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Abstract—In several critical infrastructures correlations be-
tween the constituent systems represent certain vulnerabilities:
disruptions to one may propagate to others and possibly to the
entire infrastructure. The correlations between the systems are
characterized in two ways in this paper: (i) the aggregate failure
correlation function specifies the conditional failure probability of
the infrastructure given the failure of an individual system, and
(ii) the pairwise correlation function between two systems specifies
the failure probability of one system given the failure of the
other. The survival probabilities of individual systems satisfy first-
order differential conditions that generalize the contest success
functions and statistical independence conditions. We formulate a
problem of ensuring the resilience of an infrastructure as a game
between the provider and attacker; their utility functions are
sums of infrastructure survival probability terms and cost terms,
both expressed in terms of the numbers of system components
attacked and reinforced. We derive Nash Equilibrium conditions
and sensitivity functions that highlight the dependence of in-
frastructure resilience on the cost terms, correlation functions,
and individual system survival probabilities. We apply these
results to models of distributed cloud computing and energy grid
infrastructures.

I. INTRODUCTION

The operation of several critical infrastructures, including
smart grids and cloud computing facilities, requires the contin-
ued functioning of a number of its constituent systems. For the
smart grid, for example, these systems could be as diverse as
Supervisory Control And Data Acquisition (SCADA) systems,
power distribution systems, fiber plants, and cooling systems.
Each system in turn may consist of several components, which
may be disabled and/or disconnected by cyber and physical
attacks. Disruptions due to such attacks may propagate among
the components of a system and degrade its performance.
Furthermore, these degradations may propagate to other sys-
tems and possibly to the entire infrastructure as a result of
correlations between systems. To counter such degradations,
the infrastructure providers are required to take into account
the strategies of an attacker in the presence of such correlations
between the systems and also among the components of
individual systems.

We consider infrastructures that can be described by a col-
lection of systems and their components, wherein the underly-
ing cyber-physical interactions are characterized hierarchically
between the systems and between the components within a
system. Examples of such infrastructures include cloud com-
puting infrastructures with multiple sites each with hundreds

of servers, network infrastructures with multiple Point of Pres-
ence (POP) locations that house routers and switches of optical
fiber connections, and power grid infrastructures with multiple
SCADA and generation sites. We represent such an infrastruc-
ture with interconnected systems, Si, i = 1, 2, . . . , N , each
in turn consisting of discrete components. The components of
each system must be operational as individual units and also
be available such as being connected to the network. These
components are subject to individual attacks in that cyber
(physical) attacks will disable cyber (physical) components that
have not been reinforced. By reinforcement we mean defense,
hardening, and investment to ensure the continued operation
of components. In the case of a cloud computing infrastructure
with multiple server sites, a cyber attack on a server may
bring it down, and a physical attack on a fiber line may
damage it permanently. In addition to these direct disruptions,
correlations between the components may render the otherwise
operational components unavailable by disconnecting them.
For example, a physical attack on a fiber connection to a server
site may disconnect all servers at that site from the network.
The attacker’s investment is yi in attacking the system Si, and
provider’s investment is xi for reinforcing, namely, defending
it. For example, yi and xi may be the number of components
of Si attacked and reinforced, respectively.

Let Pi denote the survival probability of Si, and PI

denote the survival probability of the entire infrastructure. The
survival probability equals one minus the failure probability.
The pairwise failure correlation function Ci,j(Pi, Pj) is the
failure probability of Si given the failure of Sj . The aggregate
failure correlation function Ci(Pi) is the failure probability of
the “rest” of the infrastructure without Si, given the failure
of Si. That is, Ci(Pi) = C−i,i(P−i, Pi), where P−i is the
survival probability of the infrastructure without Si, which
is denoted by S−i. These two correlation functions represent
two different ways of characterizing the interdependencies
within the infrastructure at the level of systems. To capture
the interdependencies at the component level, we consider
that Pi satisfies first-order differential conditions that involve
xi and yi. These conditions generalize the contest success
functions and statistical independence conditions used in game
formulations for systems with discrete components.

We formulate a game between the provider and attacker
with the following considerations:

(a) attacker has sufficient knowledge about the infrastructure
to launch targeted attacks on individual components of
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any system;
(b) cost of attacks and reinforcements of systems, denoted by

LA(y1, . . . , yN ), and LD(x1, . . . , xN ), respectively, are
not available to the other;

(c) strategies used by the provider in choosing which systems
and how many of their components to reinforce, and by
the attacker in choosing which systems and how many
components to attack are not revealed to the other; and

(d) incidents and results of attacks on components will be
known to the provider and attacker.

The information in items (a) and (d) is available to both
players, and that in items (b)-(c) is private. The provider utility
function is the sum of terms involving the system survival
probability and cost given by

UD = [PI(x1, . . . , xN , y1, . . . , yN )] gD − LD(x1, . . . , xN ),

where gD represents the reward of keeping the infrastructure
operational. Similarly, the attacker utility function is

UA = [1− PI(x1, . . . , xN , y1, . . . , yN )] gA−LA(y1, . . . , yN ),

where gA represents the reward of disabling the infrastruc-
ture. The Nash Equilibrium (NE) of this game represents
the attack and reinforcement actions, given by (y1, . . . , yN )
and (x1, . . . , xN ) respectively, that attempt to maximize the
respective utility functions based on their information [6].
We derive NE conditions that highlight the dependence of
PI on cost terms, correlation functions and system survival
probabilities, and their partial derivatives. We also estimate
the sensitivity functions of PI using the partial derivatives of
LA(·), LD(·), Pi, and correlation functions, which indicate
their relative importance.

