’ payoffs. For the approver,

without admitting any applicants, the approver’s utility is 0. Once he passes one normal
applicant as Good , he could get a reward R based on the normal application probability
PG , considering the potential normal arrival rate�G . The approver passes normal applicants
under one of the following five scenarios: go through both stages of screening and be screened
as ‘Good’ at each stage with probability�1(1−e1g)�2G(1−e2g), get screened as ‘Good’ at
the first stage and be not screened at the second stage with probability�1(1−e1g)(1−�2G),
incorrectly screened as ‘Bad’ at the first stage and screened as ‘Good’ at the second stage
with probability �1e1g�2B(1− e2g), incorrectly screened as ‘Bad’ at the first stage and not
screened at the second stage with probability �1e1g(1 − �2B), and not screened at all with
probability 1 − �1.

On the other hand, once the approver passes an adversary applicant as Bad , he would
receive a penalty C based on the adversary application probability PB , while considering
the potential adversary applicants arrival rate�B . The approver passes each adversary appli-
cant under one of the following five scenarios: go through both stages of screening and
be incorrectly screened as ‘Good’ at each stage with probability �1e1b�2Ge2b, incorrectly
screened as ‘Good’ at the first stage and not screened at the second stage with probability
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�1e1b(1 − �2G), screened as ‘Bad’ at the first stage but incorrectly screened as ‘Good’ at
the second stage with probability�1(1−e1b)�2Be2b, screened as ‘Bad’ at the first stage and
not screened at the second stage with probability �1(1 − e1b)(1 − �2B), and not screened
at all with probability 1 − �1.

If normal and adversary applicants do not apply to the system their utilities are 0 with
probabilities 1− PG and 1− PB , respectively. For the normal applicants as Good , once they
are admitted, they will receive a reward rG , otherwise they will receive a loss cG . We assume
that the normal applicants’ application decision is affected by waiting cost, which equals the
unit waiting cost cW times the expected waiting time (W1, W2G and W2B for stages 1 and 2,
respectively) times the corresponding screening probability (�1 for W1, �2G(1 − e1g) for
W2G , and �2Be1g for W2B ). The normal applicants are screened at the second stage under
one of the two following scenarios: screened as ‘Good’ at the first stage and also screened
at the second stage with probability �1(1 − e1g)�2G , and incorrectly screened as ‘Bad’ at
the first stage and then screened at the second stage with probability �1e1g�2B . For the
adversary applicants as Bad , if they are caught, they will receive a penalty cB , otherwise
they will receive a reward rB . The adversary applicants can not pass the system under one
of the two following scenarios: incorrectly screened as ‘Good’ at the first stage and screened
as ‘Bad’ at the second stage with probability �1e1b�2G(1 − e2b), and screened as ‘Bad’ at
both stages with probability �1(1 − e1b)�2B(1 − e2b).

2.3 Adversary applicants’ optimization problems

The applicants’ expected utility payoffs are the summation of the weighted payoffs of the
second column of the right side of Fig. 2. The adversary applicants choose the application
probability PB to maximize his expected utility payoff, which is shown in Eq. (1).We assume
that the adversary applicants are patient and do not consider the waiting cost. We define the
probability that adversary applicants are caught �B ≡ �1�

B
2 (1 − e2b). Particularly, the

total probability of the adversary being caught across two stages equals the product of the
screening probability at the first stage �1, times the expected screening probability at the
second stage �B

2 ≡ e1b�2G + (1 − e1b)�2B , times the screening non-error probability at
the second stage 1 − e2b.

max
PB

u B(�, PB) = PBrB

(
�1e1b�2Ge2b + �1e1b(1 − �2G)

+�1(1 − e1b)�2Be2b + �1(1 − e1b)(1 − �2B) + (1 − �1

)

− PBcB

(
�1e1b�2G(1 − e2b) + �1(1 − e1b)�2B(1 − e2b)

)

= PB

(
rB(1 − �B)︸ ︷︷ ︸
Expected Reward

− cB�B
︸ ︷︷ ︸

Expected Penalty

)
(1)

As shown in Eq. (1) above, the expected reward for adversary applicants by passing the
systemequals the reward rB times the expectedprobability 1−�B . The adversary are screened
at the second stage under the scenarios that adversary applicants are erroneously labeled as
‘Good’ at the first stage but screened with probability e1b�2G and adversary applicants are
correctly labeled as ‘Bad’ at the first stage but screened with probability (1 − e1b)�2B . The
expected penalty for adversary applicants by being caught equals the penalty for passing the
system cB times the expected probability �B .
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2.4 Normal applicants’ optimization problems

The normal applicant chooses the application probability PG to maximize his expected utility
payoff, which is shown in Eq. (2). The normal applicants are affected by the waiting cost
at each stage. Specifically, normal applicant’s utility equals the application probability PG

times the net of the expected reward minus the expected waiting cost and the rejected loss.
The expected reward equals the reward for passing the system rG times the overall probability
that normal applicants pass the system 1 − �1�

G
2 e2g . Particularly, the total probability that

normal applicants are caught across two stages equals the product of the screening probability
at the first stage�1, times the screening probability at the second stage�G

