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Defense of Cyber Infrastructures Against Cyber-Physical
Attacks Using Game-Theoretic Models

Nageswara S. V. Rao,1,∗ Stephen W. Poole,1 Chris Y. T. Ma,2 Fei He,3 Jun Zhuang,4

and David K. Y. Yau5

The operation of cyber infrastructures relies on both cyber and physical components, which
are subject to incidental and intentional degradations of different kinds. Within the context
of network and computing infrastructures, we study the strategic interactions between an at-
tacker and a defender using game-theoretic models that take into account both cyber and
physical components. The attacker and defender optimize their individual utilities, expressed
as sums of cost and system terms. First, we consider a Boolean attack-defense model, wherein
the cyber and physical subinfrastructures may be attacked and reinforced as individual units.
Second, we consider a component attack-defense model wherein their components may be
attacked and defended, and the infrastructure requires minimum numbers of both to func-
tion. We show that the Nash equilibrium under uniform costs in both cases is computable
in polynomial time, and it provides high-level deterministic conditions for the infrastruc-
ture survival. When probabilities of successful attack and defense, and of incidental failures,
are incorporated into the models, the results favor the attacker but otherwise remain qual-
itatively similar. This approach has been motivated and validated by our experiences with
UltraScience Net infrastructure, which was built to support high-performance network ex-
periments. The analytical results, however, are more general, and we apply them to simplified
models of cloud and high-performance computing infrastructures.
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1. INTRODUCTION

The operation of infrastructures that pro-
vide cyber services, such as network connectivity
and computing capacity, requires the continued
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functioning of: (i) cyber components such as com-
puters, routers, and switches, and (ii) physical com-
ponents such as fiber routes, cooling, and power sys-
tems. While these infrastructures are built to provide
cyber services, their operation is “cyber-physical” in
nature due to its dependence on both cyber and phys-
ical components. For example, the components may
be degraded by factors such as incidental (weather-
related) power failures and device fatigue failures
as well as deliberate cyber attacks on computers
and physical attacks on fiber routes. While cyber
attacks on computing systems and networks seem to
get more public media attention, in many occasions
the infrastructure degradations have been due to
physical factors such as power blackouts and back-
hoe incidents on fiber routes. Indeed, these cyber
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infrastructures can be compromised by attacks on
physical components such as heating, ventilation,
and air conditioning (HVAC) systems, power-supply
lines, and physical fiber connections; in particular,
the latter two are typically routed through long
stretches of unprotected areas, making them vulner-
able to physical attacks. Consequently, the design
and operation of these infrastructures must strike
a balance between the cost of such degradations
based on estimates and empirical data, in particular
attacks, and the benefits of infrastructure reinforce-
ments on the overall performance. In this article,
we present game-theoretic models that capture the
interactions between an attacker and a defender
to support rigorous design and analysis of a class
of cyber infrastructures that consists of network
and computing components. These constitute a
subclass of more general infrastructures such as
monitoring and control networks for the energy grid,
intelligent transportation systems, nuclear plants,
and hydroelectric dams; in the latter, in particular,
cyber attacks can degrade physical capabilities, in
addition to physical attacks degrading the cyber
capabilities.

The provider of these cyber infrastructures has
to account for both cyber and physical intentional
degradations, namely, attacks, in addition to natural
and incidental degradations. Our work is motivated
by experiences with UltraScience Net (USN),(1)

which is a cross-country 10 Gbps network infras-
tructure built in 2004 for supporting the testing of
high-performance network solutions. Somewhat
surprisingly, all major service outages of USN have
been due to noncyber incidents, such as fiber cuts
and power outages, which highlights the dependence
of cyber infrastructures on physical components.
There have been many attack attempts on USN
cyber components, and the firewalls combined with
control-plane encryption prevented them from
developing into service outages. Consequently, the
operation of USN required a systematic, analytical
way to counter such physical incidents, in addition
to cyber measures to protect the network devices
and hosts. The game-theoretic models in this arti-
cle encompass the cyber-physical aspects of USN
infrastructure, and in addition are generally appli-
cable to cloud computing infrastructure (CCI) and
high-performance computing infrastructure (HPCI).
The successful operation of USN for six years
under the requirement of no more than two outages
per year indicates the validity and effectiveness of
rather simple game-theoretic models.

We consider a class of cyber infrastructures
modeled as discrete systems of cyber and phys-
ical components, which are subject to incidental
degradations, and attacks that could lead to service
interruptions. The provider or defender is charged
with reinforcing the infrastructure parts or compo-
nents to defend against the degradations of both
kinds. These infrastructures are characterized by the
following considerations:

(1) Knowledge about the capabilities and loca-
tions of the infrastructure is available to the
attacker, primarily from the information pro-
vided to facility users;

(2) Knowledge about incidental degradations is
available to both parties, primarily from public
sources;

(3) Actual costs incurred by the defender and at-
tacker are private information and not avail-
able to the other; and

(4) Strategies used by the defender in choosing
which parts to reinforce and by the attacker in
choosing which parts to attack are not revealed
to the other.

These considerations lead to game-theoretic models
where objectives of the attacker and defender con-
tain common terms corresponding to items (1) and
(2), and private terms corresponding to items (3) and
(4). We only consider the attacks that immediately
disrupt the cyber services provided by the infrastruc-
ture, and do not consider those that primarily steal
information, or plant malicious codes to attack oth-
ers (using only a small amount of resources). Due
to item (4), both defender and attacker consider that
the other employs a probabilistic strategy (determin-
istic strategy is a special case). Our main objective is
to gain an understanding of the interactions to help
ensure the infrastructure survival in the presence of
cyber and physical degradations within the frame-
work of game theory.(2–4)

We consider that the attacker chooses between
cyber and physical parts, and the defender reinforces
both cyber and physical parts. Both attacks and re-
inforcements have a certain probability of success,
and additionally the infrastructure is subject to inci-
dental degradations. The utility functions of the at-
tacker and defender are sums of cost and system
terms, where the latter represents the “benefit” of
the degradation and continued operation for the at-
tacker and provider, respectively. We first consider a
simplified model where the cyber and physical parts
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are treated as single subinfrastructures, and then
consider that each consists of several discrete com-
ponents. In each case, we compute the Nash equilib-
rium (NE) that represents the attacker and defender
actions based on their utility functions, from which
neither has a motivation to unilaterally deviate. De-
spite the probabilistic strategies, we show that NE is
deterministic in that underlying probabilities are ei-
ther 0 or 1, from which the survival status of the in-
frastructure can be inferred. Furthermore, if the costs
depend only on the number of components n, NE can
be computed with polynomial time complexity in n.
The performance degradations of the infrastructure
at NE, including a complete shutdown, depend on
further details of reinforcement and attack strategies.
We also incorporate the probabilities of successful at-
tack and defense of components, and also the proba-
bilities of their incidental failures. In the latter case,
the attacker is at a certain advantage under incidental
degradations, but otherwise the game-theoretic re-
sults remain qualitatively similar.

