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Modeling Arbitrary Layers of Continuous-Level Defenses
in Facing with Strategic Attackers

Mohsen Golalikhani1 and Jun Zhuang1,∗

We propose a novel class of game-theoretic models for the optimal assignment of defen-
sive resources in a game between a defender and an attacker. Compared to the other game-
theoretic models in the literature of defense allocation problems, the novelty of our model is
that we allow the defender to assign her continuous-level defensive resources to any subset
(or arbitrary layers) of targets due to functional similarity or geographical proximity. We de-
velop methods to solve for equilibrium, and illustrate our model using numerical examples.
Compared to traditional models that only allow for individual target hardening, our results
show that our model could significantly increase the defender’s payoff, especially when the
unit cost of defense is high.
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1. INTRODUCTION

In this article, we propose a novel game-theoretic
model for assigning defensive resources to protect
a set of targets against intentional threats such as
terrorist attacks. The novelty of our model is that
we allow the defender to assign her defensive re-
sources to any subset (arbitrary layers) of targets
due to functional similarity or geographical prox-
imity, while previous models in the literature could
only prescribe defensive investment on either indi-
vidual targets or all targets together (e.g., border se-
curity). Fig. 1 shows two examples of arbitrary lay-
ers of protection against three threats. In Example
1, the defender could protect against three types of
attacks (chemical, biological, and explosive terror-
ism) either individually ({1}, {2}, and {3}) through
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specialty detectors, or collectively ({1, 2, 3}) by en-
hancing emergency responses. The defender could
also protect against both chemical and biological ter-
rorism jointly ({1, 2}) through public-health surveil-
lance programs in order to facilitate early detection,
but this method might not be effective for protection
against explosive terrorism. Similarly, in Example 2,
the defender can counter threats against three urban
areas (New York, Washington, D.C., and Los Ange-
les) either individually ({1}, {2}, and {3}) through
individual target hardening, or collectively ({1, 2,
3}) by improving U.S. border security. The defender
can also protect New York and Washington, D.C.
jointly ({1, 2}) due to their geographical proximity
(200 miles away). This can be achieved by establish-
ing a regional northeastern U.S. emergency response
system, which would most likely not benefit the Los
Angeles area (located 2,450 miles from New York)
too much. To the best of our knowledge, such game-
theoretic models of arbitrary layers of protection in
facing with strategic attacks, as provided in Fig. 1,
have not been studied in the literature.

There are many mathematical models that
have considered centralized defense for protecting
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Threat

Example 1: 

Functional Similarity 

Example 2: 

Geographical Proximity

1 Chemical Terrorism New York

2 Biological Terrorism Washington, D.C.

3 Explosive Terrorism Los Angeles

Fig. 1. Examples of arbitrary layers of protection.

individual targets. For example, Azaiez and Bier(1)

studied optimal resource allocation in reliability
systems with both parallel and series subsystems.
Hausken et al.(2) and Zhuang and Bier(3) used a
game-theoretic model to study target protection
against both terrorism and natural disasters. Pow-
ell(4) compared optimal defenses against strategic
and nonstrategic attackers. Golany et al.(5) provided a
model for allocating limited resources to defend sites
that face either probabilistic risk or strategic risk.
Zhuang and Bier(6) and Zhuang et al.(7) provided a
game-theoretic model that considers secrecy and de-
ception in an attacker-defender resource-allocation
and signaling game. Levitin and Hausken(8) proposed
a mathematical model for resource distribution in
multiple attacks against a single target. They consid-
ered two attacker objectives, that is, to maximize the
target vulnerability or to minimize the expected at-
tacker resource expenditure.

Overarching and collective protections have also
been studied in literature. Many of these stud-
ies focused on reliability maximization in multi-
state systems. For example, Levitin(9) proposed a
nongame-theoretic model for multilevel protection,
and considered both target hardening and overar-
ching protection in the context of both series and
parallel systems. Korczak and Levitin(10) proposed
a nongame-theoretic model for multilevel protec-
tion against multiple destructive factors in multistate
series-parallel systems. Levitin and Hausken(11) con-
sidered a two-period game where the defender dis-
tributes her resources between the deployment of
redundant elements and protecting them from at-
tacks. Inspection games could also be considered as a
special case for overarching or collective protection.
Recent models of inspection games for border secu-
rity and the control of nuclear weapons, nuclear ma-
terial, or other weapons of mass destruction include
Avenhaus and Canty,(12) Boros et al.,(13) Bier and
Haphuriwat,(14) and McLay et al.(15)

This article is intended as a natural extension
of the above-mentioned literature in the overarch-
ing and collective protection in attacker-defender

games. Our model allows the defender to allocate the
continuous-level resources to any subset (or arbitrary
layer) of targets, and thus obtain better payoffs. This
has not yet been studied in the literature. The rest
of the article is organized as follows. Section 2 pro-
vides the general model formulation and three theo-
rems for solving the model. Section 3 provides spe-
cific forms for the functions of the model and some
analytical results for such model. Section 4 illustrates
the model using numerical examples, and Section 5
provides conclusions and future research directions.
Finally, the Appendix provides the proofs to the four
theorems presented in Sections 2 and 3.

2. THE MODEL

2.1. Notation

Throughout this article, we use the following
notations:

• T: The set of all targets.
• |T|: Cardinality of set T.
• Sk: Nonempty subset defined on the set T

(i.e., Sk ⊂ T and Sk �= φ, k = 1, 2, . . . , 2|T| − 1).
Note that we do not consider the subset φ since
it would be meaningless to assign any defen-
sive resource to protect a subset consisting of
no target.