2 ≡ (1−e1g)�2G +
e1g�2B , times the screening error probability at the second stage e2g . Normal applicants are
screened at the second stage under the scenarios that normal applicants are correctly labeled
as normal but screened with probability�2G(1−e1g) and normal applicants are erroneously
labeled as adversary but screened with probability�2Be1g . The expected waiting cost equals
unit waiting time cost cW times the product of the screening probability at the first stage �1,
and times the total waiting time across two stages W1 + W2G(1 − e1g)�2G + W2Be1g�2B .
The total waiting time equals the summation of the expected waiting time at the first stage
W1 and the product of the expected waiting time at the second stage W2G and W2B with
the corresponding screening probabilities at the second stage (1 − e1g)�2G and e1g�2B ,
respectively. The expected rejected loss equals the rejected loss cG times the screening
probability at the first stage �1, the screening probability at the second stage �G

2 , and the
screening error probability at the second stage e2g .

max
PG

uG(�, PG , PB) = PGrG

(
�1(1 − e1g)�2G(1 − e2g) + �1e1g(1 − �2G)

+ �1e1g�2B(1 − e2g) + �1e1g(1 − �2B) + 1 − �1

)

− PGcW

(
1 − (1 − �1)

)(
W1(�1, PG , PB)

+ W2G(�, PG , PB)(1 − e1g)�2G + W2B(�, PG , PB)e1g�2B

)

− PGcG

(
(1 − e1g)�2G + e1g�2B

)
e2g

= PG

(
rG(1 − �1�

G
2 e2g)︸ ︷︷ ︸

Expected Reward

− cW �1(W1+W2G(1 − e1g)�2G +W2Be1g�2B)︸ ︷︷ ︸
Expected Waiting Cost

− cG�1�
G
2 e2g︸ ︷︷ ︸

Expected Rejected Loss

)
(2)

Based on the M/M/1 queue theory, we have the expected waiting time W = 1
μ−λ

, where
μ is the service rate and λ is the arrival rate (Hines et al. 2003), the waiting time at the
first stage W1 and at the second stage W2G and W2B are expressed in Eqs. (3), (4), and (5)
respectively. In particular, the expected waiting time at the first stage W1 equals 1 over the net
of the service rate μ1 less the total arrival rate �1(PG�G + PB�B), where the total arrival
rate equals the screening probability at the first stage �1 times the summation of the normal
applicant’s arrival rate PG�G and the adversary arrival rate PB�B .
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W1(�1, PG , PB) = 1

μ1 − �1(PG�G + PB�B)
(3)

The expected waiting time at the second stage once normal applicants are screened as
‘Good’ at the first stage W2G equals 1 over the net of the service rateμ2G less the total arrival
rate, where the total arrival rate equals the screening probability at the first stage�1 times the
screening probability on ‘Good’ at the second stage �2G times the summation of the normal
applicants’ arrival rate (1 − e1g)PG�G and the adversary applicants arrival rate e1b PB�B .

W2G(�, PG , PB) = 1

μ2G − �1�2G

(
(1 − e1g)PG�G + e1b PB�B

) (4)

The expected waiting time at the second stage once normal applicants are screened as ‘Bad’
at the first stage W2B equals 1 over the net of the service rate μ2B less the total arrival rate,
where the total arrival rate equals the screening probability at the first stage �1 times the
screening probability on ‘Bad’ at the second stage �2B times the summation of the normal
applicants’ arrival rate e1g PG�G and the adversary applicants arrival rate (1 − e1b)PB�B .

W2B(�, PG , PB) = 1

μ2B − �1�2B

(
e1g PG�G + (1 − e1b)PB�B

) (5)

2.5 Approver’s optimization problem and definition of equilibrium

The approver’ expected utility payoff is the summation of the weighted payoff of the
first column of the right side in Fig. 2. The approver chooses the screening probabili-
ties �1, �2B and �2G across the two stages to maximize his expected utility, which is
summarized in Eq. (6). The utility consists of the expected benefit from passing normal
applicants �G PG R(1− �1�

G
2 e2g), and the expected penalty from passing adversary appli-

cants �B PBC(1 − �B). Specifically, the expected benefit from passing normal applicants
equals the normal applicant’s arrival rate �G times the normal application probability PG ,
the reward for admitting each normal applicant R, and the probability for passing the nor-
mal applicants (1 − �1�

G
2 e2g). The expected penalty from passing adversary applicants

equals the adversary applicant’s arrival rate �B times adversary application probability PB ,
the penalty for admitting each adversary applicant C , and the probability that passes each
adversary applicant 1 − �B .

max
�1,�2G ,�2B

J (�, PG , PB) = �G PG R
(
�1(1 − e1g)�2G(1 − e2g)+�1(1 − e1g)(1 − �2G)

+�1e1g�2B(1 − e2g) + �1e1g(1 − �2B) + 1 − �1

)

−�B PBC
(
�1e1b�2Ge2b + �1e1b(1 − �2G)

+�1(1 − e1b)�2Be2b + �1(1 − e1b)(1 − �2B) + 1 − �1

)

= �G PG R(1 − �1�
G
2 e2g)︸ ︷︷ ︸

Expected Reward

−�B PBC(1 − �B)︸ ︷︷ ︸
Expected Cost

(6)

Definition 1 We call a collection of strategies (P∗
B , P∗

G , �
∗) a subgame perfect Nash equi-

librium (SPNE), or ‘equilibrium’, if and only if Eqs. (7), (8) and (9) are satisfied, where none
of the approver and two types of applicants have the incentives to change their move.
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P∗
B = P̂B(�∗) = argmax

PB∈[0,1]
u B(�∗, PB) (7)

P∗
G = P̂G(�∗, P∗

B) = argmax
PG∈[0,1]

uG(�∗, PG , P∗
B) (8)

�∗ = �̂
(

P̂B(�), P̂G(PB ,�)
)

= argmax
�∈[0,1]

J
(

P̂B(�), P̂G(P̂B ,�),�
)

(9)

3 The analyses

3.1 Adversary applicants’ best response

We assume that when the adversary applicant is indifferent between applying or not, he
would not apply to the system as a tie breaker. Solving the optimization problem in Eq. (1),
Proposition 1 provides the best response function for adversary applicants.

