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Abstract—We consider a class of infrastructures supported
by cyber and physical components, which are subject to disrup-
tions. We study reinforcement strategies for cyber and physical
components to achieve resilience, specified by the probability
of infrastructure survival, against disruptions using a game-
theoretic formulation. The game utility function is a sum of the
infrastructure survival probability term and a cost term. We
account for cyber-physical interactions at two different levels: (i)
the conditional survival probability of cyber sub-infrastructure
is specified by a linear function of the marginal probability, and
(ii) the survival probabilities of components are determined by
the numbers of cyber and physical component attacks as well as
reinforcements. At Nash Equilibrium, we identify 12 performance
regions based on cyber-physical correlations and component costs,
where each is determined by a lower survival probability of either
cyber or physical sub-infrastructure. We also derive sensitivity
functions that highlight the dependence of infrastructure survival
probability on cost parameters and component probabilities as
well as cyber-physical correlations, under statistical independence
conditions. We apply this approach to models of the energy grid
derived at different levels of abstraction.

I. INTRODUCTION

The operation of infrastructures such as smart grids, re-
quires the continued functioning of cyber components such as
Supervisory Control And Data Acquisition (SCADA) systems,
and also physical components such as power or fiber routes
[10]. Even infrastructures used for exclusively cyber services,
such as network connectivity and cloud computing, rely on
physical components such as fiber routes and HVAC systems,
in addition to cyber components such as servers, switches
and routers [14]. The components may be disabled and/or
disconnected by cyber and physical attacks, which will degrade
the infrastructure performance. To counter such disruptions,
infrastructure providers are required to adopt strategies that
ensure required levels of operation and availability of both
cyber and physical components, specified by the survival
probability of the infrastructure, by taking into account the
attacker strategies and incidental failures.

In this paper, we consider a class of infrastructures con-
sisting of discrete cyber and physical components, which
must be operational as individual units and also be available
such as being connected to the network. These components
are subject to direct cyber and physical disruptions, and in
addition, there are cyber-physical interactions that make them
unavailable when others are disrupted. For example, a physical
attack on a fiber connection to a SCADA site will render it
unavailable over the network even though it is operational.

The cyber components form the cyber sub-infrastructure, and
the physical components form the physical sub-infrastructure,
which may be operated by different domain experts. For
example, SCADA systems may be maintained by operations
staff, whereas the physical power routes may be maintained by
engineering staff. A disruption of either sub-infrastructure will
lead to that of the entire infrastructure due to cyber-physical
correlations. We model such dependency using the conditional
failure probability of one sub-infrastructure given the failure
of other as a linear function of the marginal probability of the
former. These dependencies are derived from the underlying
structure information of the infrastructure.

We consider that the infrastructure consists of a large
number of components, so that its performance is adequately
characterized by the number of components that are oper-
ational and available. This characterization is intended for
infrastructures such as smart grid with hundreds to thousands
of smart meters, wherein the sheer number of components
makes it much too complex to account for the variability
among components. The attacker launches a certain number
of cyber or physical attacks but not both, but the provider
needs to reinforce both cyber and physical components. We
focus on reinforcing a certain number of cyber and physical
components to defend against the degradations of both kinds.
A component can be reinforced so that it cannot be disabled
by a direct attack, but it can fail due to incidental causes such
as device fatigue, or can be rendered unavailable due to attacks
on other components.

We consider a class of infrastructures characterized by the
following considerations:

(a) knowledge about physical and cyber component locations
is available to the attacker, primarily from public sources;

(b) costs incurred by the provider and attacker are private
information and not available to the other;

(c) strategies used by the provider in choosing which compo-
nents to reinforce, and by the attacker in choosing which
components to attack are not revealed to the other; and

(d) information about the success or failure of the attacks is
known to both.

This discrete model is simpler than those used in critical
infrastructures such as power distribution, transportation and
agriculture [5], that model the dynamics of the underlying
phenomena, for example, using partial differential equations
to model traffic dynamics. We study methods to ensure certain
levels of infrastructure survival probability in presence of



cyber and physical degradations within the framework of game
theory [7], [11], [12]. The characterizations that address system
reliability and robustness using a game-theoretic formulation
have been considered recently in several applications [4], for
example, smart grids [9], [3], [6], [15], cloud computing
infrastructures [13], and power systems [8], [18]. Also, our
formulation is more reactive and sensitive to dynamic disrup-
tions compared to long-term strategies used in Markov game
models [1], [9].