These results extend previous results on interconnected
systems in [7], [8] by (i) explicitly incorporating the inter-
dependencies between the systems using two types of corre-
lation functions, and (ii) utilizing the differential conditions
of the Pi’s to generalize the contest success functions. Also,
these results extend earlier results on cyber-physical infrastruc-
tures [14], [15], which correspond to the special case N = 2
such that S1 and S2 correspond to cyber and physical sub-
infrastructures, respectively. Together, these generalizations
lead to finer modeling and analyses of cloud computing and
smart grid infrastructures.

The organization of this paper is as follows. We briefly
describe related work in Section II. In Section III, we present a
discrete component model for these infrastructures, and discuss
two types of correlation functions and differential conditions
on system survival probabilities. We present a game-theoretic
formulation in Section IV, and derive NE conditions and
sensitivity estimates. We also describe two special cases,
OR systems in Section IV-B and statistically independent
conditions in Section IV-C, wherein the underlying correlation
effects are somewhat simplified. We discuss NE conditions
for applications of distributed cloud computing and smart
grid infrastructures in Section V. We conclude this paper in
Section VI.

II. RELATED WORK

Critical infrastructures that support energy, cyber, and
transportation systems are vital to national security, and they

often rely on complex networked systems, which in turn
consist of many disparate components [11]. Game-theoretic
methods have been extensively applied to capture the inter-
actions between providers and attackers of critical infrastruc-
tures [1]; they lead to strategies that ensure their continued
operation in the presence of evolving threats. Several of these
infrastructures are modeled using complex dynamic models
of the underlying physical systems [2], in particular, using
partial differential equations. In general, both game-theoretic
formulations and their solutions are quite extensive for such
infrastructures, including: multiple-period games that address
multiple time-scales of system dynamics [10]; incomplete
information games that account for partial knowledge about the
system dynamics and attack models [13]; and multiple-target
games that account for possibly competing objectives [16].
A comprehensive review of the defense and attack models in
various game-theoretic formulations has been presented in [9].
In particular, game theory has been applied in a variety of cyber
security applications[12], [17], and in particular for securing
cyber-physical networks [3], [4].

The system reliability and robustness parameters and vari-
ables can be explicitly integrated into these game formula-
tions [1], for example for smart grids, cloud computing infras-
tructures and power systems. Within this class, Stackelberg
game formulations using discrete models of cyber-physical
infrastructures have been studied in various forms [5], and
a subclass of them is formulated using the number of cyber
and physical components that are attacked and reinforced [15].
These formulations characterize the infrastructures with a large
number of components, and are coarser than formulations
that consider the attack and defense of individual cyber and
physical components. In particular, these works utilize the
correlation functions to capture the dependencies between the
survival probabilities of two systems, namely, the cyber and
physical sub-infrastructures. Complex interacting systems that
consist of several such systems have been studied using game-
theoretic formulations in [8] but the correlations between them
are not explicitly accounted for. In this paper, we generalize
these formulations by utilizing two types of correlation func-
tions for infrastructures with N systems.

III. DISCRETE SYSTEM MODELS

A distributed interconnected infrastructure consists of N
constituent systems, S1, S2, . . . , SN , which can be func-
tionally disabled or operationally disconnected through cyber
or physical attacks on their components. In particular, cyber
attacks in one system may render physical components in
another system unavailable even if they are functional; for
example, SCADA system attacks might disable power flows
on the lines.

A. Aggregated Interactions

We next capture the interactions between the systems of
the infrastructure in terms of their survival probabilities using
the aggregate and pairwise failure correlation functions.

Condition 3.1: Aggregate Correlation Function: The
probability that the infrastructure is operational is given by

PI = Pi + P−i − 1 + C̄i (Pi) (1− P−i),



where Ci (Pi) = C̄i (Pi)
1−P−i

1−Pi
is the aggregate failure corre-

lation function of system Si, i = 1, . . . , N . �
The aggregate failure correlation function captures the

interdependence of rest of the system S−i on the failure of
Si, which can be illustrated using some specific cases. For ex-
ample, in a cloud infrastructure where the fiber connections are
represented by system SF , we have PI = 1−NS(1−PF )/K,
where K is a normalization constant. In this case, we have
CF = NS/K, which shows that the fiber failure rate is am-
plified by NS in rendering the servers unavailable. Under the
statistical independence condition, we have C̄i (Pi) = 1 − Pi

so that PI = PiP−i. In another case, when the failure of Si

leads to definite failure of rest of the infrastructure, we have
Ci (Pi) = 1 such that PI = P−i, that is, the infrastructure
survival probability solely depends on that of S−i.