We first describe the USN infrastructure and our
experiences that led to the game-theoretic analysis
described in this article. We then consider CCI and
HPCI, which represent two different ways of provid-
ing computing capabilities to users. In the former,
computing servers are distributed at various sites
over the Internet, and in the latter computing power
is concentrated at specific supercomputing facilities
connected over high-performance networks. We ap-
ply the above game-theoretic methods to infer condi-
tions for the survival of these infrastructures at NE,
and derive the expected performance levels under
statistical independence conditions. Our results show
that the cloud computing provider can hide and ex-
ploit the information about the distribution of servers
at various sites to improve the expected performance
against the attacker.

The organization of this article is as follows. In
Section 2, we briefly compare our formulation with
related works within a broad context. In Section 3,
we first describe USN infrastructure, and then
describe simplified models of CCI and HPCI. In Sec-
tion 4, we present our game-theoretic formulation
and discuss NE conditions for the subinfrastruc-
ture attack-defense model in Section 4.1 and the
component attack-defense model in Section 4.2; we
incorporate the probabilities of successful attacks
and reinforcements in Section 4.3. In Section 5, we
discuss the CCI and HPCI.

Table I presents the notation used in the article.

2. RELATED WORK AND THE
CONTRIBUTION OF THIS ARTICLE

Since the terrorism attacks on September
11, 2001, there has been a growing literature on
attacker-defender games; see Ref. 5 for a recent
edited book and see Ref. 6 for a recent review
article on this topic. This line of research starts
with single-period,(7) single-target,(8) complete
information(7) models, and then extends to multiple-
period,(9,10) multiple-target,(7,11,12) and incomplete
information(8,13–15) models.

In addition to being applied to counterterror-
ism literature, game theory has also been applied
to study the strategic interactions in cyber security
problems,(16–19) mostly between the hackers and de-
fenders (company, system operators). For example,
the hackers could steal system/customer information
and plant stealthy malicious codes, while the de-
fender could purchase antivirus software as well as
use “honeypots” to track hackers.(20–22) Some strate-
gic interactions between the third party (e.g., gov-
ernment who may provide subsidy) and the multiple
defenders in interdependent security networks have
also been studied.(23,24)

Note that most of the above works on cyber se-
curity are limited to the space of cyber infrastructure
parts, not touching the space of physical parts. How-
ever, cyber infrastructures often integrate and inter-
act with physical ones; and such integration and in-
teraction have been documented in the literature of
cyber-physical systems.(25–27) For example, Refs. 28
and 29 study the interdependence between the cyber
and physical components.

To our best knowledge, none of the previous
game-theoretical works explicitly study the strate-
gic interactions between the attackers and defenders
in complex cyber-physical systems, which are essen-
tial and critical in practice.(28) This article fills this
gap by using a single-period, multiple-component,
and complete-information game to study the opti-
mal level of defenses on cyber, physical, and com-
bined parts of infrastructures that provide network
and computing services,(30) facing adaptive adver-
saries.

For tractability and simplicity, this article focuses
on modeling discretized cyber and physical compo-
nents. These models are simpler than some complex
models used in power distribution, transportation,
and telecommunication critical infrastructures,(31–33)

where the systems are characterized by continuous



Defense of Cyber Infrastructures Against Cyber-Physical Attacks 697

Table I. Notation

Notation Explanation

Infrastructure parameters:
i = c, p, cp Index of cyber, physical, and combined part, respectively
ni , i = c, p Number of components in part i
ki , i = c, p Minimum number of components of part i needed for infrastructure
fU(nc, np, xc, xp, yc, yp) robustness fraction

Defender’s variables:
ND Action set of defender
GD Gain matrix of defender
CD Cost matrix of defender
SD System matrix of defender
xi , i = c, p Number of components defended or reinforced in part i

Attacker’s variables:
NA Action set of attacker
GA Gain matrix of attacker
CA Cost matrix of attacker
SA System matrix of attacker
yi , i = c, p Number of components attacked in part i

Decision variables:
QD Defender’s probability vector
QSD Defender’s probability vector with defense success probabilities incorporated
QSD−δ Defender’s probability vector with defense success probabilities and incidental

failure probabilities incorporated
PA Attacker’s probability vector
PSA Attacker’s probability vector with attack success probabilities incorporated
PSA+δ Attacker’s probability vector under attack success probabilities and incidental

failure probabilities incorporated
Utilities:

UD (PA, QD) Defender’s utility
UA (PA, QD) Attacker’s utility

parameters and dynamics, and the underlying prob-
lems may involve solving differential equations.(34)

For continuous systems, the computation of optimum
strategies is much more complex, and could be in the
complexity class of polynomial parity arguments on
directed graphs (PPAD)-complete.(35) By contrast,
as a result of the uniform cost formulation, the com-
plexity of NE computation for this article is polyno-
mial time, which is much more effective in practice.

3. CYBER INFRASTRUCTURES

In this section, we first describe USN network in-
frastructure and then describe two simplified models
of CCI and HPCI.

3.1. UltraScience Net

USN is a wide-area network testbed that pro-
vides suites of 10 Gbps connections of several
thousands of miles in support of high-performance
network tests.(1) USN infrastructure consists of a

Fig. 1. USN consists of dual 10 Gbps lambdas from Oak Ridge to
Chicago to Seattle to Sunnyvale.

data-plane of two parallel OC192 connections with
co-location sites at Oak Ridge, Chicago, Seattle, and
Sunnyvale, as shown in Fig. 1.6

6USN was commissioned by the Department of Energy in 2004,
and has been supported by the Department of Defense since
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At each site, a Linux host supports the users,
and an additional control workstation at Oak Ridge
provides remote management and configuration
of the entire network via a secure control-plane,
which is physically separated from the data-plane. At
each site, all devices are behind a local firewall, and
secure encrypted tunnels between the firewalls carry
the control traffic between the sites. The hosts are
restricted to execute a limited set of user transport
codes, and in particular, they do not run e-mail and
web service codes. USN is an experimental testbed
used mainly by network researchers with a somewhat
modest service requirement of no more than two
service outages in a year. The small number of hosts
with very limited functionality combined with highly
restrictive control-plane firewall rules resulted in no
service outages due to cyber incidents. However,
an increasing number of intrusion attempts have
been recorded by the firewall logs at all sites over
the years, including port scans and login attempts.
All USN service interruptions have been due to
noncyber incidents, including the following incidents
during 2004–2010:

(1) Fiber Disruptions: A small-engine airplane
crashed into the fiber route between Chicago
and Oak Ridge nodes, which disconnected
both data- and control-planes. Also, two in-
cidents of fiber outages between Chicago and
Seattle nodes disconnected the data-plane.

(2) Device Failures: There have been three
linecard failures that led to data-plane disrup-
tions, and a switch failure in the control-plane
at Sunnyvale node.