The results of this paper are generalizations of works in
[13] in two ways: (a) in terms of analytical results, our linear
model introduces an additive term in the conditional sub-
infrastructure failure probability, which increases the number
of performance zones from 4 to 12, and leads to more
complex cyber-physical interaction terms in the infrastructure
survival probability; and (b) in terms of applications, the smart
grid models are enhanced in this paper to include additional
component types including power generators and smart sensors
for dynamic line controls.

We formulate a game between the provider and attacker,
wherein their utility functions are in the form of sum of
two terms: (a) infrastructure survival probability term, and (b)
cost term. The infrastructure survival probability accounts for
cyber-physical aspects in two ways: (i) the conditional survival
probabilities of cyber and physical sub-infrastructures are
specified by linear functions of marginal probabilities derived
at the structure-level, and (ii) component survival probabilities
are derived based on the number of cyber or physical attacks,
the number of cyber and physical components reinforced, and
incidental failure probabilities.

Nash Equilibrium (NE) of this game represents the at-
tack and reinforcement actions that optimize the utility of
attacker and provider based on their individual information,
from which neither has a motivation to unilaterally deviate
[7]. We derive NE conditions in terms of cost terms and
the component survival probabilities, which are expressed in
terms of number of cyber and physical attacks and reinforce-
ments and incidental component failure rates. We identify 12
performance regions based on cyber-physical correlations and
component costs, where each is determined by a lower survival
probability of either cyber or physical sub-infrastructure. We
also estimate the partial derivatives that indicate sensitivities
of sub-infrastructure survival probabilities with respect to cost
parameters and conditional success and failure probabilities of
components, under statistical independence conditions.

We apply this approach to models of energy grids at
different levels of abstraction. We first consider a simple power
grid with two types of components, namely, SCADA systems
and power lines, We then consider different types of cyber
components, namely SCADA systems and power meters. Then,
we consider a smart grid model consisting of generators and
sensors that measure and regulate power flows on the lines.
In these cases, we derive estimates of component survival
probabilities and sensitivity functions at NE.

In Section II, we present our discrete component model for
the infrastructure and derive survival probabilities at structure-
and component-levels, and describe simple power grid models
in Section II-C. We present our game-theoretic formulation in
Section III, and derive NE conditions and sensitivity estimates,

and apply these results to more detailed smart grid models in
Section III-D.

II. DISCRETE SYSTEM MODELS

The infrastructure consists of a cyber sub-infrastructure of
NC components, and a physical sub-infrastructure of NP phys-
ical components. Each cyber and physical component must be
operational and available to contribute to the infrastructure
operation. A cyber attack may render a physical component
unavailable even if it is physically operational, for example,
an attack on a SCADA system might disable power flow on a
line. And, a physical attack on a component might render cyber
components unavailable, for example, fiber cuts to SCADA site
would make it unavailable even though it is up and running.

A. Cyber-Physical Structural Interactions

The probability that the infrastructure is operational is
denoted by PCP . At the structure-level, the probabilities that
the cyber and physical sub-infrastructures are operational are
denoted by PC and PP , respectively, and PC̄ = 1 − PC

and PP̄ = 1 − PP . For the infrastructure to be operational
both cyber and physical sub-infrastructures must necessarily
be operational, and their availabilities are determined by the
component-level cyber-physical interactions. Then, we have

PCP = 1− [PC̄ + PP̄ − PC̄P̄ ] = PC +PP −1 +PC̄P̄ . (2.1)

To capture the relative importance of cyber and physical parts,
the joint probability PC̄P̄ = PC̄|P̄ PP̄ is derived in terms of
multiplicative and additive coefficients, denoted by aC and
bC respectively, such that PC̄|P̄ = aCPC̄ + bC . Here, aC

represents a proportional change in PC due to the physical sub-
infrastructure failure, whereas bC represents an independent
factor; in particular, the certainty of failure of the former due
to latter can be presented by aC = 0 and bC = 1 (in [13] only
aC is used). For example, in a power grid with 5 generators
per site, disabling the transmission link would disconnect all
generators at the site, which can be reflected by choosing
aC = 5 and bC = 0.001. If aC > 1 and bC > 0, the cyber
failures are positively correlated to physical failures, that is,
they occur with higher probability following physical failures,
since PC̄|P̄ > PC̄ . If aC < 1 and bC < 0 means that cyber
failures are negatively correlated to physical failures, since
PC̄|P̄ < PC̄ .