We now consider that the effects of reinforcements and
attacks can be separated at the system level such that (i)
∂P−i

∂xi
≈ 0, which indicates that reinforcing Si does not directly

impact the survival probability of rest of the infrastructure,
and (ii) ∂Pi

∂xj
≈ 0 for j ̸= i, which indicates that reinforcing

Sj does not directly impact the survival probability of Si. We
capture such system-level considerations for the provider using
the following condition.

Condition 3.2: For PI in Condition 3.1, we have for i =
1, 2, . . . , N , j = 1, 2, . . . , N , j ̸= i,

∂PI

∂xi
≈
[
1 + (1− P−i)

∂C̄i

∂Pi

]
∂Pi

∂xi

∂PI

∂xj
≈
[
1− C̄i(Pi) + (1− P−i)

∂C̄i

∂P−i

]
∂P−i

∂xj

for the defender. �

B. Pairwise Interactions

We now consider that the pairwise correlations between Si

and Sj are dominant, and correlations between three or more
systems are negligible. In such a case, the inclusion exclusion
principle provides the approximation

PI = 1−

 N∑
i=1

(1− Pi)−
N−1∑
i=1

N∑
j=i+1

Pī∩j̄


where Pī∩j̄ is the joint failure probability of Si and Sj . Then,
we have Pī∩j̄ = Ci,j (Pi, Pj) (1 − Pj), which leads to the
following condition.

Condition 3.3: Pairwise Correlation Function: The
probability that the infrastructure is operational is

PI =
N∑
i=1

Pi − (N − 1) +
N−1∑
i=1

N∑
j=i+1

Ci,j (Pi, Pj) (1− Pj),

where Ci,j (Pi, Pj) is the pairwise failure correlation function
of Si and Sj . �

The pairwise failure correlation functions capture the in-
terdependence of failures of the Si’s. We denote the failure
probability of system Si by Pī = 1 − Pi. The following are
two illustrative forms of Ci,j (Pi, Pj).

(a) Statistical Independence: Under statistical independence
we have Ci,j (Pi, Pj) = 1 − Pi so that Pi,j = PiPj ,
where Pi,j is the survival probability of Si and Sj . More
generally, if Ci,j (Pi, Pj) > 1 − Pi, the failures in Si

are positively correlated to failures in Sj , that is, they
occur with a higher probability following the latter, that is
Pī|j̄ > Pī, or equivalently failure in Sj leads to a higher
probability of failure in Si. If Ci,j (Pi, Pj) < 1 − Pi,
failures in Si are negatively correlated to latter failures,
that is Pī|j̄ < Pī.

(b) OR Systems: The OR systems as modeled in [15] corre-
spond to the special case N = 2 where the infrastructure
consists of cyber and physical systems (denoted by i = C
and j = P , respectively) that can be independently
analyzed. For OR systems, the failure probability of cyber
or physical sub-infrastructure is Pī∪j̄ = Pī+Pj̄ or equiv-
alently Pī∩j̄ = 0. Thus, we have PI = Pi,j = Pi+Pj−1
and Ci,j (Pi, Pj) = 0.

We now consider that the effects of reinforcements and
attacks can be separated at the system level such that ∂Pi

∂xj
≈ 0

for j ̸= i. Intuitively, this condition indicates that only direct
impacts are dominant at the system level. For example, in
cyber-physical infrastructures (N = 2), cyber reinforcements
contribute to improving the cyber sub-infrastructure but not di-
rectly to improving the physical sub-infrastructure. We capture
the pairwise system-level correlations for the defender using
the following condition.

Condition 3.4: For PI in Condition 3.3, we have

∂PI

∂xi
≈

1 + N∑
j=1
j ̸=i

(
(1− Pj)

∂Ci,j

∂Pi

) ∂Pi

∂xi

for i = 1, 2, . . . , N ,

∂PI

∂xj
≈
[
1− CΣi,j + (1− Pj)

∂CΣi,j

∂Pj

]
∂Pj

∂xj

for j = 1, 2, . . . , N , where CΣi,j =
N∑
i=1
i̸=j

Ci,j(Pi, Pj). �

In the above condition, the first equation focuses on Si since
its reinforcement variable xi directly affects its survival proba-
bility Pi. It is obtained by differentiating the equation in Con-
dition 3.3 with respect to xi and ignoring the ∂Pj

∂xi
terms. In this

equation, while xj does not directly affect PI through ∂Pi

∂xj
, the

dependence is based on ∂Pj

∂xj
and the pairwise correlations. In

the second equation, by anchoring on Sj , the sum effect of all

pairwise correlations is captured by CΣi,j =
N∑
i=1
i̸=j

Ci,j(Pi, Pj).

Compared to the role of the aggregate correlation function C̄i

in Condition 3.2, this sum is more detailed in that it explicitly
incorporates the pairwise correlations between Sj and Si,
i = 1, 2, . . . , N , i ̸= j. Note that S−i used in Condition 3.2 is
based on aggregating all systems except Si, whose correlations
are accounted for using C̄i. On the other hand, Sj used in
Condition 3.4 does not correspond to the aggregation of all
systems, but its correlations to all other systems are explicitly
accounted for using CΣi,j . This finer detail enables us to more



accurately characterize the infrastructures when their pairwise
correlations are dominant. By following the above approach,
it is possible to generalize the pairwise correlations to include
correlations among three or more subsets of systems, which
would lead to conditions that are more complex than above.