• Vi : Value of target i, i ∈ T. For simplicity, we
assume that the attacker and defender have the
same target valuation Vi s.

• (Xi , Yi ): Two-dimensional coordinates of tar-
get i, i ∈ T.

• Di j : The distance between targets i and j.
That is: Di j = √

(Xj − Xi )2 + (Yj − Yi )2, i, j ∈
T. (In this article we focus on geographical
proximity as illustrated in Example 2, Fig. 1.
However, functional similarity, as illustrated in
Example 1, Fig. 1, could be similarly defined as
a function of the attributes of the threats.)

• RSk({Di j : i, j ∈ Sk}): Defense efficiency coeffi-
cient on subset Sk, as a function of the distances
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Di j s between targets i and j, both belonging to
the subset Sk.

• dSk ≥ 0: Defender’s decision variable of defen-
sive investment for protecting subset Sk.

• d ≡ {dSk : Sk ⊂ T, Sk �= φ}: The set of decision
variables of the defender.

• ai ∈ {0, 1}: Attacker’s decision variable to at-
tack target i (ai = 1) or not (ai = 0). Note that
in this article for simplicity, we only consider
binary attack choice as studied in Konrad,(16)

Bier et al.,(17,18) Dighe et al.,(19) Zhuang and
Bier,(6) Zhuang,(20) Zhuang et al.,(7) and Bier
and Haphuriwat.(14) This might be relevant in
some high-level strategic decision-making sit-
uations, concerning which targets are likely to
be attacked (rather than the level of attack ef-
fort on each targets). However, we acknowl-
edge that in principle, attack effort may be
different among attacked targets and future
works could consider continuous-level attack,
as studied in Zhuang and Bier(3) and Levitin
and Hausken.(8,11)

• a ≡ {ai : i ∈ T}: The set of attacker’s decision
variables.

• uA(a, d) and uD(a, d): Attacker’s and de-
fender’s total expected payoffs, respectively.

• â(d): Attacker’s best response function; i.e.,
â(d) = arg maxa uA(a, d).

• Ta and Tn: Set of targets that are attacked and
not attacked, respectively (i.e., Ta = {i : ai = 1}
and Tn = T − Ta = {i : ai = 0}).

• P(RSkdSk, ai ): Probability that protection Sk

fails to protect target i when target i is attacked.
We assume that such probability decreases in
RSkdSk and increases in ai .

• ∏
Sk	i P(RSkdSk, ai ): Probability that all layers

of protection Sk (that cover target i) fail to pro-
tect target i.

• C: Cost of attack per target.
• B: Unit cost of defense.

2.2. Attacker’s and Defender’s Optimization
Problems

We assume that the attacker desires to maximize
the total expected damage across all targets, subtract-
ing the total attack costs. In other words:

max
a

uA(a, d) =
|T|∑
i=1

Vi

⎡
⎣∏

Sk	i

P
(
RSkdSk, ai

)⎤⎦−C
|T|∑
i=1

ai

s.t. ai = 0 or 1, ∀i = 1, . . . , |T|. (1)

Similarly, we assume that the defender maxi-
mizes the total expected value of nondamaged tar-
gets, subtracting the total defense costs. That is:

max
d

uD(a, d) =
|T|∑
i=1

Vi

⎡
⎣1 −

∏
Sk	i

P(RSkdSk, ai )

⎤
⎦

−B
∑

Sk⊂T,Sk �=φ

dSk

s.t. dSk ≥ 0, ∀k = 1, 2, . . . , 2|T| − 1. (2)

2.3. Subgame Perfect Nash Equilibrium (SPNE)

Following Powell(4) and Bier et al.,(17) we con-
sider a sequential game in which the defender is the
first mover. We define a strategy pair (a∗, d∗) as a
SPNE if and only if:

a∗ = â(d∗) = arg max
a

uA(a, d∗) (3)

and

d∗ = arg max
d

uD(â(d), d). (4)

In this article, we assume that at SPNE the attacker
will not attack if he is indifferent to either attacking
and not attacking.

2.4. General Analytical Results for SPNE

In order to solve for the SPNE defined by Equa-
tions (3) and (4) introduced in Section 2.3, we first
study the attacker optimization problem (Equation
(1)) and solve for the attacker’s best responses â(d)
in relation to each feasible defender’s strategy d.

THEOREM 1: At SPNE ai = 1 if and only if
∏

Sk	i

P(RSkdSk, ai = 1) > C
Vi

.

Remarks: Theorem 1 tells us that, for a given level
of defenses: (a) the attacker decision could be decen-
tralized (i.e., optimization problem (1) could degen-
erate to |T| separate suboptimization problems); and
(b) attacks are more likely to happen to target i if the
effective defenses (RSkdSk), or the attack cost (C), de-
crease; or if the target valuation (Vi ) increases.

Using Theorem 1, we provide Theorem 2 for
finding the SPNE:

THEOREM 2: The SPNE defined by Equations (3)
and (4) can be equally obtained by solving the follow-
ing optimization problem:
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max
Ta⊂T

⎧⎨
⎩ (5)

max
d

UD(a, d) =
∑
i∈Ta

Vi

⎡
⎣1 −

∏
Sk	i

P(RSkdSk, ai = 1)

⎤
⎦

+
∑
i∈Tn

Vi − B
∑

Sk⊂T,Sk �=φ

dSk

(6)

subject to∏
Sk	i

P (RSkdSk, ai = 1) >
C
Vi

, ∀i ∈ Ta (7)

∏
Sk	i

P (RSkdSk, ai = 1) ≤ C
Vi

, ∀i ∈ Tn (8)

dSk ≥ 0; ∀Sk ⊂ T, Sk �= φ

⎫⎬
⎭ .