Condition 2.1: The probability that infrastructure is oper-
ational depends on cyber and physical sub-infrastructures such
that PCP = PC +PP −1+[aC(1−PC)+bC ](1−PP ), where
aC and bC are multiplicative and additive coefficients. �

B. Component Survival Probabilities

Let pR be the probability that a component is reinforced,
such that pCR = pC|RpR where pC|R is the conditional
probability that a reinforced component will survive direct and
indirect attacks. Similarly, pN = 1− pR is the probability that
a component is not reinforced, and pCN = pC|NpN where
pC|N is the probability that a non-reinforced component will
survive direct and indirect attacks. We now consider that there
are different types of cyber and physical components such
that xa

c , a ∈ AC , corresponds to cyber components of type
a, and xb

p, b ∈ AP , corresponds to physical components of



type b. Then, we have xc =
∑

a∈AC

xa
C and xp =

∑
b∈AP

xb
p.

Now we consider that the conditional survival probabilities
are statistically independent as follows.

Condition 2.2: The component failures are statistically in-
dependent such that

PC =
∏

a∈AC

(
pa

C|R

)xa
c

pNC−xc

C|N

PP =
∏

b∈AP

(
pb

P |R

)xb
p

p
NP−xp

P |N .�

The partial differentials on the left hand side for these terms
are estimated using a Lemma from [13]: for a ∈ AC , b ∈ AP

∂PC

∂xa
c

= PC ln
(

pa
C|R

pC|N

)
and

∂PP

∂xb
p

= PP ln

(
pb

P |R

pP |N

)
,

where pa
C|R and pb

P |R denote the survival probabilities of
reinforced cyber component of type a and reinforced physical
component of type b, respectively.

C. Energy Grid Cyber Infrastructure

We first describe a simplified illustrative example of energy
grid [17], [2] controlled by a (cyber) network of SCADA
systems [16], where each system controls the power flow on
5 lines. A SCADA system may be disabled by cyber means,
and such event will disrupt the power flow on all 5 associated
lines. Then, we estimate the survival probability of a reinforced
power line in presence of yc cyber attacks, as

pP |R =
fP

1 + 5[yc − xc]+
,

where 0 ≤ fP ≤ 1 is appropriately chosen to reflect the latent
failure rate (namely when yc = 0) that corresponds to factors
such a device failures, and [.]+ is the non-negative part, that
is [x]+ = x for x > 0, and [x]+ = 0 otherwise. A power line
can be physically disrupted if not reinforced, and a component
is more likely to be unavailable for higher values yp. Thus, an
attack on a SCADA system will have an amplified effect on
power lines compared to direct physical attacks such that

pP |N =
fP

1 + yp + 5[yc − xc]+
provides an estimate of the probability of survival of a non-
reinforced power line.

We now enhance the model with smart meters on the
lines that provide demand information to the generation and
distribution control systems. The smart meters can be attacked
by cyber means so that the demand information can be
manipulated, for example, to make it zero. Let xc = xS

c + xM
c

such that xS
c and xM

c denote the number of reinforced SCADA
systems and meters, respectively. Similarly, yc = yS

c + yM
c

such that yS
c and yM

c denote the number of SCADA systems
and meters attacked, respectively. A SCADA system or a meter
may be disabled by cyber means, which will disrupt the power
flow on the lines so that

pP |R =
fP

1 + 5[yS
c − xS

c ]+ + [yM
c − xM

c ]+
,

for physically-reinforced power lines; notice that cyber attacks
on SCADA systems are amplified 5 times compared to attacks
on smart meters. Each power line can be directly disrupted
by physical means such that it can be brought down if not
reinforced, and thus we have

pP |N =
fP

1 + [yp − xp]+ + 5[yS
c − xS

c ]+ + [yM
c − xM

c ]+
,

which reflects the amplified effect of cyber attacks on SCADA
systems compared to physical line attacks.