C. System Survival Probabilities

We consider that the system survival probabilities satisfy
the following differential condition, which was originally de-
fined for cyber and physical sub-infrastructures [14].

Condition 3.5: The survival probabilities Pi and P−i of
system Si and S−i, respectively, satisfy the following condi-
tions: there exist functions hi, h−i, Λi, and Λ−i such that

∂Pi

∂xi
= hi (Pi, x1, . . . , xN , y1, . . . , yN )

= Λi(x1, . . . , xN , y1, . . . , yN )Pi

∂P−i

∂xi
= h−i (P−i, x1, . . . , xN , y1, . . . , yN )

= Λ−i(x1, . . . , xN , y1, . . . , yN )P−i

for i = 1, 2, . . . , N . �
We now illustrate two cases for which the above condition

is satisfied.

(a) Statistically Independent Components: Let pi|R and pi|N
denote the conditional survival probability of a component
of Si with and without reinforcement, respectively. Un-
der the statistical independence condition of component
failures, the probability that Si survives the attacks is
Pi = pxi

i|Rp
Ni−xi

i|N [14], which in turn leads to

∂Pi

∂xi
= ln

(
pi|R

pi|N

)
Pi.

(b) Contest Survival Functions: The contest survival func-
tions are to express Pi in [8] such that Pi = ξ+xi

ξ+xi+yi
,

which in turn leads to
∂Pi

∂xi
=

(
yi

(ξ + xi + yi)(ξ + xi)

)
Pi.

IV. GAME THEORETIC FORMULATION

The provider’s objective is to make the infrastructure
resilient by reinforcing xi components of Si, i = 1, 2, . . . , N ,
to maximize the utility function

UD = [PI(x1, . . . , xN , y1, . . . , yN )] gD − LD(x1, . . . , xN ).

For uniform component reinforcement costs, we have

LD (x1, . . . , xN ) =
N∑
i=1

cD,ixi, where cD,i is the component

reinforcement of Si. The attacker’s objective is to disrupt the
infrastructure by attacking yi components of Si to maximize
the utility function

UA = [1− PI(x1, . . . , xN , y1, . . . , yN )] gA−LA(y1, . . . , yN ).

For uniform component attack costs, we use

CA (y1, . . . , yN ) =
N∑
i=1

cA,iyi, where cA,i is the component

attack cost for Si.

A. Nash Equilibrium Conditions

The Nash Equilibrium conditions are derived by equating
the corresponding derivatives of the utility functions to zero,
which yields

∂UD

∂xi
=

∂PI

∂xi
gD − ∂LD

∂xi
= 0

for i = 1, 2, . . . , N for the provider, and

∂UA

∂yi
= −∂PI

∂yi
gA − ∂LA

∂yi
= 0

for i = 1, 2, . . . , N for the attacker.

B. OR Infrastructures

A special case where the probability of simultaneous
failures of two or more systems is negligible constitutes the
OR systems [14]. Here, the infrastructure will fail if any of the
systems fails such that for any two systems Si and Sj , we have
Pī∪j̄ = Pī +Pj̄ or equivalently Pi,j = Pi +Pj − 1. Thus, the

Condition 3.3 takes a much simpler form PI =
N∑
i=1

Pi− (N −

1), In these (theoretical) systems, the dependence of PI on
system parameters at NE is easier to derive and interpret, since
it is determined entirely by the first equation in Condition 3.4
without involving Ci,j(Pi, Pj), namely ∂PI

∂xi
≈ ∂Pi

∂xi
. At NE,

we have
∂Pi

∂xi
=

1

gD

∂LD

∂xi
.

Using Condition 3.5, an estimate for the survival probability
of Si is

P̃i;D (x1, . . . , xN , y1, . . . , yN )

=
∂LD

∂xi

gDΛi(x1, . . . , xN , y1, . . . , yN )
,

for i = 1, 2, . . . , N . These estimates provide the sensitivity
information of the survival probabilities of individual systems;
in particular, the estimate for Si depends only on the derivative
Λi of the corresponding probability Pi. Although these esti-
mates do not involve Ci,j(Pi, Pj), the interactions between the
systems may still be captured by the Λi’s at the component
level. In terms of cost and reward, the estimate P̃i;D is
proportional to the cost derivative and inversely proportional to
the reward term gD. While being seemingly counter-intuitive,
the multiplicative term gD corresponds to a higher utility at a
lower Pi value from among all NE solutions.

C. Statistical Independence of Systems

We consider that the failures of Si and Sj are statistically
independent such that Pij = PiPj and Ci,j (Pi, Pi) = 1− Pi.
At NE we have for i = 1, 2, . . . , N , j = 1, 2, . . . , N , i ̸= j,(

2−N − Pi +
N∑

k=1

Pk

)
∂Pi

∂xi
=

1

gD

∂LD

∂xi
,

(
2−N − Pj +

N∑
k=1

Pk

)
∂Pj

∂xj
=

1

gD

∂LD

∂xj
.