Proposition 1 Adversary potential applicants’ best responses are given by:

PB(�) =
{
1 if �B < sb ≡ rB

rB+cB

0 if �B ≥ sb ≡ rB
rB+cB

.
(10)

where �B is the probability that adversary applicants are caught as introduced in Sect. 2.3.

Remark Proposition 1 indicates that an adversary applicant is deterred if total effective
screening probabilities for adversary applicants �B is higher than or equal to the threshold
value sb. The adversary potential applicants’ best responses PB increases in adversary appli-
cant’s reward rB and error probability that adversary applicant screened as ‘Good’ at the
second stage e2b, and decreases in penalty cB .

3.2 Normal applicants’ best response

We assume that when the normal applicant is indifferent between applying and not applying,
he would apply to the system as a tie breaker. Normal potential applicants’ utility depends
on the decision of adversary applicants through congestion, as shown in Eqs. (2), (3), (4) and
(5). Note that the traffic caused by the adversary applicants’ arrival rate equals the summation
of �1PB�B at stage one and �1�2Ge1b PB�B and �1�2B(1 − e1b)PB�B at stage two,
separately. Solving Eq. (2), Proposition 2 below provides the best response function for
normal applicants, using some new notations: available service rates μ′

1 ≡ μ1 − �1PB�B ,
μ′
2G ≡ μ2G − �1�2Ge1b PB�B and μ′

2B ≡ μ2B − �1�2B(1 − e1b)PB�B , and upper

bounds for the normal application probability at the first stage P+
G ≡ μ′

1
�1�G

, the second stage

P++
GG ≡ μ′

2G
�1�2G (1−e1g)�G

and P++
G B ≡ μ′

2B
�1�2B e1g�G

, and three conditions (d1) uG(�, PG =
1, PB) < 0, (d2) uG(�, PG = 1, PB) ≥ 0, P+

G ∈ [0, 1) or P++
GG ∈ [0, 1) or P++

G B ∈ [0, 1),
and (d3) uG(�, PG = 1, PB) ≥ 0 and P+

G ∈ [0, 1).
Proposition 2 Given � and PB(�), the normal potential applicant’s best response
PG(�, PB) is given by:

(i) If the approver does not screen at the first stage; i.e., �1 = 0, then PG = 1.
(ii) If the approver screens at both stages; i.e., �1 ∈ (0, 1], �G

2 ∈ (0, 1], then
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(a) If μ′
1 ≤ 0 or μ′

2G ≤ 0 or μ′
2B ≤ 0, then PG = 0.

(b) If μ′
1 > 0, μ′

2G > 0, μ′
2B > 0, neither (d1) nor (d2), then PG = 1.

(c) If μ′
1 > 0, μ′

2G > 0, μ′
2B > 0, either (d1) or (d2) or both, then

PG = max
(
min

( �̂G

�1�2G(1 − e1g)�G
,

�̂G

�1�2Be1g�G
, 1, P+

G , P++
GG , P++

G B

)
, 0

)
∈ [0, 1).

where the maximum arrival rate for normal applicants is

�̂G = − b′

3a′ + 3

√√√√ b′c′
6a′2 − b′3

27a′3 − d ′
2a′ +

√(
b′c′
6a′2 − b′3

27a′3 − d ′
2a′

)2

+
(

c′
3a′ − b′2

9a′2

)3

+ 3

√√√√ b′c′
6a′2 − b′3

27a′3 − d ′
2a′ −

√(
b′c′
6a′2 − b′3

27a′3 − d ′
2a′

)2

+
(

c′
3a′ − b′2

9a′2

)3

(a′ 	= 0)

or �̂G = −c′±√
c′2−4b′d ′
2b′ (a′ = 0&b′ 	= 0); or �̂G = − d ′

c′ (a′ = 0&b′ = 0&c′ 	= 0).

where a ≡ �2G(1 − e1g), b ≡ �2Be1g, c ≡ rG−(rG+cG )�1�
G
2 e2g

�1cW
, a′ = abc, b′ = (3ab −

μ′
1abc−μ′

2Gbc−μ′
2Bac, c′ = μ′

1μ
′
2Gbc+μ′

1μ
′
2Bac+μ′

2Gμ′
2Bc−2aμ′

2B −2bμ′
2G −2abμ′

1,

d ′ = μ′
2Gμ′

2B + aμ′
1μ

′
2B + bμ′

1μ
′
2G − μ′

1μ
′
2Gμ′

2Bc.

(iii) If the approver screens at the first stage �1 ∈ (0, 1] but does not screen at the second
stage �G

2 = 0, then

(a) If μ′
1 ≤ 0, then PG = 0.

(b) If μ′
1 > 0, neither (d1) nor (d3), then PG = 1.

(c) Ifμ′
1 > 0, either (d1) or (d3) or both, then PG = λG

�1�G
= max

(
min

(
�̂′

G
�1�G

, 1, P+
G

)
,

0
)

∈ [0, 1), where �̂′
G = μ1 − �1PB�B − cW �1

rG−(rG+cG )�1e1g
.