(3) Power Disruptions: There have been four
power interruptions at Oak Ridge node, which
disconnected the data-plane at Oak Ridge and
also brought down the entire control-plane.

A careful analysis of the frequency of these incidents
became necessary to ensure no more than two ser-
vice outages per year, which in turn led to our game-
theoretic formulation (presented in the next section).
Overall, the operational performance over a period
of six years at this service level justifies the utiliza-
tion of the game-theoretic models and analysis, even
though they are somewhat simple.

2007. The 10 Gbps infrastructure was decommissioned in 2010,
and is currently being upgraded to 40/100 Gbps with a different
footprint.

3.2. Computer Infrastructure Models

We now consider CCI and HPCI, which rep-
resent two different ways of providing computing
capabilities to users. CCIs provide commodity com-
puting capacity using servers possibly distributed
over the Internet, wherein the user is typically un-
aware of the location of servers that execute the task.
HPCIs make available supercomputers to users, who
typically execute their code on specific systems.

3.2.1. Cloud Computing Infrastructure

Collections of computing servers may be de-
ployed at multiple sites over the Internet to provide
a specified level of aggregated computing capacity to
users connected to the Internet. Typically, the de-
tails about the number and types of servers at any
particular site are not disclosed. The tasks submitted
by users are scheduled on the available servers, typi-
cally at locations unknown and not easily predictable
by users. Cyber attacks could be launched remotely
on the servers or gateway routers, and physical at-
tacks could be launched on fiber connections or
power lines to server sites. A physical disruption of
the fiber or cyber disruption of the gateway router
makes all servers at that site unavailable, and a cy-
ber attack on all servers at this site will also have
the same effect. In addition, the server sites are sub-
ject to incidental disruptions of the physical plant
and power-supply systems. The provider can rein-
force the cyber parts by replicating the servers and
deploying fail-over gateway routers. The physical
parts can be reinforced using redundant diverse fiber
and power connections, and redundant HVAC sys-
tems. The total computing power of all servers that
are up and connected to the Internet is the avail-
able capacity, and is a performance measure of this
infrastructure.

3.2.2. High-Performance Computing Infrastructure

HPCIs consist of supercomputers at multiple
sites, connected to high-speed networks via fiber con-
nections. Information about such facilities deployed
for open research projects, such as those by the De-
partment of Energy and the National Science Foun-
dation, is publicly available. Users of such facilities
typically submit jobs to be executed on specific super-
computers. In general, supercomputer sites provide
redundant power and HVAC systems to protect
against single failures. But, targeted cyber attacks
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on supercomputers or gateway routers can render
these facilities unavailable. Also, physical attacks on
fiber connections can render them unreachable, and
multiple attacks on power lines can bring down these
facilities (since backup power is generally utilized for
smooth shutdowns rather than sustained operations).
In terms of reinforcements, fiber connections and
gateway routers may be replicated and configured
to support fail-overs, and firewall capabilities may
be reinforced to protect against cyber attacks. For
a given HPCI, the number of supercomputers that
are operational and connected to the network is a
measure of its infrastructure performance.

Despite the apparent differences in the type of
computing services provided, the underlying infras-
tructures of CCI and HPCI are quite similar, and they
both can be studied using the game-theoretic method
described in the next section. While the overall sur-
vival of these infrastructures can be inferred from NE
conditions of the game-theoretic models, further de-
tails need to be taken into account to assess their per-
formance levels, as will be described in Section 5.

4. GAME-THEORETIC ANALYSIS

In this section, we first consider the Boolean
attack-defense model for cyber and physical subin-
frastructures or parts, followed by the discrete case
where each part consists of multiple components. We
also consider that both cyber and physical parts of the
system are subject to incidental degradations. An at-
tacker is aware that both cyber and physical compo-
nents are essential for the operation of the infrastruc-
ture and chooses to attack only one of them.7 On the
other hand, the provider would reinforce both cyber
and physical parts.

4.1. Subinfrastructure Attack-Defense Model

We consider that the defender and attacker
make Boolean choices of defending and attacking
the cyber and physical subinfrastructures as individ-
ual units.

� Defender’s action set is ND = {cp, 0}, where cp
represents reinforcing both cyber and physi-
cal parts, and 0 represents no reinforcement.
The corresponding probability vector is QD =

7Extension to simultaneous cyber and physical attacks is direct as
described in Ref. 36 for the case without incidental degradations.

[qcp 1 − qcp], where qcp is the probability that
both parts are reinforced.

� Attacker’s action set is NA = {c, p, 0}, where c
and p represent attacking cyber and physical
parts, respectively, and 0 represents no attack.
The corresponding probability vector is PA =
[pc pp 1 − pc − pp], where pi , i = c, p, is the
probability that part i is attacked.

The utility function of the attacker is the sum
of (i) a cost term representing the cost of launch-
ing an attack, and (ii) a system performance term
representing the benefit of rendering the system
nonoperational.(30,37) The utility function is ex-
pressed using a gain matrix GA consisting of cost
matrix CA and system matrix SA such that:

GA = CA + SA =

⎛
⎜⎝

ac ac

ap ap

0 0

⎞
⎟⎠+

⎛
⎜⎝

βc,cp −βc,0

βp,cp −βp,0

β0,cp β0,0

⎞
⎟⎠ ,(1)

where (i) ac and ap are positive scalar costs corre-
sponding to cyber and physical attacks, respectively,
and (ii) βi, j , i = c, p, 0 and j = cp, 0 is a positive
scalar corresponding to the system term. Similarly,
the defender’s utility function is specified using a
gain matrix GD consisting of cost matrix CD and
system matrix SD such that:

GD = CD + SD =

⎛
⎜⎝

dcp 0
dcp 0
dcp 0

⎞
⎟⎠+

⎛
⎜⎝

−αc,cp αc,0

−αp,cp αp,0

−α0,cp −α0,0

⎞
⎟⎠ ,

(2)

where the first and second parts correspond to
cost and system performance, respectively. In a
zero-sum game, we have SA = −SD, indicating the
opposing interests of the attacker and defender in
rendering the system nonoperational and keeping it
operational, respectively. NE under the specific case
of βi, j = −αi, j = s has been derived in Ref. 37; the
single scalar parameter s represents the system term
for the provider and attacker, given by −s and s,
respectively. Here, the NE for zero-sum game in this
case is deterministic in that it is achieved by pi is 0
or 1 for i = c, p, and qcp is 1 or 0.

We now consider an extension wherein ps|i , i =
c, p represents the probability that an attack on part
i will be successful if launched. Similarly, qs|cp rep-
resents the probability of successful defense given
that both cyber and physical components are re-
inforced. The cost to the attacker is based on pc

and pp, and that to defender is based on qcp. The
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Fig. 2. Illustration of attacker’s best
responses with baseline values ac =
1, ap = 2, s = 2, ps|c = 0.5, ps|p = 0.5,

qscp = 0.6 (CA = cyber attack;
PA = physical attack; NA = no attack).

system’s response is based on the results of the attack
and defense and hence is determined by psc = ps|c pc,
psp = ps|p pp, and qscp = qs|cpqcp. We incorporate the
success probabilities to obtain the modified prob-
ability vectors PSA = [psc psp 1 − psc − psp] and
QSD = [qscp 1 − qscp].