III. GAME-THEORETIC FORMULATION

In this section, for simplicity of presentation, we consider
single types of cyber and physical components, and extensions
to multiple types are straight-forward, where the analysis is
carried out separately for each component type. The provider’s
objective is to keep the infrastructure operational and available,
which involves selecting a number of components to reinforce
at certain costs. We express the provider utility function as a
sum of system probability and cost terms

UD = [PCP (xc, xp, yc, yp)] gD − CD(xc, xp),

where gD represents the reward of keeping the infrastructure
available and CD(.) represents the cost incurred in reinforcing
the components. When the component reinforcement costs
are uniform, we use CD (xc, xp) = cCDxc + cPDxp, where
cCD and cPD are reinforcement costs of cyber and physical
components, respectively.

Similarly, the attacker’s utility function is given by

UA = [1− PCP (xc, xp, yc, yp)] gA − CA(yc, yp)

where gA represents the reward of disabling the infrastructure
and CA(.) represents the cost of attacking the components.
When the attack costs are uniform, we use CA (yc, yp) =
cCAyc + cPAyp, where cCA and cPA are the attack costs of
cyber and physical components, respectively, and only one of
yc and yp is non-zero.

A. Nash Equilibrium Conditions

We consider that the numbers of cyber and physical com-
ponents are large enough that the system behavior can be
qualitatively described using derivatives with respect to xa and
ya, a = c, p. Then, Nash Equilibrium conditions are derived
by equating the corresponding derivatives to zero such that

∂UD

∂xa
=

∂PCP

∂xa
gD −

∂CD

∂xa
= 0

for a = c, p for the provider, and

∂UA

∂ya
= −∂PCP

∂ya
gA −

∂CA

∂ya
= 0

for a = c, p for the attacker.

We now consider that the effects of reinforcement and
attacks on cyber and physical sub-infrastructures can be sep-
arated such that most of the interactions are captured at the
component level, more precisely, ∂PP

∂zc
≈ 0 and ∂PC

∂zp
≈ 0

for z = x, y. Intuitively, these conditions indicate that at the
structure-level, only direct impacts are dominant, for example,



cyber reinforcements contribute to improving the cyber sub-
infrastructure but not directly to physical sub-infrastructure.
Consequently, we have for the defender the following condi-
tion.

Condition 3.1: For PCP in Condition 2.1, we have

∂PCP

∂xc
≈ [1− aC + aCPP ]

∂PC

∂xc

∂PCP

∂xp
≈ [1− aC − bC + aCPC ]

∂PP

∂xp

for the defender. �

B. Performance Regions of Cyber and Physical Sub-
Infrastructures

We now compare the survival probabilities of cyber and
physical sub-infrastructures, PC and PP , respectively, at the
Nash Equilibrium. At NE, we have ∂PCP

∂xc
= 1

gD

∂CD

∂xc
and

∂PCP

∂xp
= 1

gD

∂CD

∂xp
. By using the formulae in Condition 3.1,

we have
[1− aC + aCPP ]

∂PC

∂xc
=

1
gD

∂CD

∂xc

[1− aC − bC + aCPC ]
∂PP

∂xp
=

1
gD

∂CD

∂xp
.

We now substitute expressions for ∂PC

∂xc
and ∂PP

∂xp
from Section

II-B and utilize the component costs on the right hand side to
obtain the system of equations:

PC [1− aC + aCPP ] =

∂CD
∂xc

gD ln
“

pP |R
pP |N

” = dCD (xc, yc, yp)

PP [1− aC − bC + aCPC ] =

∂CD
∂xp

gD ln
“

pC|R
pC|N

” = dPD (xp, yc, yp) .