We now substitute expressions for ∂Pi

∂xi
and ∂Pj

∂xj
based on

Condition 3.5, and obtain the system of equations:(
2−N − P̄j;D +

N∑
k=1

P̄k;D

)
P̄j;D

=

∂LD

∂xj

gDΛj (x1, . . . , xN , y1, . . . , yN )
,

(
2−N − P̄i;D +

N∑
k=1

P̄k;D

)
P̄i;D

=
∂LD

∂xi

gDΛi (x1, . . . , xN , y1, . . . , yN )
.

Qualitatively, at NE, the survival probability estimates of
systems Si and Sj , namely, P̄i;D and P̄j;D have an inverse
relationship, but their product is determined by Λi(·) and Λj(·)
in a manner similar to the individual probabilities P̃i;D and
P̃j;D of OR systems. However, unlike OR systems, statistical
independence is not sufficient to decouple the estimates P̄i;D

and P̄j;D so as not to involve pairwise correlations but depend
solely on Λi(·) and Λj(·), respectively.

D. NE Sensitivity Functions

We now derive estimates for Pi and P−i at NE using the
partial derivatives of the cost and failure correlation function
to obtain qualitative information about their sensitivities to
different parameters from the provider’s perspective.

Theorem 4.1: Aggregate Correlation Function: Under
Conditions 3.1, 3.2, and 3.5, an estimate of the survival
probability of rest of the infrastructure S−i, for ∂C̄i

∂P−i
̸= 0,

i = 1, 2, . . . , N , is

P̂−i;D (x1, . . . , xN , y1, . . . , yN )

=
1− C̄i

(
P̂i;D

)
+ ∂C̄i

∂P−i

2 ∂C̄i

∂P−i

±

√√√√√1− C̄i

(
P̂i;D

)
+ ∂C̄i

∂P−i

2 ∂C̄i

∂P−i

2

−
∂LD

∂xj

gDΛ−i
∂C̄i

∂P−i

,

and, for ∂C̄i

∂P−i
= 0, is

P̂−i;D (x1, . . . , xN , y1, . . . , yN ) =

∂LD

∂xj

gDΛ−i

[
1− C̄i

(
P̂i;D

)] .
An estimate of the survival probability of system Si is

P̂i;D (x1, . . . , xN , y1, . . . , yN )

=
∂LD

∂xi

gDΛi

[
1 + (1− P̂−i;D)∂C̄i

∂Pi

] .

Proof: At NE, we have ∂PI

∂xi
= 1

gD
∂LD

∂xi
and ∂PI

∂xj
= 1

gD
∂LD

∂xj
.

By using the formulae in Condition 3.2, we have[
1 + (1− P−i)

∂C̄i

∂Pi

]
∂Pi

∂xi
=

1

gD

∂LD

∂xi[
1− C̄i(Pi) + (1− P−i)

∂C̄i

∂P−i

]
∂P−i

∂xj
=

1

gD

∂LD

∂xj
.

We now substitute expressions for ∂Pi

∂xi
and ∂P−i

∂xj
based on

Condition 3.5, and obtain the system of equations:[
1 + (1− P−i)

∂C̄i

∂Pi

]
Pi =

∂LD

∂xi

gDΛi(x1, . . . , xN , y1, . . . , yN )
,

(1)[
1− C̄i(Pi) + (1− P−i)

∂C̄i

∂P−i

]
P−i

=

∂LD

∂xj

gDΛ−i(x1, . . . , xN , y1, . . . , yN )
. (2)

The expression for P̂−i;D is obtained by solving for P−i using
the quadratic Equation 2, and the expression for P̂i;D follows
from the Equation 1. �

The estimates P̂−i;D and P̂i;D provide sensitivity in-
formation for the corresponding probabilities P−i and Pi,
respectively, and are not always guaranteed to be within
[0,1] range. Their main purpose is to provide qualita-
tive information about the survival probability of Si and
the rest of the infrastructure S−i based on the aggre-
gate correlation function C̄i between the two. Compared
to OR systems, there are significant system-level interac-
tions reflected in both P̂−i;D (x1, . . . , xN , y1, . . . , yN ) and
P̂i;D (x1, . . . , xN , y1, . . . , yN ), namely, the survival probabil-
ity of the infrastructure without Si and that of Si by itself,
respectively. In particular, P̂−i;D (x1, . . . , xN , y1, . . . , yN ) de-
pends on both C̄i(·) and its partial derivatives with respect
to P−i; while an increase in the former leads to a decrease
in P̂−i;D, the effect of the latter depends on its sign and it
can in some cases mitigate the decrease due to the former.
Also P̂−i;D depends on the partial derivative of LD with
respect to xj ; it also depends on the cost factor gD and
Λ−i as expected. Its dependence on Pi is through the fail-
ure correlation function C̄i(Pi). The qualitative behavior of
P̂i;D (x1, . . . , xN , y1, . . . , yN ) is quite similar with respect to
LD. And, they both are affected by Λi(·) and Λ−i(·), and each
of them in turn depends on the number of component attacks
and reinforcements in each system. Thus, the estimates P̂−i;D

and P̂i;D reflect the correlations between S−i and Si explicitly
C̄i(Pi), as well as those captured by the survival probabilities
of individual systems by themselves.

Theorem 4.1 utilizes Pī|−i = C̄i(Pi), which captures
the failure effects of the rest of the infrastructure S−i on
the system Si. Alternatively, we can utilize P−i|̄i = Ci(Pi)
which captures the failure effects of system Si on rest of
infrastructure S−i.