(1) Attacker Strategy: NE for the attacker is given
by PA that minimizes the attacker’s utility
function:

UA(PA, QD) = PACAQT
D + PSASAQT

SD,

where the cost term PACAQT
D is based on the

probability of attack and attacker’s estimated
QD, and the second term PSASAQT

SD is based
on the probability of successful attack and de-
fense. At NE, the condition ∂UA

∂pc
= ac − 2s(1 −

qscp)ps|c < 0 implies that pc can be increased
to 1 to minimize UA, and otherwise pc can be
decreased to 0; the case of pp is similar. Thus,
the necessary conditions for the attacker to at-
tack the cyber and physical parts are:

ps|c >
ac

2s(1 − qscp)
and ps|p >

ap

2s(1 − qscp)
,

respectively. Thus, the attacker will attack
only if there is a certain level of probability
of success. When both conditions are satisfied,
the one corresponding to lower cost will be
chosen. These conditions require the knowl-
edge of s, which is decided by the provider to
keep the system operational, and also the esti-
mated state vector QD.

Fig. 2 illustrates the attacker’s best response
functions. In particular, we see that the attacker is

more likely to launch a cyber attack (CA) when
the defense probability qcp is small, the conditional
probability of successful cyber attack ps|c is large,
the cyber attack cost ac is small, the system payoff
s is intermediate, and the conditional probability of
successful defense qs|cp is intermediate. Similarly, the
attacker is more likely to launch a physical attack
(PA) when the defense probability qcp is small, the
conditional probability of successful physical attack
ps|p is large, the physical attack cost ap is small,
system parameter s is large, and qs|cp is small.

(2) Defender Strategy: NE for the defender is
given by QD that minimizes the defender’s
utility function:

UD(PA, QD) = PACDQT
D − PSASAQT

SD,

based on estimated PA. The defender will re-
inforce the cyber and physical parts, that is,
q = 1, under the condition:

qs|cp >
dcp

2s(psc + psp)
,

where ps = psc + psp = ps|c pc + ps|p pp is the
probability of a successful attack on either
cyber or physical part. In other words, the
provider will reinforce if the attacker has a cer-
tain probability of successful attack, or if the
importance level of keeping the system opera-
tional significantly outweighs the cost, i.e., s �
dcp. For USN, ps|c is small since none of the cy-
ber attacks were disruptive. Meanwhile, pp is
small since no physical attacks were recorded.
As a result, ps is small, thereby leading to a
large threshold for qs|cp derived above; thus, no
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Fig. 3. Illustration of defender’s best responses with baseline values dcp = 1, s = 2, psc = 0.1, psp = 0.8 (D = defend; ND = not defend).

reinforcements were necessary based on these
considerations.

Fig. 3 illustrates the defender’s best response
function. In particular, we see that the defender is
more likely to defend (D) when the attacking prob-
abilities pp and pc are high, the probability qs|cp is
high, defense cost dcp is low, and system parameter s
is high.

NE thus is deterministic, and the outcome is de-
termined by the cost terms, the single system term s,
attacker’s and defender’s estimated probability vec-
tors QD and PA, respectively, and the probabilities
of successful attack and defense. We note that both
attacker and defender originally conjecture a mixed
strategy for the other but end up employing a deter-
ministic one.

Now consider that both cyber and physical parts
are subject to incidental failures with probabilities δc

and δp, respectively. We assume that cyber and physi-
cal failures are statistically independent of each other
as well as the actions of attacker and defender. In
this case, the probability vectors corresponding to the
system term are:

PSA+δ = [psc + δc psp + δp 1 − psc − psp − δc − δp]

QSD−δ = [qscp − δc − δp 1 − qscp + δc + δp].

Here, we notice that the degradation proba-
bilities are added to the attack probabilities and
subtracted from the defense probabilities, reflecting

their net effect on the system. Proceeding as above,
we have the condition for the cyber attack (namely,
pc = 1) given by:

ps|c ≥ ac

2s(1 − qscp + δc + δp)
,

which specifies a lower threshold for the attack com-
pared to the above case. The case of pp is similar.
For the defender, we have the reinforcement condi-
tion (namely, qcp = 1) given by:

qs|cp >
dcp

2s(psc + psp + δc + δp)
,

which requires the reinforcement for lower val-
ues of attack success probabilities compared
to the above case. For USN, this threshold is
lower compared to the previous case as a result
of incidental physical degradations described in
Section 3.1, but is still above qs|cp. In particu-
lar, the required outage rate of below two per
year made the reinforcements unnecessary. A
more stringent requirement, namely, higher s,
would have made reinforcements to physical
components necessary. For example, a requirement
of no more than a single outage in two years would
have required additional steps such as: (i) replication
of control-plane host at a site other than Oak Ridge;
and (ii) rerouting of one of the data-plane OC192
circuits over a physically diverse path, such as the
southern U.S. route.
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The formulation in this section is coarse in that
it does not account for the details of various com-
ponents within cyber and physical subinfrastructures
but it provides an overall assessment of the need for
their reinforcements. In the next section, we refine
this formulation to account for the number of com-
ponents within each subinfrastructure.

4.2. Component Attack-Defense Model

We consider that cyber and physical subinfras-
tructures or parts are composed of nc and np com-
ponents, respectively. Let xi ≥ 0, i = c, p, be the
number of components reinforced by the defender,
and yi ≥ 0, i = c, p, be the number of components
attacked. The system operates at different perfor-
mance levels based on the specific values of xi and
yi , but requires that xi − yi ≥ ki (where ki ≥ 0), to be
operational.

A cyber infrastructure can be modeled at differ-
ent levels of detail under this formulation depending
on the relative importance of components. The pa-
rameters ki , i = c, p should be appropriately chosen
and interpreted to achieve the required infrastruc-
ture performance. For a simplified CCI model, nc is
the total number of servers located at ns sites, and
np = 2ns , where each site contributes to two physical
components, namely, HVAC system and fiber con-
nection. kc represents the number of servers that are
operational and connected to the Internet, and kp

represents the physical components at these opera-
tional servers. For a simplified HPCI model, nc = ns

represents the number of supercomputers, and np =
2ns as in the case of CCI. kc represents the num-
ber of supercomputers that are operational and con-
nected to the network, and kp = ns + kc ensures that
the HVAC system and fiber connection are both op-
erational at kc sites. The components of USN can be
modeled at various levels of abstraction; at a very
coarse level, nc = 4 represents four firewalls, and
np = 10 represents HVAC systems at four sites and
six fiber (OC192) connections. The condition that
Oak Ridge site must be operational for the control-
plane leads to kc = 1, and that at least one fiber con-
nection and one site must be physically operational
to provide a minimum service leads to kp = 2.