Remark Proposition 2(i) shows that normal applicants would apply to the system if there is
no screening. Propositions 2(ii)(a) and (iii)(a) show that normal applicants would not apply
to the system if there is no available service rate. Propositions 2(ii)(b) and (iii)(b) show that
normal applicants would apply to the system if there are positive service rates and payoffs.
Propositions 2(ii)(c) and (iii)(c) show that the interior normal potential applicants’ submission
probability PG decreases in screening probabilities �1, �2G , �2B . In addition, it shows that
the normal potential applicants’ submission probability PG increases in the service rates
at each stage μ1, μ2G , μ2B , increases in the normal applicants’ reward if passed rG , and
decreases in unit waiting cost cW , error probability that normal applicant screened as ‘Bad’
at the second stage e2g , and normal applicant’s potential arrival rate �G .

3.3 Numerical illustration for applicants’ best response

Following Cavusoglu et al. (2013), we use a power function 1 − eib = er
ig to study the

correlation between two screening errors. We refer the false alarm and false clear data from
Aguirre et al. (2012) to let the error probabilities e1g = e2g = 0.125 and r = 0.0247, then
we have e1b = e2b = 0.05. Some parameters’ values are based onWang and Zhuang (2011):
R = 1 and cB = 1; with other revisions as cG = 0; rG = 10; cW = 50; rB = 1; λG = 120;
λB = 10; μ1 = 50; μ2G = 40; μ2B = 30; and C = 10.
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Fig. 3 The best response of adversary and normal applicants and approver’s payoffs as a function of three
individual screening probabilities
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Fig. 4 Illustration of applicants’ best response and approver’s payoff affected by the non-discriminatory
policy when �1 = 0.6

Figure 3 illustrates the best response of applicants to the individual screening probability.
Figures 3a–c show the adversary application probability PB is 1 if �1, �2B and �2G are
sufficiently small (such that �B < rB

rB+cB
as predicted by Proposition 1) and zero otherwise.

Figure 3a shows that the normal application probability PG is 1when�1 is small. Figure 3a–c
show the normal application probability PG first decreases in�1,�2B and�2G , respectively
due to congestion, and then increases based on reduced congestion by adversary applicants
when the adversary application is deterred (i.e. PB = 0), and finally decreases again in
�1, �2B , and �2G due to additional congestion. The approver’s payoff J is affected by
the individual screening probability that affects applicants’ application probabilities. The
approver’s payoff J first increases in �1 due to more captures of adversary applicants, and
then increases suddenly with the deterrence of adversary applicants, and finally decreases
when the normal application probability decreases.

Figure 4 demonstrates that the potential applicants’ best response and approver’s payoff
under a non-discriminatory policy, where the screening probabilities at the second stage
corresponding to each type of applicant are equal, �2G = �2B . The approver’s payoff J
decreases with decreasing normal application probability PG based on increasing screening
probability at the second stage.When the adversary application probability PB is deterred due
to high screening probability, the approver’s payoff J suddenly increases with an increased
normal application probability PG .

123



Ann Oper Res

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
 C

Baseline
P

G

P
B

Φ
1

Φ
2G

Φ
2B

Fig. 5 Numerical sensitivity analysis under discriminatory policy for approver’s penalty

3.4 Approver’s best strategy

Following Wang and Zhuang (2011), for simplicity, we assume that when the approver is
indifferent between different levels of screening probabilities, she will choose the lowest
level. Solving Eq. (6), Proposition 3 below provides the optimal screening strategy for the
approver.

Proposition 3 The optimal approver’s utility is given by:

J (�) =
{

J1(�), if �B ≥ sb

J2(�), if �B ∈ [0, sb).
(11)

where J1(�) = R(1 − �1�
G
2 e2g)PG(�, PB = 0), and J2(�) = R(1 − �1�

G
2 e2g)PG(�,

PB = 1) − C(1 − �1�
B
2 (1 − e2b))

The optimal strategy for the approver is to solve:

J ∗ = max
�: 0≤�B≤sb

J (�) (12)

Remark Equation (12) truncates the range of screening probability �1�
B
2 from the range

[0, 1] to the range [0, sb] for maximizing the approver’s utility, which provides an efficient
way for computation.

4 Numerical illustrations and extensions

4.1 Numerical sensitivity analyses under discriminatory policy

Figure 5 illustrates the numerical sensitivity analysis under a discriminatory policy for penalty
parameter C . It shows that as the approver’s penalty of passing an adversary applicant C
increases, the approver increases the screening probabilities �1, �2G , and �2B to deter
adversary applicants PB , which decreases normal application probability PG . Other results
of numerical sensitivity analyses are shown in Appendix 4.

Figure 6 compares the model results between the non-discriminatory policy and the dis-
criminatory policy: adversary application probabilities (PB N and PB D , respectively), normal
application probabilities (PG N and PG D , respectively), and approver’s payoffs (JN and JD ,
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Fig. 6 Comparisons between the non-discriminatory and the discriminatory policies

respectively). Other results are shown in Appendix 5. In particular, Fig. 6a shows that the
adversary application probability under a discriminatory policy is significantly lower than
that under a non-discriminatory policy when C is low. Figure 6b shows that the normal appli-
cation probability under a discriminatory policy is significantly higher than the one under a
non-discriminatory policy when C is high. Figure 6c shows that the approver’s payoffs under
a discriminatory policy is significantly higher than the one under a non-discriminatory policy
when C is high.