We now consider the pairwise correlations in deriving NE
conditions. We derive expressions for Pi and Pj in terms
of the partial derivatives of cost and correlation functions,



which provide qualitative information about their sensitivities
to different parameters.

Theorem 4.2: Pairwise Correlation Function: Under
Conditions 3.3, 3.4, and 3.5, an estimate of the survival
probability of system Sj , for

∂CΣi,j

∂Pj
̸= 0, i = 1, 2, . . . , N ,

j = 1, 2, . . . , N , i ̸= j, is

P̂j;D (x1, . . . , xN , y1, . . . , yN )

=
1− CΣi,j +

∂CΣi,j

∂Pj

2
∂CΣi,j

∂Pj

±

√√√√√1− CΣi,j +
∂CΣi,j

∂Pj

2
∂CΣi,j

∂Pj

2

−
∂LD

∂xj

gDΛj
∂CΣi,j

∂Pj

,

and, for
∂CΣi,j

∂Pj
= 0, is

P̂j;D (x1, . . . , xN , y1, . . . , yN ) =

∂LD

∂xj

gDΛj

[
1− CΣi,j

] .
An estimate of the survival probability of system Si is

P̂i;D (x1, . . . , xN , y1, . . . , yN )

=
∂LD

∂xi

gDΛi

1 + N∑
j=1
j ̸=i

(
(1− P̂j;D)

∂Ci,j

∂Pi

)
.

Proof: Following along the lines of Theorem 4.1, we obtain
the following expressions based on Conditions 3.4 and 3.5:1 + N∑

j=1
j ̸=i

(
(1− Pj)

∂Ci,j

∂Pi

)Pi

=
∂LD

∂xi

gDΛi(x1, . . . , xN , y1, . . . , yN )
, (3)

[
1− CΣi,j + (1− Pj)

∂CΣi,j

∂Pj

]
Pj

=
∂LD

∂xi

gDΛj(x1, . . . , xN , y1, . . . , yN )
. (4)

The expression for P̂j;D is obtained by solving for Pj using
quadratic Equation (3), and the expression for P̂i;D follows
from Equation (4). �

The estimates P̂i;D and P̂j;D provide qualitative informa-
tion about the survival probabilities of Si and Sj , respec-
tively, by explicitly utilizing CΣi,j , which in turn depends
on Ci,j(Pi, Pj) for i = 1, 2, . . . , N, i ̸= j. Note that the
choices of i and j are arbitrary since the system indices can
be re-labeled, but once indices are fixed such that j > i, the
corresponding estimates are also fixed. The overall dependence
of P̂i;D and P̂j;D on CΣi,j , gD and LD is quite similar to the

corresponding relationships described above for Theorem 4.1.
One major difference, however, is that P̂i;D and P̂j;D depend
on all pairwise correlations Ci,j and their partial derivatives.
In particular, P̂i;D depends on each 1− P̂j;D, j = 1, 2, . . . , N ,
j ̸= i, which is multiplied by ∂Ci,j

∂Pi
and summed in the

denominator. In terms of other parameters, as in the case
of Theorem 4.1, it similarly depends directly on ∂LD

∂xi
and

inversely on gD and Λi. Then, P̂j;D depends on each P̂i;D

through the pair sise correlation Ci,j

(
P̂i:D, P̂j;D

)
through

CΣi,j =
N∑
i=1
i̸=j

Ci,j(Pi, Pj). Moreover, it depends both on CΣi,j

and its partial derivative
∂CΣi,j

∂Pj
, and their net effect could

be additive or otherwise depending on the sign of the latter.
Also, it depends on ∂LD

∂xj
and inversely on gD and Λj in a

qualitatively similar manner to P̂−i in Theorem 4.1. In general,
the relative values of pairwise correlations and their partial
derivatives are reflected directly in these estimates.

V. APPLICATION EXAMPLES

We now describe simple models for cloud computing and
energy grid infrastructures, and derive some estimates for the
aggregate and pairwise correlation functions and Λi(·)’s. Using
these estimates, we discuss the implications of the sensitivity
functions for the survival probabilities derived in Theorems
4.1 and 4.2; they depend on Λi(·)’s and correlation functions,
which depend on the systems and interactions between them,
in addition to the cost terms and their differentials.

A. Distributed Cloud Computing Infrastructure

A distributed cloud computing infrastructure consists of
NS sites, with Lk servers at site k, k = 1, 2, . . . , NS . These
sites are connected over a communication network wherein
each router manages LN connections. The servers and routers
may be brought down by cyber attacks, and communication
fiber routes to server sites and routers may be physically
cut. The components may be reinforced by replicating the
servers and routers, and by providing redundant, physically
separate fiber routes. This infrastructure can be modeled using
2NS + 2 systems such that S(k,c) and S(k,p) represent the
cyber and physical models of server site k, and S(NS+1,c)

and S(NS+1,p) represent the cyber and physical models of
the communications network. In terms of original indices,
we have: Sl = S(l,c), for l = 1, 2, . . . , NS , SNS+1 =
S(NS+1,c); SNS+1+l = S(l,p), for l = 1, 2, . . . , NS , and
S2NS+2 = S(NS+1,p). The relationships between the aggregate
correlation functions can be captured as follows. For the
communications network, we have C(NS+1,c) = LNC(NS+1,p)

which reflects that a cyber attack on a router will disrupt all
its LN connections. For site k, we have the opposite given by
C(k,p) = LkC(k,c), k = 1, 2, . . . , NS , which indicates that a
physical disruption of the fiber at site k will disconnect all its
servers. This multiplicative effect carries over to partial dif-
ferentials since ∂C(k,p)