Then, we have

PC = PP

(
1− bC

1− aC

)
+

dCD − dPD

1− aC
,

where we represent dPD (xp, yc, yp) and dCD (xc, yc, yp) by
simply dPD and dCD, respectively. The relationship between
PC and PP can be described by 12 different regions deter-
mined by aC , bC , dCD and dPD. We first consider aC > 1
for which we have the following cases:

(a1) aC > 1; dCD < dPD; bC > 0:

PC = PP + ∆a for ∆a ≥ 0

(b1) aC > 1; dCD > dPD; bC < 0:

PC = PP −∆b for ∆b ≥ 0

(c1) aC > 1; dCD > dPD; bC > 0:
(c1-1) PP > dCD−dP D

bC
:

PC = PP + ∆c for ∆c ≥ 0

(c1-2) PP < dCD−dP D

bC
:

PC = PP −∆c for ∆c ≥ 0

(d1) aC > 1; dCD < dPD; bC < 0:

(d1-1) PP < dCD−dP D

bC
:

PC = PP + ∆d for ∆d ≥ 0

(d1-2) PP > dCD−dP D

bC
:

PC = PP −∆d for ∆d ≥ 0

Then, for aC < 1, we have the following cases:

(a2) aC < 1; dCD < dPD; bC > 0:

PC = PP −∆a for ∆a ≥ 0

(b2) aC < 1; dCD > dPD; bC < 0:

PC = PP + ∆b for ∆b ≥ 0

(c2) aC < 1; dCD > dPD; bC > 0:
(c2-1) PP > dCD−dP D

bC
:

PC = PP −∆c for ∆c ≥ 0

(c2-2) PP < dCD−dP D

bC
:

PC = PP + ∆c for ∆c ≥ 0

(d2) aC < 1; dCD < dPD; bC < 0:
(d2-1) PP < dCD−dP D

bC
:

PC = PP −∆d for ∆d ≥ 0

(d2-2) PP > dCD−dP D

bC
:

PC = PP + ∆d for ∆d ≥ 0

These cases show that both relative component costs and cyber-
physical coefficients aC and bC can independently determine
which sub-infrastructure has a higher probability of survival.
The difference in the survival probabilities of cyber and
physical parts depends on the difference in component costs,
as expected. But, the exact nature depends on the 1− and 0−
crossing points of aC and bC , respectively; in particular, the de-
pendence reverses as the cyber and physical parts are switched
from being positively correlated to negatively correlated.

C. NE Sensitivity Functions

We now estimate approximations of PC and PP under Con-
ditions 2.1, 2.2 and 3.1, to obtain qualitative information about
their sensitivities to different parameters from the provider’s
perspective.

Theorem 3.1: Under Conditions 2.1, 2.2 and 3.1, an esti-
mate of the survival probability of physical sub-infrastructure
is
P̂P ;D (xc, xp, yc, yp)
= dP D−dCD

2(1−aC−bC) −
(1−aC)

2aC
± 1

2aC

×
√(

aC(dP D−dCD)
1−aC−bC

− (1− aC)
)2

+ 4aCdP D(1−aC)
(1−aC−bC) ,

for aC + bC 6= 1, and an estimate of the survival probability
of cyber sub-infrastructure is

P̂C;D (xc, xp, yc, yp)
= dCD−dP D

2(1−aC) −
(1−aC−bC)

2aC
± 1

2aC

×
√(

aC(dCD−dP D)
1−aC

− (1− aC − bC)
)2

+ 4aCdCD(1−aC−bC)
(1−aC) ,

for aC 6= 1.



Proof: At NE, by using PC = dCD/[1− aC + aCPP ] in

[1− aC − bC + aCPC ] PP = dPD

we obtain the quadratic equation
aC(1− aC − bC)P 2

P
− [(dPD − dCD)aC + (1− aC)(1− aC − bC)] PP

−(1− aC)dPD = 0.
Solution to this equation provides P̂P ;D (xc, xp, yc, yp), which
in turn yields P̂C;D (xc, xp, yc, yp). �

To facilitate a qualitative discussion of P̂P ;D and P̂C;D,
we briefly consider OR Systems [13], where the probability of
simultaneous failures of cyber and physical sub-infrastructures
is negligible such that PC̄P̄ = PC̄ +PP̄ . The estimates for the
survival probabilities are:

P̃P ;D (xp, yc, yp) =
cPD

gD ln
(

pP |R
pP |N

) = dPD

P̃C;D (xc, yc, yp) =
cCD

gD ln
(

pC|R
pC|N

) = dCD.