Let x ∈ {1, 2, . . . , ncnp + 1} and y ∈ {1, 2, . . . ,

nc + np + 1} denote the variables of defender
and attacker that correspond to the action sets
ND = {(1, 1), . . . (nc, np), (0, 0)} and NA = {(1, 0), . . .
(nc, 0), (0, 1), . . . , (0, np), (0, 0)}, respectively. We
represent this game using (nc + np + 1) × (ncnp + 1)
gain matrices, GA and GD, where rows correspond to

y, the attacker’s choices, and columns correspond to
x, the defender’s options. The (y, x)th element, ey,x,
of a gain matrix is interpreted as follows:

(i) For the defender, x = ncnp + 1 repre-
sents defending neither cyber nor physical
components, namely, xcp = 0; x ∈ [1, ncnp]
represents defending xp = [(x − 1) ÷ nc] + 1
physical components and xc = [(x − 1)
mod nc] + 1 cyber components. In some
cases, we denote (y, x)th element ey,x in a
more explicit form.

(ii) For the attacker, y ∈ [1, nc] represents at-
tack on yc = y cyber components, and y ∈
[nc + 1, nc + np] represents attack on yp = y −
nc physical components, and y = nc + np + 1
represents no attack, namely, yc = yp = 0.

Each gain matrix is expressed as a sum of cost and
system matrices as in the Boolean case, namely,
GA = CA + SA and GD = CD + SD for the attacker
and defender, respectively. The probability vectors
of attacker and defender are given by:

PA = [pc1 pc2 . . . pcnc
pp1 pp2 . . . ppnp

p′] and

QD = [q1:1q1:2 . . . q1:np . . . qnc :1 . . . qnc :npq′],

respectively, where p′ = 1 −∑nc
l=1 pcl −∑np

l=1 ppl and
q′ = 1 −∑nc

xc=1

∑np

xp=1 qxc :xp . For simplicity of nota-
tion, we also use the alternative notation PA =
[p1, p2, . . . , pnc+np+1], and QD = [q1, q2, . . . , qncnp+1]
where the index x represents xc and xp; qx is also
denoted by qxc :xp . Let cy,x , dy,x, and sy,x denote the
(y, x)th entry of attacker’s cost matrix CA, defender’s
cost matrix CD, and system matrix SA = −SD. The
bottom row of CA consists of 0s denoting the cost of
no attack with probability p′, that is, cnc+np+1,x = 0
for x = 1, 2, . . . , ncnp + 1. And the rightmost column
of CD consists of 0s denoting no reinforcement cost,
that is, dy,ncnp+1 = 0 for y = 1, 2, . . . , nc + np + 1. As
a result, we have the following cost term for the at-
tacker:

PACAQT
D =

ncnp+1∑
x=1

qx

(
nc∑

l=1

pcl cl,x +
np∑

l=1

ppl cnc+l,x

)
,

where QT
D represents the attacker’s estimate of

defender’s probabilities of reinforcement. The
system term utilized by the attacker is given by:
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PASAQT
D =

nc+np+1∑
y=1

ncnp+1∑
x=1

pysy,xqx

=
nc∑

l=1

pcl

⎛
⎝ nc∑

xc=1

np∑
xp=1

sl,xc :xpqxc :xp

⎞
⎠

+
nc∑

l=1

pcl

(
sl,ncnp+1q′)

+
np∑

l=1

ppl

⎛
⎝ nc∑

xc=1

np∑
xp=1

snc+l,xc :xpqxc :xp

⎞
⎠

+
np∑

l=1

ppl

(
snc+l,ncnp+1q′)

+ p′
nc∑

xc=1

np∑
xp=1

snc+np+1,xc :xpqxc :xp

+ p′snc+np+1,ncnp+1q′.
At NE, attacker computes P∗

A that minimizes
PAGAQT

D, and defender computes Q∗
D that minimizes

PAGDQT
D. By combining the above, for the attacker

we have the partial derivative for cyber components:

∂ PAGAQT
D

∂pcl

= q′(sl,ncnp+1 − snc+np+1,ncnp+1)

+
nc∑

xc=1

np∑
xp=1

qxc :xp

(
cl,xc :xp

+ sl,xc :xp − snc+np+1,xc :xp

)
,

and the partial derivative for physical components:

∂ PAGAQT
D

∂ppl

= q′(snc+l,ncnp+1 − snc+np+1,ncnp+1)

+
nc∑

xc=1

np∑
xp=1

qxc :xp

(
cnc+l,xc :xp

+snc+l,xc :xp − snc+np+1,xc :xp

)
.

NE is determined by computing all above partial
derivatives that are negative, and assigning proba-
bility 1 to the one that minimizes PAGAQT

D. Since
each of these terms is based on “fixed” elements of
the gain matrices and no limits are imposed on the
cost, the corresponding probability can be increased
to 1 (as in the Boolean case). Note, however, that
if the elements depend on the probabilities, this
approach does not result in the minimization of

utility function. If all partial derivative are nonneg-
ative, then attacker will not attack, i.e., p′ = 1,
and the system survives. The computational
complexity of this step is O (ncnp(nc + np)).
Due to the specific nature of these underly-
ing game matrices, this computation is poly-
nomial time, compared to the more complex
PPAD-completeness of the general two-player
NE computation.(35) This computation requires
attacker’s assessment of the likelihood of compo-
nents being reinforced. Such information can be
based on public information, general best practices
in deploying the infrastructures, and results of past
attacks.

For the defender, we have a cost term given by:

PACDQT
D =

nc∑
l=1

pcl

⎛
⎝ nc∑

xc=1

np∑
xp=1

dl,xc :xpqxc :xp

⎞
⎠

+
np∑

l=1

ppl

⎛
⎝ nc∑

xc=1

np∑
xp=1

dnc+l,xc :xpqxc :xp

⎞
⎠

+ p′
nc∑

xc=1

np∑
xp=1

dnc+np+l,xc :xpqxc :xp,

and combining with the system term PASDQT
D =

−PASAQT
D, we have:

∂ PAGDQT
D

∂qx
=

nc∑
l=1

pcl (dl, j − sl,x + sl,ncnp+1)

+
np∑

l=1

ppl (dnc+l,x − snc+l,x + snc+l,ncnp+1)

+ p′(dnc+np+1,x − snc+np+1,x

+ snc+np+1,ncnp+1).