4.2 Extension: the allocation of total service rate in two-stage analysis

In this section, we extend our model to consider a new parameter: the total service rate μ,
where the different service rates μ2G and μ2B at the second stage for the assumed ‘Good’
and ‘Bad’ applicants, respectively are new variables, which are constrained by μ. The total
service rate is analyzed in terms of the optimal allocation to each type of assumed ‘Good’
and ‘Bad’ applicants at the second stage in order to maximize the approver’s payoff. Based
on Eq. (6), the approver’s objective function can be rewritten as below:

max
�,μ2G ,μ2B

J (�, μ2G , μ2B) (13)

Equation (14) shows the summation of the service rates at the second stage meets a certain
level (threshold) the total service rate μ.

μ2G + μ2B ≤ μ (14)

Based on Propositions 1 and 2, we numerically find the optimal values of the service rates
μ2G and μ2B . Figure 7 illustrates how to optimally allocate the total service resource μ at
the second stage for assumed ‘Good’ and ‘Bad’ applicants under the discriminatory policy.
Figure 7a shows that the service rate at the second stage for the assumed ‘Good’ applicants
μ2G increases dramatically in the total service rate μ. Figure 7b details the percentages of
allocation of the total service resource μ to the assumed each type of applicants. It shows
that the service rate at the second stage for the assumed ‘Good’ applicants takes at least 80%
of the total service rate.

4.3 Comparisons for one versus two-stage screening systems

This section introduces and compares one versus two-stage screening systems to find the
best screening policy for the approver under certain situations. The utility for a one-stage
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Fig. 8 Comparisons of approver’s utilities in one-stage and two-stage systems

imperfect screening system is J1N P . The utility for a two-stage imperfect screening system
is J2N P . Figure 8 compares the approver’s utilities in one- and two-stage screening systems,
which shows that the approver’s payoff in a two-stage screening system J2N P is significantly
larger than the one in a one-stage system J1N P when the penalty for approver once admitting
each adversary applicant C is intermediate. Other results are shown in Appendix 6.

5 Conclusion and future research directions

Detecting and deterring adversary applicants during the security screening process is impor-
tant but challenging for the approver, which could be affected by screening errors and service
rates. Furthermore, appropriate screening policies are needed to control congestion andmain-
tain safety for the welfare of normal applicants. In this paper, we model a security screening
process in an imperfect and two-stage sequential game, where the approver, as the leader,
determines the optimal screening strategies at each stage, and the normal and adversary appli-
cants respond with whether to apply or not. We provide analytical solutions and numerical
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illustrations for the applicants’ best responses and compare the equilibrium strategies for the
approver and applicants between discriminatory and non-discriminatory screening policies.
It shows that from the economic benefits perspective, the performance in discriminatory
screening policy is better. This gives some insights for policy makers to determine which
policy to apply in security screening context.

The adversary potential applicant’s best response increases in reward and error probability
that adversary applicant screened as “Good” at the second stage, and decreases in penalty.
The normal potential applicant’s submission probability increases in parameters that service
rate at each stage, and reward if passed, and decreases in unit waiting cost, error probability
that normal applicant screened as “Bad” at the second stage, and normal potential arrival rate.
Security screening managers can thus better deter adversary applicants and attract normal
applicants based on these insights.

The model is extended to analyze the optimal allocation of total service rates to assumed
two types of applicants at the second stage. It demonstrates that when the total service rate
is high, at least 80% of the resources are assigned to the service rate for the assumed ‘Good’
applicants at the second stage. This result could be useful for decisionmakers to appropriately
allocate limited resources among different targets and stages.

Finally, we compare two different screening systems and find that the two-stage screening
system is significantly better than the one-stage system, especially when the adversary appli-
cants’ reward if passed, the service rate at the first stage, and the loss once normal applicants
are rejected are high, or when the error probability that normal applicants are screened as
“Bad” at the first stage, the penalty for approver once admitting each adversary applicant, the
adversary applicant arrival rate, and error probabilities that normal applicants are screened as
‘Bad’ at the first and second stage are intermediate, or when the power function coefficient,
the cost to adversary applicants being caught, the unit time cost, and the error probability that
normal applicant screened as ‘Bad’ at the second stage are low. This means that in certain
situations as long as the screening system is not perfect, no matters the screening system is
in airport, subway stations, or borders, two-stage screening system would be more useful.

In the future, we could extend the model to a parallel queueing network, so that the
applicants could be assigned into different lines with different service rates. We can classify
applicants into more than two classes with different risk levels. In addition, with the real data,
we could study dynamic screening policies and applicants’ information formulti-period game
analysis.

Appendix

Appendix 1: Proof of Proposition 1

The adversary potential applicant’s application rate PB depends on his utility function u B ,
once the utility payoff is less than equal to 0, adversary applicants would have no interest in

applying this system.His utility is u B = PB�B

(
rB(1−�B)−cB�B

)
. The revised screening

probability across the two stage is �B ≥ sb ≡ rB
rB+cB

, which is derived from u B ≤ 0, results
in PB = 0. The adversary potential applicants’ best response PB has the opposite change

direction with�B , which decreases in e2b, where ∂�B

∂e2b
= −�1�

B
2 ≤ 0. Therefore, adversary

potential applicants’ best response PB increases in rB and e2b, and decreases in cB .
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Appendix 2: Proof of Proposition 2

We define μ′
1 ≡ μ1 − �1PB�B , μ′

2G ≡ μ2G − �1�2Ge1b PB�B and μ′
2G ≡ μ2B −

�1�2B(1− e1b)PB�B . There are upper bounds for the normal application probability at the

first stage P+
G and at the second stage P++

GG and P++
G B , respectively, where P+

G ≡ μ′
1

�1�G
, and

P++
GG ≡ μ′

2G
�1�2G (1−e1g)�G

and P++
G B ≡ μ′

2B
�1�2B e1g�G

. The normal application probability PG

must be at least smaller than or equal to them to satisfy the service rates.