Remarks: Theorem 2 provides an equivalent defini-
tion for the SPNE. In particular, using Theorem 2,
we can always calculate for SPNE by considering all
possible 2|T| combinations of targets that could be
attacked (Ta ⊂ T), solving the inner constrained op-
timization problem (Equations (6)–(8)) for each of
these 2|T| combinations, and then comparing these
2|T| optimal objective values in Equation (5) in or-
der to obtain the SPNE. However, an important defi-
ciency for Theorem 2 is that, for some combinations
of targets Ta , we may face an “open set” problem
in which the feasible space for the set of inner opti-
mization problem (Equations (6)–(8)) does not con-
tain any optimum solution. This situation may occure
when Equation (7) makes the set of feasible solutions
an open set, so that this set is not compact. To solve
this deficiency, we provide Theorem 3.

THEOREM 3: In the inner optimization problem de-
fined by Equations (6)–(8), we can replace the strict
Equation (7) with the weak Equation (9), below, with-
out changing the SPNE:∏

Sk	i

P (RSkdSk, ai = 1) ≥ C
Vi

, ∀i ∈ Ta . (9)

Remark: Theorem 3 implies the existence of SPNE
for our model. To see this, first note that the so-
lution to an inner optimization problem defined by
Equations (6)–(8) and (9) must exist because the
feasible region of the set of constraints defined by

Equations (8) and (9) is compact, and the inner ob-
jective function of Equation (6) is continuous in d.
Second, note that the feasible region for the outer
maximization problem of Equation (5) is always
nonempty and finite. Therefore, we can always find
a SPNE by comparing the optimal objective values
from all possible inner optimization problems using
Equation (5).

3. SPECIFIC FORMS FOR THE FUNCTIONS
OF THE MODEL

We assume specific forms for the following two
functions: the defense efficiency coefficient (RSk) and
the probability of damage (P).

The first function, RSk({Di j : i, j ∈ Sk}), is a func-
tion of the distances Di j s between the targets i and
j, both belonging to the subset Sk, and representing
the efficiency reduction of investment on the subset
Sk. To understand this function, consider an invest-
ment made on emergency facilities in order to jointly
protect a subset consisting of two cities. If these two
cities are far away from each other, this joint protec-
tion would be inefficient. In the rest of this article, we
consider the following functional forms for RSk:

RSk({Di j : i, j ∈ Sk}) = 1 −
max
i, j∈Sk

Di j

1 + max
i, j∈T

Di j
. (10)

Note that RSk in Equation (10) depends on Di j s only
through the maximum distance between the targets
belonging to the subset Sk. However, other types of
functional forms for RSk could also be reasonable;
e.g., a function of the total distances between the tar-
gets belonging to the subset Sk:

R′
Sk

({Di j : i, j ∈ Sk}) = 1 −

∑
i, j∈Sk

Di j

1 +
∑

i, j∈T

Di j

. (11)

Regarding the function of failure in protection (P),
we follow the exponential function in Bier et al.,(17)

and customize this function for our model as follows:

P (RSkdSk, ai ) =
{

0 if ai = 0

exp (−RSkdSk) if ai = 1.
(12)

For more general contest success functions, see
Skaperdas.(21)

COROLLARY 1: Inserting Equation (12) in
Theorem 2, and replacing Equation (7) with
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Equation (9) according to Theorem 3, we obtain
the optimization problem for finding the SPNE as
follows:

max
Ta⊂T

⎧⎨
⎩ (13)

max
d

UD(a, d) =
∑
i∈Ta

Vi

⎡
⎣1 − exp

⎛
⎝−

∑
Sk	i

RSkdSk

⎞
⎠

⎤
⎦

+
∑
i∈Tn

Vi − B
∑

Sk⊂T,Sk �=φ

dSk

(14)

subject to∑
Sk	i

RSkdSk ≤ − ln
(

C
Vi

)
, ∀i ∈ Ta (15)

∑
Sk	i

RSkdSk ≥ − ln
(

C
Vi

)
, ∀i ∈ Tn

dSk ≥ 0; ∀Sk ⊂ T, Sk �= φ

⎫⎬
⎭ .

(16)

Remark: According to Corollary 1, and as men-
tioned in the remark following Theorem 2, in order
to find the SPNE, we need to consider all possible
2|T| combinations of targets that could be attacked
(Ta ⊂ T). This method is always feasible, but one
concern is the computational time, which increases
exponentially in |T|. To address this concern, The-
orem 4 below provides a method to significantly re-
duce the number of inner optimization problems to
be solved, without missing the SPNE.

THEOREM 4: For any target j satisfying Vj −
C exp( C

B) ≤ 0, the attacker will not attack target j in
SPNE. Therefore, we can neglect those inner op-
timization problems in Theorem 2 for which Ta 	
j . In other words, using the notation J ≡ { j : Vj −
C exp( C

B) ≤ 0}, Equation (13) can be simplified to
Equation (17) below without missing the SPNE:

max
Ta⊂T−J

{ (17)

Furthermore, the computational time will be reduced
by 100(1 − 2−|J |)%.

Remark: To see the benefits of Theorem 4, consider
a problem in which |J | = 3. For finding the SPNE by
using Theorem 4, we only need to solve 2|T|−3 inner

Fig. 2. An example with three targets.

optimization problems, which reduces the computa-
tional time by 100(1 − 2−3)% = 87.5% as compared
to the method that does not use Theorem 4.