Here, PA represents the defender’s estimate of
the attacker’s probabilities of attack. Since an attack
will be on either cyber or physical part, only one of∑nc

l=1 pcl sl,x and
∑np

l=1 ppl snc+l,x will be nonzero, and
the one with minimum utility value will be chosen
at NE. Then, for the defender, we compute all the
resultant terms that are negative, and pick the one
that gives the lowest cost for PAGDQT

D. If no nega-
tive partial derivatives exist, no components will be
reinforced, i.e., q′ = 1, and the infrastructure may not
necessarily survive an attack. Thus at NE, the infras-
tructure survival status is deterministic and is deter-
mined as follows:
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system state

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

survive if [(xc ≥ kc) ∧ (xp ≥ kp)]
∨[(yc < nc − kc)
∧(yp < np − kp)]

not else if
[(xc < kc) ∧ (yc > nc + xc − kc)]

∨[(xp < kp)
∧(yp > np + xp − kp)]

either else.

The infrastructure survival in the third case de-
pends on which specific components are attacked and
reinforced. For i = c, p, there are fewer than ki com-
ponents reinforced, and no more than ni − yi com-
ponents not attacked, since xi < ki and ni − ki ≥ yi

and yi ≤ ni + xi − ki . There is a set Sni −yi with at least
ni − yi ≤ ki components that are not attacked, and
there is a set Sxi with xi < ki components that are re-
inforced. The infrastructure will survive if and only if
there are ki , for i = c, p, components each of which
is either not attacked or has been reinforced, that
is, |Sni −yi ∪ Sxi | ≥ ki , for i = c, p. If the infrastructure
survives, its performance level is determined by xi , yi ,
ni , and ki , for i = c, p, and also the precise strategies
used by the attacker and defender (as illustrated in
Section 5).

The concept of survival is based on the choice
and semantics of ki , i = c, p, parameters. For the
CCI model, the survival implies the availability of kc

servers for users over the Internet. Similarly for the
HPCI model, survival implies that kc supercomputers
are available to users. In both cases, a more detailed
analysis is needed to assess the effects of constraints
due to ki , as will be illustrated in Section 5 under sta-
tistical independence conditions.

4.3. Probability of Successful Attack and Defense

We now consider that when attacker launches
zi ≥ yi ≥ 0, i = c, p, attacks, yi of them will be suc-
cessful with probability pyi |zi . Then, the probabilities
of yc and yp successful cyber and physical attacks are
given by:

psyc =
nc∑

zc=yc

pyc|zc pzc andpsyp =
np∑

zp=yp

pyp|zp pzp,

respectively. When defender reinforces ti ≥ xi com-
ponents, xi will successfully withstand the attack with
probability qxc |tc :xp|tp . Then, the probability of success-
ful defense of xp physical components and xc cyber

components is given by:

qsxc :sxp =
nc∑

tc=xc

np∑
tp=xp

qxc |tc :xp|tpqtc :tp .

The probability vectors that multiply cost matrices
are PA and PD (same as before), and those that mul-
tiply system matrices are:

PSA = [psc1 psc2 . . . pscnc
psp1 psp2 . . . pspnp

ps ′]

QSD = [qs1:s1qs1:s2 . . . qs1:snp . . . qsnc :s1 . . . qsnc :snpqs ′],
where ps ′ = 1 −∑nc

y=1 pscy −∑np

y=1 pspy and qs ′ = 1 −∑nc
xc=1

∑np

xp=1 qsxc :sxp . For the attacker, we consider
the cost PACAQT

D + PSASAQT
SD, and the partial

derivatives are obtained as in the previous section.
For cyber components, we have:

∂ PACAQT
D

∂pcl

+ PSASAQT
SD

∂pcl

=
nc∑

xc=1

np∑
xp=1

qxc :xpcl,xc :xp

+
cl∑

x=1

⎛
⎝px|cl

⎡
⎣ nc∑

xc=1

np∑
xp=1

qxc :xp

(
sl,xc :xp − snc+np+1,xc :xp

)

+ q′(sl,ncnp+1 − snc+np+1,ncnp+1)
])

.

For physical components, the partial derivative
∂ PACAQT

D
∂ppl

+ PSASAQT
SD

∂ppl
can be similarly computed.

For the defender, we consider the cost
PACDQT

D − PSASAQT
SD and the partial derivative is

given by:

∂ PACDQT
D

∂qx
− PSASAQT

SD

∂qx

=
nc∑

l=1

pcl dl, j +
np∑

l=1

ppl dnc+l,x

−
xc∑

x′
c=1

xp∑
x′

p=1

qx′
c |xc :x′

p|xp

nc∑
l=1

pcl (sl,ncnp+1 − sl,x)

−
xc∑

x′
c=1

xp∑
x′

p=1

qx′
c |xc :x′

p|xp

np∑
l=1

ppl (snc+l,ncnp+1 − snc+l,x)

+
xc∑

x′
c=1

xp∑
x′

p=1

qx′
c |xc :x′

p|xp p′(dnc+np+1, j

−snc+np+1,x + snc+np+1,ncnp+1).
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We utilize the algorithm of the previous section to
compute NE, and the computational complexity is
O(n2

cn2
p(nc + np)). The probability of incidental fail-

ures can be handled using PSA+δ and QSD−δ as in the
previous section. NE is qualitatively quite similar to
that of the previous section although the values of za

and ta could be different when incidental failures are
taken into account.

For USN, the analysis is similar to the Boolean
case but is carried out separately on individual cyber
and physical components. The provider’s estimates
of pscl is close to zero, since pyc|zc is close to zero
due to unsuccessful cyber attacks on USN. And, the
estimate of pspl is close to zero for a different rea-
son, namely, no incidents of physical attacks, which
makes pzp close to zero. As a result, p′ component of
provider’s estimate of PSA is close to 1, and others are
close to zero. Then, the corresponding partial deriva-
tives are positives, leading to provider’s solution q′ =
1, and as a result no additional reinforcements were
needed. For incidental degradations, δ = 0 for cy-
ber components, and a value much below the tar-
get of two failures per year for physical components.
Thus, the incremental terms in the partial deriva-
tives due to δ are close to zero, which in turn leads
to no additional reinforcements. Any significant in-
creases either in the success probabilities of cyber at-
tacks or incidents of physical attacks would render
the corresponding partial derivatives negative; this
condition in turn will require that the corresponding
components be reinforced. Similar qualitative anal-
ysis applies to incidental degradations: increases in
incidental degradation probabilities of the compo-
nents will render some of the partial derivatives neg-
ative, thereby indicating that the corresponding com-
ponents be reinforced. In contrast with the Boolean
case, the results of this section provide a finer anal-
ysis in that they identify specific cyber and physical
components to be reinforced.

If the cost of attack or reinforcement depends on
the component, then the minimization of the utility
function needed for NE computation depends on the
choice of components for both attack and defense.
Under arbitrary (possibly nonlinear) costs, the choice
of picking the optimal set of components to attack by
the attacker and the optimal set of components to re-
inforce for the defender can be shown to be versions
of the bin packing problem, and hence are compu-
tationally intractable. The deterministic NE of this
formulation is a result of the unbounded cost, i.e.,
cost terms can be arbitrarily increased to make the
underlying probability 1. When finite bounds are

imposed on cost terms, the NE is no longer guaran-
teed to be deterministic, and could consist of a mixed
strategy.