∂P(k,p)
= Lk

∂C(k,c)

∂P(k,p)
and ∂C(k,p)

∂P(k,c)
= Lk

∂C(k,c)

∂P(k,c)

for k = 1, 2, . . . , NS , NS + 1, and LNS+1 = 1/LN . Based
on Theorem 4.1, this multiplier effect in partial differentials
will be reflected in P̂(k,p);D, P̂(k,c);D, P̂−(k,p);D and P̂−(k,c);D



in addition to the aggregate correlation functions C(k,p) and
C(k,c).

We account for the pairwise correlations at site k by
considering the corresponding cyber and physical models,
namely S(k,c) and S(k,p) respectively. Since a physical fiber
cut disconnects all servers at site k from the network, we have

C(k,c),(k,p)

(
P(k,c), P(k,p)

)
= LkC(k,p),(k,c)

(
P(k,p), P(k,c)

)
,

for k = 1, 2, . . . , NS , which indicates the multiplicative effect
of physical attacks. The relationship for the communications
network remains the same as above. Then, this multiplicative
effect carries over to CΣi,j in Theorem 4.2. For example, by
considering only the correlations between the corresponding
cyber and physical models of the sites and network, we have
the multiplicative effects carried over to CΣi,j

= CΣ(k,c),(k,p)
,

and hence to P̂(k,c);D and P̂(k,p);D for k = 1, 2, . . . , NS + 1.
When correlations between all pairs Si = S(k1,a1) and
Sj = S(k2,a2) for distinct (k1, a1) and (k2, a2), where k1 =
1, 2, . . . , NS + 1, k2 = 1, 2, . . . , NS + 1, a1 ∈ {c, p} and
a2 ∈ {c, p}, we have CΣi,j = CΣ(k1,a1),(k2,a2)

, which indicates
the propagation of the multiplicative effect throughout the
infrastructure. In this general case, the correlations between
cyber models and physical models are considered in addition
to those between the cyber and physical models.

We now consider that the attacker and provider choose
components according to the uniform distribution. Then, for
the cyber model S(k,c) of site k, there are [y(k,p) − x(k,p)]+
non-reinforced fiber connections, where [x]+ = x for x > 0,
and [x]+ = 0 otherwise. Then, the probability that a cyber-
reinforced component survives y(k,p) fiber attacks is approxi-
mated by

p(k,c)|R =
f(k,c)

1 + Lk[y(k,p) − x(k,p)]+
,

where the normalization constant f(k,c) is appropriately chosen
such that 0 ≤ f(k,c) ≤ 1. If a cyber component is not
reinforced, it can be brought down by a direct cyber attack,
or indirectly through a fiber attack. Thus, we approximate the
survival probability of a cyber component at site k as

p(k,c)|N =
f(k,c)

1 + y(k,c) + Lk[y(k,p) − x(k,p)]+
,

which reflects the additional lowering of the survival proba-
bility in inverse proportion to the level of cyber attack y(k,c).
Using these formulae, for cyber model S(k,c) for site k, we
have

Λ(k,c)(x(k,p), y(k,c), y(k,p)) = ln

(
1 +

y(k,c)
1 + Lk[y(k,p) − x(k,p)]+

)
,

which does not depend on x(k,c), k = 1, . . . , NS . Then,
since the Λ(k,c) appears in the denominator, P̂(k,c);D in both
Theorems 4.1 and 4.2 decreases with the number of cyber
attacks y(k,c) and increases in proportion to [y(k,p) − x(k,p)]+
which is the number of attacks exceeding the reinforcements.
The latter condition may appear counter intuitive at the surface
but note that it is applicable to only the states that satisfy NE
conditions. An analogous dependence of P̂−(k,c);D in Theorem
4.1 on the parameters x(k,c), x(k,p), y(k,c), and y(k,p) is less
direct since the corresponding Λ(k,c) appears inside the square
root but is qualitatively similar since it is in the denominator.

When we consider only the cyber-physical correlations of the
sites, the dependence of P̂(k,p);D in Theorem 4.2 on Λ(k,c) is
qualitatively similar.

B. Power Grid Infrastructure

We consider a simplified model of a power grid infrastruc-
ture controlled by a (cyber) network of NS SCADA system
sites, such that site k controls the power flow on Lk lines. A
SCADA system at site i may be disabled by a direct cyber
attack, which will disrupt the power flow on all its Lk lines.
Unlike the cloud computing infrastructure, the impacts of cyber
attacks are amplified by the Lk’s. The SCADA systems are
connected to a communication network as in the previous case.
This infrastructure can be modeled using 2NS+2 systems such
that S(k,c) and S(k,p) represent the cyber and physical models
of SCADA site k, and S(NS+1,c) and S(NS+1,p) represent the
cyber and physical models of the communications network.
By using the reasoning analogous to the cloud computing
infrastructure, we have C(k,c) = LkC(k,p), k = 1, 2, . . . , NS

which indicates that a cyber attack on site k would disrupt the
power flow on all Lk lines. Also, these multiplicative effects
will be reflected in the partial derivatives and in P̂(k,c);D,
P̂(k,p);D, P̂−(k,c);D and P̂−(k,p);D.