These estimates provide qualitative information about the
survival probabilities of cyber and physical sub-infrastructures
in terms of component costs and component survival prob-
abilities. But, they involve only component probabilities of
the same type, namely P̃P ;D and P̃C;D depend only on the
probabilities of physical and cyber components, respectively,
and they do not involve structure-level interactions.

Compared to OR systems, there are significant cyber-
physical interactions in the above P̂P ;D (xc, xp, yc, yp)
and P̂C;D (xc, xp, yc, yp) in that they both depend on
dPD (xp, yc, yp) and dCD (xc, yc, yp). In particular, they both
are affected by the survival probabilities of cyber and physical
components, each of which in turn depends on the number of
both cyber and physical component attacks and reinforcements.

The multiplier aC and additive factor bC affect these quan-
tities in much more complicated manner than their “linear”
roles in Condition 2.1. Since 0 ≤ PC̄|P̄ ≤ 1, both aC and
aC + bC can take values higher and lower than 1. Both
P̂P ;D (xc, xp, yc, yp) and P̂C;D (xc, xp, yc, yp) depend on the
difference of components costs, as opposed to depending on
components of the same type as in the case of OR Systems.
Furthermore, the nature of dependence of P̂P ;D and P̂C;D

reverses as aC +bC and aC cross 1, respectively, reflecting the
effects of positive and negative correlations between the cyber
and physical parts. For aC + bC < 1 and aC < 1, P̂P ;D and
P̂C;D, respectively, are directly proportional to physical and
cyber component costs, respectively, and this relationship re-
verses for aC +bC > 1 and aC > 1, respectively. Similarly, for
aC+bC < 1 and aC < 1, P̂P ;D and P̂C;D, respectively, depend
on components of the corresponding type, namely physical and
cyber component survival probabilities, respectively, as fol-
lows: (a) higher survival probability of reinforced component
leads to lower sub-infrastructure survival probability, and (b)
higher survival probability of non-reinforced component leads
to higher sub-infrastructure survival probability. And, P̂P ;D

and P̂C;D depend on components of other type, namely cyber
and physical component survival probabilities, respectively,
in the opposite way. For aC + bC > 1 and aC > 1,

respectively, the qualitative behavior reverses in the cases
above, which illustrates the significant impact of the structure-
level cyber-physical correlation on the overall behavior of the
infrastructure.

D. Smart Grid Infrastructure

Continuing the smart grid model in Section II-C, we have

dPD =
cPD

gD ln
(

1 + [yp−xp]+
1+5[yS

c −xS
c ]++[yM

c −xM
c ]+

) ,

which decreases in the number of attacks on non-reinforced
power lines, and increases in the number of attacks on non-
reinforced SCADA systems and non-reinforced meters but the
former effect is amplified 5 times. We also have

dB
CD = cP D

gD ln

„
1+yB

c
1+[yB

c −xB
c ]+

«
for B = S, M , which decreases in the total number of
cyber attacks but increases in the number of attacks on non-
reinforced cyber attacks. The net effect of the numbers of
attacks and reinforcements on the survival probabilities of
cyber and physical sub-infrastructures is also determined by
correlation multiplier aC and additive coefficient bC in addition
to dPD and dB

CD, for B = S, M , as described in Section III-C.

We now consider more details of the smart grid example
[17], [2]. In this system, transmission lines are equipped with
sensors for dynamic line rating, which dynamically adjust
the transmission flow of a transmission line according to
weather conditions and line temperature, and all of the users
are connected using smart meters. We also include generators
into consideration. Hence, there are two types of physical
components, namely lines and generators, and xp = xL

p + xG
p

such that xL
p and xG

p denote the number of reinforced lines
and generators, respectively; and there are three types of cyber
components, namely dynamic rate sensors, smart meters, and
the SCADA systems, and xc = xD

c + xM
c + xS

c such that xD
c ,

xM
c , and xS

c denote the number of reinforced dynamic rate
sensors, smart meters, and the SCADA systems, respectively.
Physical attacks on lines or cyber attacks on dynamic rate
sensors will also affect generators and smart meters, while
cyber attacks on SCADA systems will affect physical and
cyber components. The physical component survival probabil-
ities are estimated separately for the lines and the generators,
while the cyber component survival probabilities are estimated
separately for the dynamic rate sensors, smart meters, and the
SCADA systems. The survival probabilities of the transmission
lines with and without reinforcement are denoted by pL