(i) We substitute �1 = 0 into Eqs. (1) and (2), which results in u B = PBrB > 0 and
uG = PGrG > 0. Thus potential applicants would apply with probability 1. Since there
is no screening at the first stage, naturally there will be no further screening at the second
stage, thus we have �2G = �2B = �G

2 = 0.
(ii) If the approver screens at both stages; i.e., �1 ∈ (0, 1], �G

2 ∈ (0, 1], then
(a) Once the service rates at the first and the second stage respectively can not satisfy

normal applicants, they will drop the application. Thus when μ′
1 ≤ 0 or μ′

2G ≤ 0 or
μ′
2B ≤ 0, we have PG = 0.

(b) Once the normal application probability PG satisfies the upper bounds and alsomakes
the normal applicants’ utilityμG(�, PG = 1, PB) ≥ 0, the normal applicants would
apply to the system PG = 1.

(c) Once the normal application probability PG makes the normal applicants’ utility
μG(�, PG = 1, PB) < 0 or makesμG(�, PG = 1, PB) ≥ 0 with any upper bounds
in the range of [0, 1) that P+

G ∈ [0, 1) or P++
GG ∈ [0, 1) or P++

G B ∈ [0, 1), it needs
to decrease the probability value to the range of [0, 1), considering PG must be at
least lower than or equal to the upper bounds P+

G , P++
GG and P++

G B . For the screening
policy, the maximum traffic of screened normal applicants �̂G is derived from the
normal applicant’s zero utility [Eq. (2)] at the equilibrium:

rG − (rG + cG)�1�
G
2 e2g − cW �1

( 1

μ′
1 − �̂G

+ �2G(1 − e1g)

μ′
2G − �2G(1 − e1g)�̂G

+ �2Be1g

μ′
2B − �2Be1g�̂G

)
= 0 (15)

Then the maximum traffic of screened normal applicants is:

�̂G = − b′

3a′ + 3

√√√√ b′c′
6a′2 − b′3

27a′3 − d ′
2a′ +

√(
b′c′
6a′2 − b′3

27a′3 − d ′
2a′

)2

+
(

c′
3a′ − b′2

9a′2

)3

+ 3

√√√√ b′c′
6a′2 − b′3

27a′3 − d ′
2a′ −

√(
b′c′
6a′2 − b′3

27a′3 − d ′
2a′

)2

+
(

c′
3a′ − b′2

9a′2

)3

(a′ 	= 0)

or �̂G = −c′ ± √
c′2 − 4b′d ′
2b′ (a′ = 0&b′ 	= 0)

or �̂G = −d ′

c′ (a′ = 0&b′ = 0&c′ 	= 0).

where�G
2 ≡ (1−e1g)�2G +e1g�2B is introduced in Sect. 2.3, and we define a ≡ �2G(1−

e1g), b ≡ �2Be1g , c ≡ rG−(rG+cG )�1�
G
2 e2g

�1cW
, a′ = abc, b′ = (3ab−μ′

1abc−μ′
2Gbc−μ′

2Bac,
c′ = μ′

1μ
′
2Gbc + μ′

1μ
′
2Bac + μ′

2Gμ′
2Bc − 2aμ′

2B − 2bμ′
2G − 2abμ′

1, and d ′ = μ′
2Gμ′

2B +
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aμ′
1μ

′
2B + bμ′

1μ
′
2G −μ′

1μ
′
2Gμ′

2Bc. Using Theorem 1 in Balachandran and Schaefer (1980),
there exists a unique equilibrium aggregate traffic rate: λG = max

(
min(�̂G ,�1�2G(1 −

e1g)�G ,�1�2Be1g�G), 0
)
.

Since there are three maximum traffic of screened normal applicants, thus we have P+
G ,

P++
GG and P++

G B .We choose the larger normal application probability that satisfies PG ∈ [0, 1].
Thus, normal potential applicants’ best response strategies satisfy:

PG = max
(
min

( �̂G

�1�2G(1 − e1g)�G
,

�̂G

�1�2Be1g�G
, 1, P+

G , P++
GG , P++

G B

)
, 0

)

We see that normal potential applicants’ best response PG has the opposite change direc-
tion with parameter �G but same change direction with parameter �̂G . We have ∂ PG

∂�G
=

− �̂G
�1�2G (1−e1g)�2

G
< 0 or − �̂G

�1�2B e1g�2
G

< 0, and ∂ PG

∂�̂G
= 1

�1�2G (1−e1g)�G
> 0 or

1
�1�2B e1g�G

> 0. Equation (15) shows that parameter �̂G has the opposite change direction
with parameters cW and e2g but same change direction with parameters μ1, μ2G , μ2B , and
rG since we have:

∂cW

∂�̂G
= −

1
(μ′

1−�̂G )2
+ �2

2G (1−e1g)2

(μ′
2G−�2G (1−e1g)�̂G )2

+ �2
2B e21g

(μ′
2B−�2B e1g�̂G )2

1
μ′
1−�̂G

+ �2G (1−e1g)