4. ILLUSTRATIVE EXAMPLES

4.1. Baseline Example

In this section, we illustrate our model us-
ing a baseline example provided in Fig. 2 in
which C = 4 and B = 1. In this example we have
three targets (T = {1, 2, 3}), with V1 = 350, V2 = 200,

V3 = 400,(X1,Y1) = (0,3), (X2,Y2) = (2, 4), and (X3,

Y3) = (5, 1). The total 2|T| − 1 = 23 − 1 = 7 defense
investment options dSks are associated with the
subsets S1 = {1}, S2 = {2}, S3 = {3}, S4 = {1, 2}, S5 =
{1, 3}, S6 = {2, 3}, and S7 = {1, 2, 3}. The distances
are D12 = 2.23, D13 = 5.38, and D23 = 4.42, as shown
in Fig. 2.

Inserting the above-mentioned distances into
Equation (10), we get the defense efficiency coef-
ficients RSks as follows: RS1 = 1, RS2 = 1, RS3 = 1,

RS4 = 1 − 2.23
1+5.38 = 0.65, RS5 = 1 − 5.35

1+5.38 = 0.16, RS6 =
1 − 4.24

1+5.38 = 0.34, and RS7 = 1 − 5.38
1+5.38 = 0.16.

Therefore, given the values of defensive investment
dSks, the attacker optimization problem of Equation
(1) becomes:

max
a

uA(a, d) = 350
[
a1e−dS2 e−0.65dS4 e−0.16dS5 e−0.16dS7

]
+ 200

[
a2e−dS2 e−0.65dS4 e−0.34dS6 e−0.16dS7

]
+ 400

[
a3e−dS3 e−0.16dS5 e−0.34dS6 e−0.16dS7

]
− 4[a1 + a2 + a3]

ai = 0 or 1, ∀i = 1, 2, 3.
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Similarly, the defender optimization problem of
Equation (2) becomes:

max
d

uD(a, d)

= 350
[
1 − a1e−dS2 e−0.65dS4 e−0.16dS5 e−0.16dS7

]
+ 200

[
1 − a2e−dS2 e−0.65dS4 e−0.34dS6 e−0.16dS7

]
+ 400

[
1 − a3e−dS3 e−0.16dS5 e−0.34dS6 e−0.16dS7

]
−

7∑
k=1

dSk

dSk ≥ 0, ∀k = 1, . . . , 7.

4.2. Finding the SPNE for the Baseline Example

According to Corollary 1, when finding the
SPNE we need to consider all 2|T| = 23 = 8 combi-
nations of targets Ta ⊂ T that can be attacked, and
solve for these eight corresponding inner optimiza-
tion problems. However, according to Theorem 4, we
know that target 2 will not be attacked in SPNE be-
cause V2 − C exp( C

B) = −18 ≤ 0. Therefore, we only
need to consider 2|T|−1 = 23−1 = 4 combinations of
targets, and solve their corresponding inner opti-
mization problems as defined by Equations (14)–
(16), as shown in the following four cases (without
involving target 2).

Case 1: Ta = {1}

max
d

uD(a, d) = 350
[
1 − e−(dS1 +0.65dS4 +0.16dS5 +0.16dS7 )]

+ 200 + 400 −
7∑

k=1

dSk

subject to:

dS1 + 0.65dS4 + 0.16dS5 + 0.16dS7 ≤ 4.47

dS2 + 0.65dS4 + 0.34dS6 + 0.16dS7 ≥ 3.91

dS3 + 0.16dS5 + 0.34dS6 + 0.16dS7 ≥ 4.60

dSk ≥ 0,∀k = 1, . . . , 7.

Using any standard optimization software (e.g.,
LINGO, MATLAB optimization toolbox), the
optimal solution for this case is: dS1 = 0.56;
dS3 = 4.60; dS4 = 6.02; dSk = 0.00 for k = 2, 5, 6, 7;
and uD(a, d) = 934.8.

Case 2: Ta = {3}
max

d
uD(a, d) = 350 + 200

+ 400
[
1 − e−(dS3 +0.16dS5 +0.34dS6 +0.16dS7 )] −

7∑
k=1

dSk

subject to

dS1 + 0.65dS4 + 0.16dS5 + 0.16dS7 ≥ 4.47

dS2 + 0.65dS4 + 0.34dS6 + 0.16dS7 ≥ 3.91

dS3 + 0.16dS5 + 0.34dS6 + 0.16dS7 ≤ 4.60

dSk ≥ 0, ∀k = 1, . . . , 7.

The optimal solution for this case is: dS1 = 0.56; dS3 =
4.60; dS4 = 6.02; dSk = 0.00 for k = 2, 5, 6, 7; and
uD(a, d) = 934.8.

Case 3: Ta = {1, 3}
max

d
uD(a, d) = 350

[
1 − e−(dS1 +0.65dS4 +0.16dS5 +0.16dS7 )]

+ 200 + 400
[
1 − e−(dS3 +0.16dS5 +0.34dS6 +0.16dS7 )]

−
7∑

k=1

dSk

subject to

dS1 + 0.65dS4 + 0.16dS5 + 0.16dS7 ≤ 4.47

dS2 + 0.65dS4 + 0.34dS6 + 0.16dS7 ≥ 3.91

dS3 + 0.16dS5 + 0.34dS6 + 0.16dS7 ≤ 4.60

dSk ≥ 0, ∀k = 1, . . . , 7.

The optimal solution for this case is: dS1 = 0.56;
dS3 = 4.60; dS4 = 6.02; dSk = 0.00 for k = 2, 5, 6, 7;
and uD(a, d) = 930.8.