The results of this section are based on ensuring
that ki , i = c, p, components would be operational
but does not provide further information about the
performance levels above these values. For example,
the “spare” capacity of CCI above the minimum level
of kc servers could be a measure of robustness of
the infrastructure to later degradation events. Also,
this framework does not account for different sites
housing different number of servers, which could in-
fluence the site-level reinforcement strategies. Such
analysis requires that further details about the infras-
tructure be taken into account, as will be illustrated
in the next section for computing infrastructures.

5. COMPUTING INFRASTRUCTURES

We now consider the details of computing infras-
tructures of Section 3.2 to refine the results based on
NE conditions. In these computing infrastructures,
the cyber components consist of computing sys-
tems and gateway routers, and the physical compo-
nents consist of fiber connections, physical plant, and
power supplies. The disruptions of gateway routers,
fiber connections, physical plant, and power supplies
all have the same net effect of disconnecting all com-
puting systems at the site. Hence, for simplicity of
discussion, we generically consider only the physical
attacks on fiber to capture all such effects.

The refinement of NE results to infer the perfor-
mance of cyber infrastructures requires that the ele-
ments of both cost and system matrices be suitably
specified. The elements of cost matrices are spec-
ified as follows to reflect component-level details:
(i) for the defender, dl,x = dl,xc :xp = xcddc + xpddp,
where ddc and ddp are costs of reinforcing a cyber
and physical component, respectively, and (b) for the
attacker, cy,x = ycac for y ∈ [1, nc] and cy,x = (y −
nc)αcap, for α ≥ 1, y ∈ [nc + 1, nc + np + 1], where cac

and cap are the costs of attacking a cyber and physical
component, respectively; α could be higher than 1, in-
dicating a higher cost of coordinating multiple physi-
cal attacks at geographically separated locations.

Then, we consider two ways of computing the el-
ements sy,x of the system matrix SA.

First, we consider further details of the system
terms for the defender by taking into account the
levels of reinforcement above the values specified by
ki , i = c, p, as follows:
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−si, j

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2s if [(yc = 0) ∧ (yp = 0)]
2s else if [(xc < kc)

∧(yc > nc + xc − kc)]
∨[(xp < kp)

∧(yp > np + xp − kp)]

−s
[

1 + xc − kc

xc − kc + yc

]
else if yp = 0

−s
[

1 + xp − kp

xp − kp + yp

]
else if yc = 0.

Here, the single scalar −s represents the system
term for the defender. In the first case, there is no
attack hence the system survives at the reinforced
level. In the next case, the system will not survive
since the required number of cyber and physical com-
ponents are not available. In the last two cases, the
system operates with a degraded capacity, and
the residual capacity is proportional to 1/yi , yi =
1, 2, . . . , ni , i = c, p. Intuitively, this characterization
reflects the vulnerability of the infrastructure in that
1/yi is the probability of being a target of a uniform
attack model.

Alternatively, we consider another approach to
specify the system terms, where the residual capacity
is proportional to −yi , as follows:

−s I I
i, j

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2s if xc = 0; xp = 0;
yc = 0; yp = 0

2s else if yp ≥ xp − kp

2s else if yc ≥ xu − kc

−s
[

1 + xc − kc − yc

xc − kc

]
else if yp = 0

−s
[

1 + xp − kp − yp

xp − kp

]
else if yc = 0.

Based on NE of the game, the attacker and provider
will determine values of xi and yi , respectively,
which in turn determine if the infrastructure survives
or not.

In the case the system survives, we now estimate
the expected infrastructure performance when the
attacker and defender pick the components to
attack and reinforce, respectively, independently
using the uniform distribution. We also assume
that the attack and reinforcement processes that
are used to choose the components are mutually
statistically independent. Once xi and yi values are
chosen, the components to reinforce and attack,

respectively, could be chosen using uniform pseudo
random number generators, many of which satisfy
the statistical independence property to a first order.
A cyber or physical component will survive if it is not
attacked or has been reinforced when attack occurs;
for i = c, p, these probabilities are given by [1 − 1

ni
]yi

and [1 − (1 − 1
ni

)xi ][1 − (1 − 1
ni

)yi ], respectively. The
probability that a component will survive a specific
attack is given by, for i = c, p,

1 −
[

1 − 1
ni

]xi
[

1 −
(

1 − 1
ni

)yi
]

,

which is an increasing function of xi and decreasing
function of yi . In particular, if yi = 0, the infras-
tructure continues to operate. Under the condition
that the attacker will only attack physical or cyber
components but not both, the probability that the
component will survive is given by:

fU(nc, np, xc, xp, yc, yp)

= 1 −
∑

i=c,p

([
1 − 1

ni

]xi
[

1 −
(

1 − 1
ni

)yi
])

,

which is called the robustness fraction. We next
estimate the expected capacity and expected number
of available supercomputers for CCI and HPCI,
respectively, using this formula for fU(.).

5.1. Cloud Computing Infrastructure

We consider a CCI with different number of
servers at different sites, and the attacker is not aware
of this information. Let ns1 , ns2 , . . . nsns

denote the
number of servers located at ns physical sites. The at-
tacker will attack yc servers based on their cyber loca-
tion information, and they can be distributed across
the sites since their physical locations are not known
to the attacker. On the other hand, each physical at-
tack is on a single site, and if successful will discon-
nect all servers at the site.

We consider two strategies for the defender: (i)
uniform strategy where the components are chosen
uniformly and independently, and (b) proportional
strategy that assigns higher reinforcement probabil-
ities to sites with a higher number of servers with
probability

ns j∑np
l=1 nsl

for a site j with ns j servers. On the

other hand, the attacker will adopt a uniform strat-
egy, being unaware of the number of servers at dif-
ferent sites. For the defender’s uniform strategy, the
expected capacity of CCI is given by:
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Table II. Simulation of 1,000 Server Cloud Computing Infrastructure; c and p Denote Cyber and Physical Parts, and prop and uni Denote
Proportional and Uniform Strategies

Case kc kp cac ccp ddc ddp Attack Defense Survival Residual Capacity

A 25 1 1 1 1 1 100 (c) 25(c), 1(p) 100% (both) 50.75 (both)
B 25 1 1 10 10 1 100 (c) 25(c), 1(p) 100% (both) 50.75 (both)
C 25 2 1 10 10 1 100 (c) 25(c), 2(p) 100% (both) 50.69 (both)
D 25 1 10 1 10 1 1(p) 25(c), 1(p) 100% (both) 65.46 (prop), 58.26 (uni)
D’ 25 1 10 1 10 1 1(p) 25(c), 1(p) 100% (both) 57.26 (both)
E 25 3 1 10 10 1 5(p) 25(c), 3(p) 100% (both) 66.10 (prop), 65.00 (uni)

ns∑
j=1

⎛
⎝ns j

⎡
⎣1 −

∑
i=c,p

([
1 − 1

ni

]xi
[

1 −
(

1 − 1
ni

)yi
])⎤⎦

⎞
⎠

=
⎛
⎝ ns∑

j=1

ns j

⎞
⎠
⎡
⎣1 −

∑
i=c,p

([
1 − 1

ni

]xi
[

1 −
(

1 − 1
ni

)yi
])⎤⎦

=
⎛
⎝ ns∑

j=1

ns j

⎞
⎠ fU(nc, np, xc, xp, yc, yp),

where the robustness fraction specifies the fraction
of servers

∑ns
j=1 ns j that will be operational on the

average.
Under the proportional strategy, the probabil-

ity that any node will be selected for reinforcement
and attack is given by 1 − (1 − ns j∑np

l=1 nsl

)xi and 1 − (1 −
1
ni

)yi , respectively. Then, by considering cyber and
physical parts, the probability that server at site j will
survive is given by:

1 −
∑

i=c,p

([
1 − ns j

np∑
l=1

nsl

]xi[
1 −

(
1 − 1

ni

)yi
])

.