μ′
2G−�2G (1−e1g)�̂G

+ �2B e1g

μ′
2B−�2B e1g�̂G

< 0

∂e2g

∂�̂G
= − cW �1

�1�
G
2 rG

(
1

(μ′
1 − �̂G)2

+ �2
2G(1 − e1g)2

(μ′
2G − �2G(1 − e1g)�̂G)2

+ �2
2Be21g

(μ′
2B − �2Be1g�̂G)2

)
<0

∂μ1

∂�̂G
= (μ′

1 − �̂G)2

(
�2

2G(1 − e1g)2

(μ′
2G − �2G(1 − e1g)�̂G)2

+ �2
2Be21g

(μ′
2B − �2Be1g�̂G)2

)
+ 1 > 0

∂μ2G

∂�̂G
=

(
1

(μ′
1−�̂G )2

+ �2
2B e21g

(μ′
2B−�2B e1g�̂G )2

)
(μ′

2G − �2G(1 − e1g)�̂G)2

�2G(1 − e1g)
+ �2G(1 − e1g) > 0

∂μ2B

∂�̂G
=

(
1

(μ′
1−�̂G )2

+ �2
2G (1−e1g)2

(μ′
2G−�2G (1−e1g)�̂G )2

)
(μ′

2B − �2Be1g�̂G)2

�2
2Be21g

+ �2
2Be21g > 0

∂rG

∂�̂G
= cW �1

1 − �1�
G
2 e2g

(
1

(μ′
1−�̂G)2

+ �2
2G(1 − e1g)2

(μ′
2G −�2G(1 − e1g)�̂G)2

+ �2
2Be21g

(μ′
2B − �2Be1g�̂G)2

)
>0

(iii) If the approver screens at the first stage �1 ∈ (0, 1] but does not at the second stage
�G

2 = 0, then

(a) Once the service rates at the first can not satisfy normal applicants, they will drop
the application. Thus when μ′

1 ≤ 0, we have PG = 0.
(b) Once the normal application probability PG satisfies the upper bound at the first stage

P+
G and also makes the normal utility μG(�, PG , PB) ≥ 0, the normal applicants

would apply to the system.
(c) Once the normal application probability PG makes the normal utility μG(�, PG =

1, PB) < 0 or makes μG(�, PG = 1, PB) ≥ 0 with upper bound P+
G ∈ [0, 1), it

needs to decrease the probability value to the range of [0, 1), considering PG must be
at least lower than or equal to the upper bound P+

G . For the screening policy, themaxi-
mum traffic of screened normal applicants �̂G is derived from the normal applicant’s
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zero utility as follow: rG − (rG + cG)�1e1g − cW �1

(
1

μ1−�1PB�B−�̂′
G

)
= 0, and

�̂′
G = μ1−�1PB�B− cW �1

rG−(rG+cG )�1e1g
. There exists a unique equilibriumaggregate

traffic rate: λG = max
(
min(�̂′

G ,�1�G), 0
)
. Thus, normal potential applicants’

best response strategies satisfy: PG = λG
�1�G

= max
(
min(

�̂′
G

�1�G
, 1, P+

G ), 0
)
. We

see that the normal potential applicants’ best response PG has the opposite change
direction with parameter �G , but same change direction with parameter �̂′

G . We

have ∂ PG
∂�G

= − �̂′
G

�1�
2
G

< 0, and ∂ PG

∂�̂′
G

= 1
�1�G

> 0. The parameter �̂′
G has

the opposite change direction with parameter cW but same change direction with

parameters μ1 and rG . We have
∂�̂′

G
∂cW

= − �1
rG (1−e1g�1)

< 0,
∂�̂′

G
∂μ1

= 1 > 0, and

∂�̂′
G

∂rG
= cW �1(1−e1g�1)

(rG−(rG+cG )�1e1g)2
> 0.

Therefore, normal potential applicants’ best response PG decreases in parameters cW and
e2g and increases in parameters μ1, μ2G , μ2B , and rG .

Appendix 3: Proof of Proposition 3 in discriminatory policy

According to the Proposition 1, when the total effective screening probability �1�
B
2 is

larger than or equal to the threshold sb, none of the adversary potential applicants submit
their applications. We assume that when the approver is indifferent between different levels
of screening probabilities, the lowest level will be chosen.

1. When �B = sb, then PB = 0, there are no bad applicants. Then the approver’s objective
value becomes: J1(�) = �G PG R(1−�1�

G
2 e2g) = R(1−�1�2Ge2g)PG(�, PB = 0).

2. When �B ∈ [0, sb), then PB = 1, all adversary potential applicants submit
their applications. Then the approver’s objective value becomes: J2(�) = R(1 −
�1�

G
2 e2g)PG(�, PB = 1) − C(1 − �B).

J (�) =
{

J1(�), if �B = sb

J2(�), if �B ∈ [0, sb).
(16)

Thus, the optimal best strategy for the approver is to solve: J ∗ = max
0≤�1�

B
2 ≤sb

J (�).