Case 4: Ta = φ

max
d

uD(a, d) = 150 + 100 + 200 −
7∑

k=1

dSk

subject to

dS1 + 0.65dS4 + 0.16dS5 + 0.16dS7 ≥ 4.47

dS2 + 0.65dS4 + 0.34dS6 + 0.16dS7 ≥ 3.91

dS3 + 0.16dS5 + 0.34dS6 + 0.16dS7 ≥ 4.60

dSk ≥ 0, ∀k = 1, . . . , 7.

The optimal solution for this case is: dS1 = 0.56;
dS3 = 4.60; dS4 = 6.02; dSk = 0.00 for k = 2, 5, 6, 7;
and uD(a, d) = 938.8.
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Fig. 3. SPNE for the illustrative example.

By comparing the defender’s payoffs uD(a, d)
in the above four cases (934.8, 934.8, 930.8, and
938.8), we obtain the SPNE for this problem in
Case 4 in which the defender’s optimal payoff is

938.8, the defender’s strategy is dS1 = 0.56; dS3 =
4.60; dS4 = 6.02; dSk = 0.00 for k = 2, 5, 6, 7, and the
attacker’s best responses to the defenses are: a1 =
0; a2 = 0; a3 = 0. This solution is illustrated in Fig. 3.
In this baseline example the defender chooses to pro-
tect targets 1 and 2 collectively (due to the geograph-
ical closeness), and to protect targets 1 and 3 individ-
ually (due to the high target valuation).

4.3. Sensitivity Analysis for Varying Parameters B
and C

Note that, in the baseline example provided in
Sections 4.1 and 4.2, the unit cost of defense (B = 1)
is so small that the defender highly protects all tar-
gets in order to fully deter the attacker in the SPNE.
In this section we first study the role of parameter
B. Fig. 4 shows the impact of parameter B on the
total payoffs of the defender and attacker as well
as the values of the defender’s decision variables in

Fig. 4. SPNE of the numerical example for various values of parameter B.
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Fig. 5. Four classes of SPNE strategies.

Fig. 6. SPNE of the numerical example for various values of parameter C.

the SPNE. Four different types of SPNE strategies
(I, II, III, and IV) in Fig. 4 are explained in Fig. 5.
According to Figs. 4(b) and 5, as the unit cost of de-
fense (B) increases, in SPNE the defender generally
invests less effort to protect the targets (except when

13.0 ≤ B ≤ 14.0 where dS3 and dS4 decrease in B, but
dS2 slightly increases in B); as a result, more targets
are attacked (from Case I with no attack, to Case IV
with three attacks). Moreover, Fig. 4(b) shows that,
when B goes to infinity, all defense levels go to zero.
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Fig. 7. Percentage increase in defender’s payoff and the percentage decrease in attacker’s payoffs when the ALD model is used compared
to the ITH model.

Finally, Fig. 4(a) shows that, when B increases, the
defender’s total payoff decreases, and the attacker’s
total payoff increases.

Similarly, Fig. 6 shows the impact of the cost of
attack (parameter C) on the total payoffs of the de-
fender and attacker, as well as the value of the de-
fender’s decision variables in SPNE. From Figs. 5 and
6, we see that when C increases, fewer targets are at-
tacked in SPNE; and the attacker’s total payoff de-
creases while the defender’s total payoff slightly in-
creases. Moreover, when C goes to infinity, no attack
happens and all defense levels go to zero.

By comparing Figs. 4 and 6, it is important to
note that all defense levels go to zero, both when pa-
rameter B goes to infinity (too costly to defend) and
when parameter C goes to infinity (too expensive to
attack; therefore, no need to defend exists). More-
over, it is worth noting that dS5 = dS6 = dS7 = 0 in all
cases. This is because the targets in subsets S5, S6, and
S7 are so far away from each other that the defense
efficiency coefficients on these subsets are sufficiently
small (RS5 = RS7 = 0.1 and RS6 = 0.34, compared to
RS1 = RS2 = RS3 = 1 and RS4 = 0.65). Finally, we see
that the attacker’s and defender’s total payoffs are
more sensitive to parameter B than to parameter C.
This suggests that, in order for the defender to in-
crease her total payoff in SPNE, it would be more

efficient to develop methods (if possible) to decrease
the unit cost of defense, rather than to increase the
cost of attack.

4.4. Arbitrary Layers of Defense (ALD)
Versus Individual Target Hardening (ITH)

In this section we compare our numerical ex-
amples from the model of ALD in Sections 4.1–4.3
with a model only allowing ITH that was studied in
the literature. The ITH model is easier to implement
than the ALD model because: (1) there is no need
to calculate the RSks; and (2) the number of decision
variables will decrease from 7 in ALD to 3 in the
ITH model (i.e., dS4 , dS5 , dS6 , and dS7 are forced to be
zero). Therefore, we have only three decision vari-
ables dS1 , dS2 , and dS3 in the ITH compared to seven
in the ALD. (However, this is not important because,
in general, the computational time mainly depends
on the number of constraints rather than the number
of decision variables; the ITH model has the same
number of constraints as in ALD model.)

On the other hand, our model enables us to study
more general cases while obtaining better payoffs for
the defender by avoiding suboptimums. To see this,
Fig. 7 provides the percentage increase in the de-
fender’s payoffs and the percentage decrease in the
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Fig. 8. SPNE of the numerical example for various values of parameter B (individual target hardening).

attacker’s payoffs when the ALD model is used com-
pared to the ITH model. We observe that for all val-
ues of parameters B and C, the defender has better
payoffs (especially when parameter B is large mean-
ing that the defense is expensive), and the attacker
has worse payoffs (especially when parameter C is
intermediate).