For SCADA site k, we consider the pairwise correlations
between its cyber and physical models, namely S(k,c) and
S(k,p), respectively. Following along the lines of previous
example, we have

C(k,p),(k,c)

(
P(k,p), P(k,c)

)
= LkC(k,c),(k,p)

(
P(k,c), P(k,p)

)
,

for i = 1, 2, . . . , NS , NS + 1, and LNS+1 = LN , which
indicates the multiplicative effect of cyber attacks. As in the
previous example, this multiplicative effect carries over to
CΣi,j = CΣ(k,c),(k,p)

and hence to P̂(k,c);D and P̂(k,p);D when
only correlations between the cyber and physical models are
considered.

We then estimate the survival probability of reinforced
power lines that can be disconnected by y(k,c) cyber attacks
on site k, as

p(k,p)|R =
f(k,p)

1 + Lk[y(k,c) − x(k,c)]+
,

where 0 ≤ f(k,p) ≤ 1 is appropriately chosen. Each power line
can be directly disrupted by physical means such that it can be
brought down if not reinforced, and a component is more likely
to be unavailable if there are more physical attacks, namely,
higher y(k,p). Thus, an attack on a SCADA system at site k
will have an amplified effect on power lines compared to direct
physical attacks such that

p(k,p)|N =
f(k,p)

1 + y(k,p) + Lk[y(k,c) − x(k,c)]+

provides an estimate of the survival probability of a non-
reinforced power line. Using the above formulae, for physical
model S(k,p) for site k, we have

Λ(k,p)(x(k,c), y(k,c), y(k,p)) = ln

(
1 +

y(k,p)
1 + Lk[y(k,c) − x(k,c)]+

)
,

for which does not depend on x(k,p), for k =
1, 2, . . . , NS , NS + 1. Similar to the cloud computing in-
frastructure, P̂(k,p);D decreases with the number of physical



attacks y(k,p) and increases with the cyber attacks in excess of
the cyber reinforcements, namely [y(k,c) − x(k,c)]+.

In general compared to the previous example, the roles
of cyber and physical models are reversed for the sites in
this case, but those of the communications network are quite
similar. The overall qualitative dependencies of the survival
probability estimates (provided by Theorems 4.1 and 4.2) on
the number of components attacked and reinforced in the
individual systems are quite similar.

More general models with additional cyber and physical
component types are considered for both cloud computing and
energy grid infrastructures in [14], [15]. In particular, local
area network devices at the server sites are considered for
the former, and smart meters and line sensors are considered
for the smart grid infrastructures. The overall analysis of
this section can be directly extended to those more detailed
component models.

VI. CONCLUSIONS

We studied a class of infrastructures consisting of a number
of systems each of which is composed of discrete components
that can be disrupted by either cyber or physical attacks. The
components can be reinforced against such attacks by taking
into account the interactions between the systems and also
between the components within the systems. We characterized
the interactions between the systems in these infrastructures
at two levels: (i) the aggregate failure correlation function
specifies the conditional failure probability of the infrastructure
given that of an individual system, and (ii) the pairwise
correlation function between two systems specifies the fail-
ure probability of one given that of the other. The survival
probabilities of individual systems satisfy simple first-order
differential conditions that characterize component correlations
within the systems; these conditions generalize the contest
success functions and statistical independence conditions. By
formulating a game between an infrastructure provider and
attacker, we derived Nash Equilibrium conditions in terms
of the partial derivatives of cost terms, failure correlation
functions and survival probabilities of component systems
and their partial derivatives. We then estimated the sensitivity
functions that indicate the dependence of the infrastructure
survival probability on these quantities. We applied these
results to analyze simplified models of cloud computing and
energy grid infrastructures.

These results extend previous results on interconnected
systems in [7], [8] by (i) explicitly incorporating the interde-
pendencies between the systems using two types of correlation
functions, and (ii) utilizing the differential conditions to gener-
alize the contest success functions. Also, these results enable
us to analyze in more detail the cyber-physical infrastructures
studied in [14], [15]. In particular, these generalizations en-
able us to consider more detailed models of the correlations
between various systems in cloud computing and energy grid
infrastructures.

Several extensions of this formulation could be pursued
in future studies, including the cases where the effects of
attacks and reinforcements of specific individual components
are explicitly accounted for. Another future direction is to
consider simultaneous cyber and physical attacks. It would

be interesting to study sequential game formulations of this
problem, and cases where different levels of knowledge are
available to each party. Applications of our approach to
more detailed models of cloud computing infrastructure, smart
energy grid infrastructures and high-performance computing
complexes would be of future interest. It would also be of fu-
ture interest to explore the applicability of this overall method
to continuous models, wherein partial differential equations are
used for describing the dynamics of individual systems or the
entire infrastructure.
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