Appendix 4: Numerical sensitivity analyses under discriminatory policy

Figure 9 illustrates the numerical sensitivity analysis under a discriminatory policy, which
implies that the screening probabilities for ‘Good’ and ‘Bad’ applicants at stage 2, �2G and
�2B , respectively, could be different. The screening probability �1 increases in C , �B , rG ,
μ1,μ2B , and cG (Fig. 9c, f, j, k, m, n), decreases in�G , and R (Fig. 9g, h), and first increases
and then decreases in eg , r , cB , R and rB (Fig. 9a, b, d, h, i). The probability of screening
‘Good’ applicants at the second stage �2G generally is low except when eg is high (Fig. 9a),
or when r is intermediate (Fig. 9b), or when R is low (Fig. 9h). The probability of screening
‘Bad’ applicants at the second stage �2B generally remains high except when eg and r are
high (Fig. 9a, b), or when C , rB , rG , and μ1 are low (Fig. 9c, i–k). The adversary application
probability PB stays at zero except when eg , r , �G , R and rB are high (Fig. 9a, b, g–i), or
when C , cB , �B , rG , μ1, and μ2B are low (Fig. 9c, d, f, j, k, m). The normal application
probability PG generally increases in cB , R, rG ,μ1, andμ2B (Fig. 9d, h, j, k, m), decreases in
eg , C , cW ,�B ,�G , R, rB , and cG (Fig. 9a, c, e, f, g, i, n). The normal application probability
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Fig. 9 Numerical sensitivity analysis under discriminatory policies

PG keeps at 1 due to low screening probability �1 when eg , r , and R are high (Fig. 9a, b,
h), or when C , cB , �B , �G , rB , rG , and μ1 are low (Fig. 9c, d, f, g, i, j, k).

Appendix 5: Comparisons between discriminatory policy and non-discriminatory
policy

This section compares the model results between the non-discriminatory policy and the dis-
criminatory policy: adversary application probabilities (PB N and PB D , respectively), normal
application probabilities (PG N and PG D , respectively), and approver’s payoffs (JN and JD ,
respectively). In particular, Figure 10 shows the comparison of adversary application proba-
bilities PB N and PB D between the non-discriminatory and the discriminatory policies. The
adversary application probability under the non-discriminatory policy is significantly higher
than that in the discriminatory policy when the adversary applicants’ reward if passed rB is
high (Fig. 10i), or when the penalty for approver once admitting each adversary applicant C ,
and the approver’s reward for admitting each normal applicant R are intermediate (Fig. 10c,
h), or when the cost to adversary applicants being caught cB , the adversary applicant arrival
rate �B , and the reward for normal applicant to pass the system rG are low (Fig. 10d, f, j).

Figure 11 compares the normal application probabilities PG N and PG D between the
non-discriminatory and the discriminatory policies. The normal application probability in
a discriminatory policy is significantly higher than the one in a non-discriminatory policy
when the error probabilities that normal applicants are screened as ‘Bad’ at the first and
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Fig. 10 Comparing adversary application rates PB N and PB D between the non-discriminatory and the
discriminatory policies

second stage e1g = e2g , the unit time cost cW , the service rate at the first stage μ1, and the
loss once normal applicants are rejected cG are high (Fig. 11a, e, k, n), or when the the cost to
adversary applicants being caught cB , the adversary applicants’ reward if passed rB , and the
second stage screening/service rate for applicants screened as ‘Bad’ μ2B are intermediate
(Fig. 11d, i, m), or when the power function coefficient r , the benefit of the approver for
passing each normal applicant R, the reward for normal applicant to pass the system rG , and
the second stage screening/service rate for applicants screened as ‘Good’ μ2G are low (Fig.
11b, h, j, l).

Figure 12 shows the comparison of the approver’s payoffs JN and JD between the non-
discriminatory and the discriminatory policies. The approver’s payoffs under discriminatory
policy is significantly higher than the one in a non-discriminatory policy, especially when
the error probabilities that normal applicants are screened as ‘Bad’ at the first and second
stage e1g = e2g , the penalty for the approver once admitting each adversary applicant C ,
the unit time cost cW , the service rate at first stage μ1, and the loss once normal applicants
are rejected cG are high (Fig. 12a, c, e, k, n), or when the cost to adversary applicants being
caught cB , the adversary applicant arrival rate �B , the normal applicant arrival rate �G , the
reward for adversary to pass the system rB , and the second stage screening/service rate for
applicants screened as ‘Bad’ μ2B are intermediate (Fig. 11d, f, g, i, m), or when the power
function coefficient r , the the reward for normal applicant to pass the system rG , and the
second stage screening/service rate for applicants screened as ‘Good’ μ2G are low (Fig. 11b,
j, l).
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Fig. 13 Comparisons of approver’s utilities in one-stage and two-stage systems

Appendix 6: Comparisons for one versus two-stage screening systems

This section introduces and compares one versus two-stage screening systems to find the
best screening policy for the approver under certain situations. The utility for a one-stage
imperfect screening system is J1N P . The utility for a two-stage imperfect screening system
is J2N P . Figure 13 shows the comparison of the approver’s utilities in one- and two-stage
screening systems. It shows that the approver’s payoff in a two-stage screening system J2N P

is significantly larger than the one in a one-stage system J1N P when the adversary applicants’
reward if passed rB , the service rate at thefirst stageμ1, and the loss oncenormal applicants are
rejected cG are high (Fig. 13i, k, m), or when the error probability that normal applicants are
screened as ‘Bad’ at the first stage e1g , the penalty for approver once admitting each adversary
applicant C , the adversary applicant arrival rate �B , and error probabilities that normal
applicants are screened as ‘Bad’ at the first and second stage e1g = e2g are intermediate (Fig.
13a, c, f, n), or when power function coefficient r , the cost to adversary applicants being
caught cB , the unit time cost cW , and the error probability at the second stage e2g are low
(Fig. 13b, d, e, l).
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