Another important observation from Fig. 7 is
that the percentage decrease in the attacker’s payoffs
is usually more than the percentage increase in the
defender’s payoffs when ALD is used instead of the
ITH model. In other words, ALD is a better model
for disadvantaging the attacker rather than advan-
taging the defender. To see the details, we provide
the detailed SPNE information for the ITH model
in Figs. 8–10, analogous to Figs. 4–6 for the ALD
model in Section 4.3. By comparing Figs. 4 and 8
where 11.0 ≤ B ≤ 14.0, and Figs. 6 and 10, where
2.9 ≤ C ≤ 3.6, we see that when parameters B and C
are intermediate, in the ALD model the defender can

Fig. 9. Two classes of SPNE strategies (individual target harden-
ing).

assign her defensive resources more efficiently such
that the attacker cannot attack all targets (as happen-
ing in the ITH model), and as a result, this makes a
big decrease in attacker payoffs when ALD is used
instead of ITH.
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Fig. 10. SPNE of the numerical example for various values of parameter C (individual target hardening).

5. CONCLUSION AND FUTURE RESEARCH
DIRECTIONS

In this article, we proposed a novel attacker-
defender game-theoretic model in which the de-
fender has the option to assign her continuous-level
defensive resources to any subset (arbitrary layers) of
targets, instead of choosing individual target harden-
ing, or collective protections such as border security.
We also developed an efficient method for finding
the SPNE of the proposed model, and illustrated the
method using numerical examples. This method for
finding SPNE is based on solving optimization prob-
lems and comparing their optimal values. We noted
that the number of inner optimization problems in-
creases exponentially by the number of targets, and
provided a theorem to significantly shorten the com-
putational time by removing dominated suboptimiza-
tion problems.

By comparing our model of arbitrary layers of
defense with the traditional model of individual tar-

get hardening, our results show that the percentage
increase in defender’s payoffs are significant espe-
cially when the cost of defense is high. This suggests
that our model will provide valuable solutions to gov-
ernments facing strategic adversaries while the de-
fenses are expensive and financial resources are lim-
ited.

Interesting future research directions include: (a)
studying multilayers of protections due to functional
similarity; (b) studying continuous-level of attack;
and (c) numerically studying more functional forms
for defense efficiency coefficients and probability of
failures.
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APPENDIX

A.1. Proof for Theorem 1

For each strategy of the defender d, the attacker
faces an optimization problem given in Equation
(1). However, since we do not consider budget con-
straints for the attacker, the optimization problem of
Equation (1) decomposes to the following |T| subop-
timization problems for each target i ∈ T:

max
ai

ui
A(ai , d) = Vi

⎛
⎝∏

Sk	i

P
(
RSkdSk, ai

)⎞⎠ − ai C

ai = 0 or 1,

where ui
A (ai , d) is the attacker’s total expected pay-

off from target i. We must consider two possible
cases:

I. ai = 0 ⇒ ui
A(ai = 0, d) = 0

II. ai = 1 ⇒ ui
A(ai = 1, d) = Vi (

∏
Sk	i P(RSk dSk,

ai = 1)) − C.

The attacker chooses ai = 1 if and only if
ui

A (ai = 0, d) < ui
A (ai = 1, d) (recall that we as-

sumed in Section 2.3 that, in SPNE, the attacker will
not attack if he is indifferent between attacking and
not attacking); or equivalently:

Vi

⎛
⎝∏

Sk	i

P
(
RSkdSk, ai = 1

)⎞⎠ − C > 0

⇒
∏
Sk	i

P
(
RSkdSk, ai = 1

)
>

C
Vi

.

A.2. Proof for Theorem 2

Theorem 1 ensures that the attacker plays his
best responses â(d) = arg maxa uA (a, d) if and only if
the constraints of Equations (7) and (8) are satisfied
in the inner optimization problem (Equations (6)–
(8)), which satisfies the requirement of Equation (3).

Furthermore, the defender maximizes uD (â(d), d)
according to Equations (5) and (6), which satisfy the
requirement of Equation (4). Therefore, Equations
(5)–(8) satisfy Equations (3) and (4), and the SPNE
defined by Equations (3) and (4) can be equivalently
obtained by solving Equations (5)–(8).

A.3. Proof for Theorem 3

There are two possible cases for any inner op-
timization problem as defined by Equations (6)–(8)
and (9). In both cases we will show that replacing
strict inequality of Equation (7) with weak inequal-
ity of Equation (9) does not change the SPNE.

Case 1: There is no target j ∈ Ta , such that the con-
straint of Equation (9) is tight for the optimal solu-
tion of the inner optimization problem defined by
Equations (6), (8), and (9). Therefore, this optimal
solution is also feasible for the inner optimization
problem defined by Equations (6)–(8) with a reduced
feasible region and, therefore, must still be optimal.
Therefore, replacing strict inequality of Equation (7)
with weak inequality of Equation (9) does not change
the SPNE.

Case 2: There exists at least one target j ∈ Ta , such
that the constraint of Equation (9) is tight for the op-
timal solution of the inner optimization problem de-
fined by Equations (6), (8), and (9). We denote this
optimal solution as d∗ = (d∗

S1
, d∗

S2
, . . . , d∗

S2|T|−1
), and

J =
⎧⎨
⎩ j ∈ Ta :

∏
Sk	 j

P
(
RSkd∗

Sk
, a j = 1

) = C
Vj

⎫⎬
⎭ .