Then, the expected capacity of the CCI for the
proportional strategy is given by:

ns∑
j=1

(
ns j

[
1 −

∑
i=c,p

([
1 − ns j /

np∑
l=1

nsl

]xi

[
1 −

(
1 − 1

ni

)yi
])])

.

The expected capacity for the uniform strategy
can be shown to be smaller than the above expected
capacity by utilizing the inequality (

∑ns
j=1 ns j )

2 ≤
ns
∑ns

j=1 n2
s j
. Thus, this defender’s proportional ap-

proach ensures a higher expected capacity compared
to the uniform strategy. If the provider discloses ns j s,
then attacker might adopt a less uniform strategy; by

not disclosing this information defender gains a defi-
nite advantage.

We simulated a CCI with 100 servers distributed
at five sites with various parameters. At NE, we com-
pute the system status and available capacity by sim-
ulating 1,000 instances of the attacker and defender
strategies; for the latter, we consider both uniform
and proportional methods. The salient features of the
simulations are summarized in Table II. We consider
the server distribution of 50, 30, 10, 5, and 5 across
the sites for Cases A–E, and 20 servers at each site for
Case D’. In cases A–C, the attacks are on the cyber
part due to its lower cost, and defender reinforces the
required number of cyber and physical components,
and the system survives, albeit at about half the ca-
pacity. In case D, the cost of cyber attacks becomes
10 times higher, resulting in a physical attack, where
the proportional strategy leads to a higher residual
capacity. The case D’ is identical except each site
has 20 servers, which leads to a lower residual ca-
pacity. Case E requires three physical nodes to be
operational, which leads to attacks on all physical
nodes, and defender reinforces three nodes; the pro-
portional strategy leads to a slightly higher residual
capacity.

5.2. High-Performance Computing Infrastructure

We consider an HPCI represented by (i) nc = ns

cyber components each encompassing the firewall
and computing system, where ns is the number of
sites, and (ii) np = ns physical components repre-
senting the sites that house the computing systems
including fiber connections. Then, the expected
number of supercomputing facilities available to
users is given by

∑ns
j=1 E [1 j ], where 1 j is the in-

dicator function, which takes value 1 if the site j
survives and 0 otherwise. We now consider that
both attacker and defender adopt uniform random
strategies, and the attacks and reinforcements are
statistically independent. By noting that E [1 j ] is the
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Fig. 4. Profiles of robustness fraction fU(20, 20, xc, xp, yc,

yp). Case (a) illustrates the effects of doubling physical at-
tacks, which leads to lower fU(.) values. Case (b) illustrates
the effects of doubling physical reinforcements, which leads
to higher fU(.) values. Case (c) shows the effects of doubling
physical attacks and doubling physical reinforcements, which
shows a more complex comparative performance.
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probability that site j survives, the expected number
of supercomputers N̂HPC that will survive yi uniform
independent attacks is given by:

N̂HPC

=
ns∑

j=1

⎛
⎝1 −

∑
i=c,p

[(
1 − 1

ni

)xi

−
(

1 − 1
ni

)xi +yi
]⎞⎠

= ns

⎡
⎣1 −

∑
i=c,p

([
1 − 1

ni

]xi
[

1 −
(

1 − 1
ni

)yi
])⎤⎦

= ns fU(nc, np, xc, xp, yc, yp),

where fU(nc, np, xc, xp, yc, yp) is the same robust-
ness fraction. As expected, the expected number of
surviving supercomputers improves as xi increases
and decreases as yi increases. In particular, under
yi = 0, all ns computing systems will be available,
and under xi = 0, the reduction in N̂HPC is the
largest for any yi . Due to the application of the
robustness fraction fU(.) to both CCI and HPCI,
we now examine its overall profiles. We show three
profiles in Fig. 4 of fU(20, 20, xc, xp, yc, yp) plotted
as a function of xc and yc. In Fig. 4(a), we plot the
cases of xc = xp and yc = yp, and yp = 2 × yc, which
illustrates that higher levels of attack lead to lower
fU values but the difference becomes quite small
(< 1%) for higher values of xc. In Fig. 4(b), we plot
the cases of xc = xp and yc = yp, and xp = 2 × xc

with all other parameters being the same; these plots
illustrate that higher levels of reinforcement lead to
higher fU values but the difference becomes quite
small (<1%) at higher values of xc. In Fig. 4(c), we
plot the cases of xc = xp and yc = yp, and xp = 2 × xc

and yp = 2 × yc, which illustrates somewhat more
complex relative performance and the difference is
quite significant (>10%) for most values of xc.

6. CONCLUSIONS

Cyber infrastructures rely on both cyber and
physical components for their operation, which are
subject to natural, incidental, or intentional degra-
dations. We presented a systematic analysis and de-
sign framework for such infrastructures based on two
game-theoretic models that capture different levels
of detail. We studied the strategic interactions be-
tween an attacker and a defender using this game-
theoretic approach. When the utility functions of
the attacker and provider consist of sums of individ-
ual cost and system terms, NE is deterministic, and

is polynomial-time computable under uniform costs.
We utilized these results to analyze USN network in-
frastructure and simplified models of CCI and HPCI.

This formulation only provides a basic game-
theoretic analysis of cyber infrastructures, and could
be extended in several ways. The simplified models of
CCI and HPCI considered here can be refined by ex-
plicitly modeling the correlations and differences be-
tween the cyber and physical components. Also, the
uniform attack and defense models considered here
represent only a starting point of the game-theoretic
analysis, and more informed models based on statis-
tical correlation and measurement data could lead
to more practically useful results. In terms of game
theory, formulations that bound the total costs of re-
inforcements and attacks would be of future inter-
est, and they are likely to lead to more complex NE
computations. It would also be interesting to study
the sequential game formulations of this problem,
and the cases where different levels of knowledge are
available to the attacker and provider. More detailed
simulations with system-specific details of CCI and
HPCI would be of future interest.
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