P |R and
pL

P |N , respectively. The power flow on the transmission lines
may be disrupted by cyber attacks on the SCADA system or
the dynamic rate sensors, so that

pL
P |R =

fP

1 + 5[yS
c − xS

c ]+ + [yD
c − xD

c ]+
,

for physically-reinforced transmission lines; notice that cyber
attacks on SCADA systems are amplified 5 times compared
to attacks on the dynamic rate sensors. Each transmission line
can also be directly disrupted by physical means such that it
can be bought down if not reinforced, and thus, we have

pL
P |N =

fP

1 + [yL
p − xL

p ]+ + 5[yS
c − xS

c ]+ + [yD
c − xD

c ]+
.



Combining the two formulae, we have

dL
PD =

cPD

gD ln
(

1 + [yL
p−xL

p ]+
1+5[yS

c −xS
c ]++[yD

c −xD
c ]+

) ,

which decreases in the number of physical attacks on the non-
reinforced transmission lines, and increases in the number of
attacks on the non-reinforced SCADA systems and the non-
reinforced dynamic line rating sensors but the former effect is
amplified 5 times. Similarly, the survival probabilities of the
generators are given by

pG
P |R =

fP

1 + [yL
p − xL

p ]+ + 5[yS
c − xS

c ]+ + [yD
c − xD

c ]+
,

pG
P |N =

fP

1 + [yG
p − xG

p ]+ + [yL
p − xL

p ]+ + 5[yS
c − xS

c ]+ + [yD
c − xD

c ]+
,

and we have dG
PD = cP D

gD ln

„
1+

[yG
p −xG

p ]+
1+[yL

p −xL
p ]++5[yS

c −xS
c ]++[yD

c −xD
c ]+

« .

The survival probabilities of the dynamic rate sensors and the
smart meters are given by

pB
C|R =

fC

1 + [yB
c − xB

c ]+ + 5[yS
c − xS

c ]+
,

pB
C|N =

fC

1 + yB
c + 5[yS

c − xS
c ]+

,

for B = D,M , and we have
dB

PD = cP D

gD ln

„
1+yB

c +5[yS
c −xS

c ]+
1+[yB

c −xB
c ]++5[yS

c −xS
c ]+

« ,

for B = D,M . The survival probabilities of the SCADA
systems are

pS
C|R =

fC

1 + [yS
c − xS

c ]+
and pS

C|N =
fC

1 + yS
c

,

and we have dS
CD = cCD

gD ln

„
1+yS

c
1+[yS

c −xS
c ]+

« . The qualitative

effects of the numbers of cyber and physical attacks and
reinforcements as well as the performance regions in this case
are quite similar to the simpler case in Section III-C, except
they are assessed separately for each component type.

IV. CONCLUSIONS

We considered infrastructures composed of a large number
of discrete components that can be disrupted by cyber and
physical attacks, and can be reinforced against the attacks. We
captured the cyber-physical interactions using: (a) conditional
survival probabilities of cyber and physical sub-infrastructures
at the structure-level, and (b) survival probabilities of compo-
nents determined by the number of cyber and physical compo-
nent attacks and reinforcements. We studied provider’s strate-
gies for ensuring certain probability of infrastructure survival
against incidental component failures and attacks on cyber and
physical components, using a game-theoretic formulation. We
derived Nash Equilibrium conditions in terms of cost terms and
component survival probabilities, and estimated the sensitivity
functions that indicate the dependence of sub-infrastructure
survival probabilities on cost parameters, component proba-
bilities and correlation coefficients. This analysis shows 12
performance regions, each determined by a lower survival
probability of either cyber or physical sub-infrastructure (but
not both). We applied this approach to models of smart energy
grid at different levels of abstraction.

This formulation may be extended in several ways in
future studies. It would be interesting to study sequential game
formulations of this problem, and cases where different levels
of knowledge, including mis-information, are available to each
party. More detailed models of smart energy grid infrastruc-
tures, cloud computing infrastructures and high-performance
computing complexes would be of future interest.
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