Considering that the solution d∗ is feasible, and that
the constraint of Equation (9) is tight, the following
equations must hold:

u∗
D(a, d∗) =

∑
j∈J

Vj

⎡
⎣1 −

∏
Sk	 j

P
(
RSkd∗

Sk
, a j = 1

)⎤⎦

+
∑

i∈Ta ;i /∈J

Vi

⎡
⎣1 −

∏
Sk	i

P
(
RSkd∗

Sk
, ai = 1

)⎤⎦
+

∑
i∈Tn

Vi − B
∑

Sk⊂T;Sk �=φ

d∗
Sk

∏
Sk	 j

P
(
RSkd∗

Sk
, a j = 1

) = C
Vj

; ∀ j ∈ J (A.1)

∏
Sk	i

P
(
RSkd∗

Sk
, ai = 1

) ≥ C
Vi

; ∀i ∈ Ta, i /∈ J (A.2)



Modeling Arbitrary Layers of Defenses in Facing with Strategic Attackers 545

∏
Sk	i

P
(
RSkd∗

Sk
, ai = 1

) ≤ C
Vi

; ∀i ∈ Tn. (A.3)

Now we show that there exists another combi-
nation of targets denoted as T′

a , which has a better
objective function than u∗

D(a, d∗) so that u∗
D(a, d∗)

cannot be a SPNE solution when solving for
Equation (5). In particular, consider another com-
bination of targets T′

a , which is the same as Ta , ex-
cept that the targets in J are not to be attacked (i.e.,
T′

a = Ta − J ). The inner optimization problem for the
set T′

a is as follows, and is referred to as Problem 3.1:

maxd uD(a, d)

=
∑
j∈J

Vj +
∑

i∈Ta ;i /∈J

Vi

⎡
⎣1 −

∏
Sk	i

P (RSkdSk, ai = 1)

⎤
⎦

+
∑
i∈Tn

Vi − B
∑

Sk⊂T;Sk �=φ

dSk

subject to

∏
Sk	 j

P (RSkdSk, a j = 1) ≤ C
Vj

; ∀ j ∈ J (A.4)

∏
Sk	i

P (RSkdSk, ai = 1) ≥ C
Vi

; ∀i ∈ T′
a (A.5)

∏
Sk	i

P (RSkdSk, ai = 1) ≥ C
Vi

; ∀i ∈ Tn. (A.6)

Note that d∗ introduced in the paragraph above
Equation (A.1) is a feasible solution to Problem 3.1
since Equations (A.1)–(A.3) satisfy the constraints in
Equations (A.4)–(A.6), respectively. We denote the
objective value of Problem 3.1 as evaluated by the
feasible solution d∗ as u′

D(a, d∗) (which is not neces-
sarily optimum to Problem 3.1). We have

∑
j∈J

Vj ≥
∑
j∈J

Vj

⎡
⎣1 −

∏
Sk	 j

P
(
RSkd∗

Sk
, a j = 1

)⎤⎦

⇒
∑
j∈J

Vj +
∑

i∈Ta ;i /∈J

Vi

⎡
⎣1 −

∏
Sk	i

P
(
RSkd∗

Sk
, ai = 1

)⎤⎦
+

∑
i∈Tn

Vi − B
∑

Sk⊂T;Sk �=φ

d∗
Sk

≥
∑
j∈J

Vj

⎡
⎣1 −

∏
Sk	 j

P
(
RSkd∗

Sk
, a j = 1

)⎤⎦

+
∑

i∈Ta ;i /∈J

Vi

⎡
⎣1 −

∏
Sk	i

P
(
RSkd∗

Sk
, ai = 1

)⎤⎦
+

∑
i∈Tn

Vi − B
∑

Sk⊂T;Sk �=φ

d∗
Sk

⇒ u′
D(a, d∗) ≥ u∗

D(a, d∗).

Therefore, a feasible solution to Problem 3.1,
u′

D(a, d∗), has a (weakly) better objective value
than the optimum solution to our original problem
u∗

D(a, d∗). This means that the original inner opti-
mization problem defined by Equations (6), (8), and
(9) is weakly dominated by the inner optimization
Problem 3.1 when we optimize Equation (5). In other
words, the Ta corresponding to u∗

D(a, d∗) will be dom-
inated by T′

a , and will not be selected as the optimal
solution of the outer optimization problem of Equa-
tion (5). (Therefore, will not be an SPNE solution.)
(Case 2-Conclusion 1)

We also know that the objective value of any in-
ner optimization problem defined by Equations (6)–
(8) is always less than or equal to the one defined by
Equations (6), (8), and (9), since the objective func-
tions of these two problems are the same, while the
feasible region defined by the constraints of Equa-
tions (7) and (8) is smaller than the one defined by
the constraints of Equations (8) and (9). Therefore,
for a given Ta , if the optimal objective value of the in-
ner optimization problem defined by Equations (6),
(8), and (9) is not selected as the SPNE solution, the
optimal objective value of the optimization problem
defined by Equations (6)–(8) will also not be selected
as a SPNE solution. (Case 2-Conclusion 2)

By considering Case 2-Conclusion 1 and Case 2-
Conclusion 2 simultaneously in case 2 regardless of
the application of inner optimization problems de-
fined by Equations (6)–(8) or Equations (6), (8), and
(9), the corresponding solution cannot be a SPNE so-
lution. Therefore, replacing strict inequality of Equa-
tion (7) with weak inequality of Equation (9) does
not change the SPNE.

A.4. Proof for Theorem 4

In order to show that any target j satisfying
Vj − C exp

(C
B

) ≤ 0 will not be attacked in SPNE, we
suppose that j ∈ Ta (j is considered to be attacked),
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in an inner optimization problem defined by Equa-
tions (14)–(16); we will then show that this inner
optimization problem is dominated by another in-
ner optimization problem in which j /∈ Ta and, there-
fore, will not be a SPNE solution when we opti-
mize Equation (13). In particular, consider an in-
ner optimization problem defined by Equations (14)–
(16) in which j ∈ Ta . We denote this problem as
Problem 4.1:

max
d

uD(a, d) =
⎡
⎣Vj − Vj exp

⎛
⎝−

∑
Sk	 j

RSkdSk

⎞
⎠
⎤
⎦

+
∑

i∈Ta ;i �= j

Vi

⎡
⎣1 − exp

⎛
⎝−

∑
Sk	i

RSkdSk

⎞
⎠

⎤
⎦

+
∑

i∈Tn;i �= j

Vi − B
∑

Sk⊂T;Sk �=φ

dSk (A.7)

subject to:∑
Sk	 j

RSkdSk ≤ − ln
(

C
Vj

)
(A.8)

∑
Sk	i

RSkdSk ≤ − ln
(

C
Vi

)
; ∀i ∈ Ta, i �= j (A.9)

∑
Sk	i

RSkdSk ≥ − ln
(

C
Vi

)
; ∀i ∈ Tn, i �= j. (A.10)

Consider another inner optimization problem
defined by Equations (14)–(16) in which j /∈ Ta . We
denote this problem as Problem 4.2:

max
d

uD(a, d)

= Vj +
∑

i∈Ta ;i �= j

Vi

⎡
⎣1 − exp

⎛
⎝−

∑
Sk	i

RSkdSk

⎞
⎠

⎤
⎦

+
∑

i∈Tn;i �= j

Vi − B
∑

Sk⊂T;Sk �=φ

dSk (A.11)

subject to:
∑
Sk	 j

RSkdSk ≥ − ln
(

C
Vj

)
(A.12)

∑
Sk	i

RSkdSk ≤ − ln
(

C
Vi

)
; ∀i ∈ Ta, i �= j (A.13)

∑
Sk	i

RSkdSk ≥ − ln
(

C
Vi

)
; ∀i ∈ Tn, i �= j. (A.14)

Now we show that the optimal objective value
to Problem 4.2 is greater than or equal to the op-
timal objective value to Problem 4.1 when Vj −
C exp( C

B) ≤ 0. To show this we denote Problem 4.3
as follows:

max
d

uD(a, d)

= Vj +
∑

i∈Ta ;i �= j

Vi

⎡
⎣1 − exp

⎛
⎝−

∑
Sk	i

RSkdSk

⎞
⎠

⎤
⎦

+
∑

i∈Tn;i �= j

Vi − B
∑

Sk⊂T;Sk �=φ

dSk (A.15)

subject to:∑
Sk	 j

RSkdSk ≤ − ln
(

C
Vj

)
(A.16)

∑
Sk	i

RSkdSk ≤ − ln
(

C
Vi

)
; ∀i ∈ Ta, i �= j (A.17)

∑
Sk	i

RSkdSk ≥ − ln
(

C
Vi

)
; ∀i ∈ Tn, i �= j. (A.18)

Note that there is only one difference between
Problems 4.1 and 4.3: the objective function of Prob-
lem 4.3, which is given by Equation (A.15), is equal
to the objective function of Problem 4.1 given by
Equation (A.7) plus (Vj exp(−∑

Sk	 j RSkdSk)). From
Equation (A.8) we have:∑

Sk	 j

RSkdSk ≤ − ln
(

C
Vj

)

⇔ Vj exp

⎛
⎝−

∑
Sk	 j

RSkdSk

⎞
⎠ ≥ C.

Therefore, transitioning from Problem 4.1 to 4.3,
the objective function will increase by at least the
value of C (Conclusion 1).

Similarly, there is only one difference between
Problems 4.2 and 4.3: the directions of the constraint
of Equation (A.12) in Problem 4.2 and the constraint
of Equation (A.16) in Problem 4.3 are opposite of
one another. We claim that when transitioning from
Problems 4.3 to 4.2, the objective function will be de-
creased at most by the value of −B ln( C

Vj
) (Conclu-

sion 2).
We prove Conclusion 2 as follows. Denoting

Sj = { j}, according Equation (10), we have RSj = 1.
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Now investigating the set of constraints in Equa-
tions (A.12)–(A.14) in Problem 4.2, we know that the
variable dSj appears only in constraint of Equation
(A.12). Therefore, in order to satisfy the constraint
of Equation (A.12), we can feasibly select the value
of dSj so that it is equal to − ln( C

Vj
) while satisfying

the constraint of Equation (A.12) without violating
the two other constraints in Equations (A.13) and
(A.14). We also know that the coefficient of dSj in
the objective function of Problem 4.2 is equal to B.
Therefore, transitioning from Problems 4.3 to 4.2, the
objective function will be decreased at most by the
value of −B ln( C

Vj
). Therefore, Conclusion 2 above is

proved.
Considering Conclusion 1 and Conclusion 2 si-

multaneously, transitioning from Problems 4.1 to 4.2,
the optimal objective value to Problem 4.2 is greater
than or equal to the optimal objective value in Prob-
lem 4.1 if

−B ln
(

C
Vj

)
≤ C ⇒ Vj − C exp

(
C
B

)
≤ 0.

This means that if Vj − C exp( C
B) ≤ 0, Problem

4.1 is dominated by Problem 4.2, and therefore j /∈ Ta

in SPNE. In other words, for any target j satisfying
Vj − C exp( C

B) ≤ 0, the attacker will not attack target
j in SPNE.
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